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1. Introduction and preliminaries 

The notion of  -metric space was introduced by Mustafa and Sims [5], [6] as a 

generalization of metric spaces. Afterwards Mustafa and Sims [7] proved fixed point 

theorems for mappings satisfying different contractive conditions in this space. The 

study of unique common fixed points of mappings satisfying strict contractive 

conditions has been at the center of rigorous research activity. In [1] Abbas and 

Rhoades studied common fixed point results for non-commuting mappings without 

continuity in  -metric spaces. Moreover, existence of fixed points in ordered metric 

spaces has been initiated by Ran and Reurings [9] and further studied by Nieto and 
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Lopez [8]. Recently, Abbas et.al. [3] extended and generalized the results in [7] and 

proved common fixed point theorems for three mappings in complete  -metric space. 

The purpose of this article is to study common fixed point theorems for six mappings 

in ordered  -metric spaces without using weakly compatible. Our result generalize 

various results of Abbas et.al. [3]. Here we present the necessary definitions and 

results in  -metric spaces which will be useful for the rest of the paper. However, for 

details we refer to [5], [6]. 

Definition 1.1. [6] Let 𝑋 be a nonempty set, and let  ∶ 𝑋3 → [0,∞), be a function 

satisfying: 

( 1)  (𝑥, 𝑦, 𝑧) = 0  𝑖𝑓  𝑥 = 𝑦 = 𝑧, 

( 2) 0 <  (𝑥, 𝑥, 𝑦),  for all  𝑥, 𝑦 ∈ 𝑋, with 𝑥 ≠ 𝑦, 

( 3)  (𝑥, 𝑥, 𝑦) ≤  (𝑥, 𝑦, 𝑧), ∀𝑥, 𝑦, 𝑧 ∈  𝑋,  with 𝑧 ≠ 𝑦, 

( 4) (𝑥, 𝑦, 𝑧) =  (𝑥, 𝑧, 𝑦) =  (𝑦, 𝑧, 𝑥) . ..  , (symmetry in all three variables), 

( 5)  (𝑥, 𝑦, 𝑧) ≤  (𝑥, 𝑎, 𝑎) +  (𝑎, 𝑦, 𝑧), ∀𝑥, 𝑦, 𝑧, 𝑎 ∈  𝑋,   (rectangle inequality). 

Then the function   is called a generalized metric, or more specifically a  -metric 

on 𝑋, and the pair (𝑋,  ) is called a  -metric space. 

Definition 1.2.[6] Let (𝑋,  ) be a  -metric space, a sequence (𝑥𝑛) is said to be 

(𝑖)  -convergent if for every ɛ > 0, there exists an  𝑥 ∈ 𝑋 and 𝑘 ∈ 𝐍 such that 

for all 𝑚, 𝑛 ≥ 𝑘,  (𝑥, 𝑥𝑛 , 𝑥𝑚 ) < ɛ . 

(𝑖𝑖)  -Cauchy if for every 𝜀 > 0, there exists an 𝑘 ∈ 𝐍 such that for all 𝑚, 𝑛,  ≥

𝑘,  (𝑥𝑚, 𝑥𝑛, 𝑥𝑝) < ɛ, that is  (𝑥𝑚, 𝑥𝑛, 𝑥𝑝) → 0 as 𝑚, 𝑛,  → ∞. 

(𝑖𝑖𝑖)  A space (𝑋,  ) is said to be  -complete if every  -Cauchy sequence in 

(𝑋,  ) is G-convergent. 

Definition 1.3.[6] A  -metric space 𝑋 is symmetric if  (𝑥, 𝑦, 𝑦) =  (𝑦, 𝑥, 𝑥) for 

all  𝑥, 𝑦 ∈ 𝑋. 

Lemma 1.4.[6] Let (𝑋,  ) be a  -metric space. Then the following are equivalent: 

(𝑖) (𝑥𝑛) 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡 𝑡𝑜 𝑥, 

(𝑖𝑖)  (𝑥𝑛, 𝑥𝑛, 𝑥) → 0 𝑎𝑠 𝑛 → ∞, 

(𝑖𝑖𝑖)  (𝑥𝑛, 𝑥, 𝑥) → 0 𝑎𝑠 𝑛 → ∞, 
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(𝑖𝑣) (𝑥𝑛, 𝑥𝑚, 𝑥) → 0 𝑎𝑠 𝑛,𝑚 → ∞. 

Lemma 1.5.[6] Let (𝑋,  ) be a  -metric space. Then the following are equivalent: 

(𝑖) The sequence (𝑥𝑛) is  -Cauchy, 

(𝑖𝑖) for every 𝜀 >  0 , there exists 𝑘 ∈ 𝐍 such that   (𝑥𝑛, 𝑥𝑚, 𝑥𝑚)  < 𝜀   for  

𝑚, 𝑛 ≥  𝑘. 

Lemma 1.6.[6] Let (𝑋,  ) be a  -metric space. Then the function  (𝑥, 𝑦, 𝑧) is 

jointly continuous in all three of its variables. 

Proposition 1.7.[6] every G-metric space (X,G) will define a metric space (𝑋,   ) by 

  (𝑥, 𝑦)  =   (𝑥, 𝑦, 𝑦) +  (𝑦, 𝑥, 𝑥), ∀𝑥, 𝑦 ∈ 𝑋. 

Proposition 1.8.[6] Let (𝑋,  )be a G-metric space. Then for any 𝑥, 𝑦, 𝑧,and 𝑎 ∈

𝑋, it follows that 

(𝑖)𝑖𝑓  (𝑥, 𝑦, 𝑧) =  0 𝑡 𝑒𝑛 𝑥 =  𝑦 =  𝑧, 

(𝑖𝑖)  (𝑥, 𝑦, 𝑧)  ≤  (𝑥, 𝑥, 𝑦) +  (𝑥, 𝑥, 𝑧), 

(𝑖𝑖𝑖)  (𝑥, 𝑦, 𝑦)  ≤   (𝑥, 𝑥, 𝑦), 

(𝑖𝑣)  (𝑥, 𝑦, 𝑧)  ≤  (𝑥, 𝑎, 𝑧) +  (𝑎, 𝑦, 𝑧), 

(𝑣)  (𝑥, 𝑦, 𝑧)  ≤
 

 
( (𝑥, 𝑦, 𝑎) +  (𝑥, 𝑎, 𝑧) +  (𝑎, 𝑦, 𝑧)), 

(𝑣𝑖)  (𝑥, 𝑦, 𝑧)  ≤  (𝑥, 𝑎, 𝑎) +  (𝑦, 𝑎, 𝑎) +  (𝑧, 𝑎, 𝑎), 

Definition 1.9. [4] Let X be a nonempty set. Then ( ,  , G)is called an ordered 

G-metric space if ( , G) is a G- metric space and ( ,  ) is a partial order set. 

Definition 1.10. Let ( ,  ) be a partial ordered set. Then two points  ,   ∈   are 

said to be comparable if           or      . 

   In [2] Abbas et al. introduced the following definitions: 

Definition 1.11. [2] Let (𝑋,  ) be a partially ordered set. A mapping 𝑓 is called weak 

annihilator of 𝑔  if     𝑓𝑔𝑥  𝑥  for all  𝑥 ∈ 𝑋. 

Definition 1.12. [2] Let (𝑋,  ) be a partially ordered set. A mapping  𝑓  on   is 

called dominating if  𝑥   𝑓𝑥  for all 𝑥 ∈ 𝑋. 

For examples illustrating the above definitions are given in [2]. 

Definition 1.13. A subset   of a partially ordered set 𝑋 is said to be well ordered if 

every two elements of    are comparable. 
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2. Common fixed point theorems 

In this section, we establish common fixed point theorems for six mappings defined 

on an ordered  -metric space. We begin with the following theorem which generalize 

(Theorem 2.1, [3]). 

Theorem 2.1. Let ( ,  , G)be an ordered  -metric space and let 𝑓, 𝑔,  ,  ,   and   

be self-maps on 𝑋 satisfying the following condition 

 (𝑓𝑥, 𝑔𝑦,  𝑧)  ≤ 𝑘 (𝑥, 𝑦, 𝑧),                                                                          ( . ) 

where 𝑘 ∈ [0,
1

2
) and 

 (𝑥, 𝑦, 𝑧)  = 𝑚𝑎𝑥  ( 𝑥,  𝑦,  𝑧),  (𝑓𝑥, 𝑓𝑥,  𝑥),  (𝑔𝑦, 𝑔𝑦,  𝑦),  ( 𝑧,  𝑧,  𝑧), 

(𝑔𝑦, 𝑔𝑦,  𝑥),  ( 𝑦,  𝑧,  𝑧),  ( 𝑧, 𝑓𝑥, 𝑓𝑥)  

for all comparable elements 𝑥, 𝑦, 𝑧 ∈ 𝑋. Suppose that 

(𝑖)𝑓 (𝑋)   (𝑋), 𝑔(𝑋)   (𝑋),  (𝑋)    (𝑋), 

(𝑖𝑖)dominating maps 𝑓, 𝑔,   are weak annihilators of  ,  ,   respectively, 

(iii) one of  (𝑋) ,  (𝑋) 𝑜𝑟  (𝑋) is a  -complete subspace of 𝑋. 

If, for a non-decreasing sequence  𝑥𝑛  with 𝑥𝑛  𝑦𝑛  for all 𝑛 ≥ 0 and 𝑦𝑛 →   

implies that 𝑥𝑛   , then 𝑓, 𝑔,  ,  ,   and   have a common fixed point. Moreover, 

the set of common fixed points of 𝑓, 𝑔,  ,  ,   and   is well ordered if and only if 

𝑓, 𝑔,  ,  ,   and   have one and only one common fixed point. 

Proof. Let 𝑥0 be an arbitrary point in 𝑋. Since 𝑓 (𝑋)   (𝑋), 𝑔(𝑋)   (𝑋),  (𝑋)  

 (𝑋), we can choose 𝑥1, 𝑥2, 𝑥3 ∈ 𝑋 such that 𝑦0 = 𝑓𝑥0 =  𝑥1, 𝑦1 = 𝑔𝑥1 =  𝑥2,  and 

𝑦2 =  𝑥2 =  𝑥3. Continuing this process, we define the sequences 𝑥𝑛 and 𝑦𝑛 in X  by 

𝑦3𝑛 = 𝑓 𝑥3𝑛 =  𝑥3𝑛 1, 𝑦3𝑛 1 = 𝑔𝑥3𝑛 1 =  𝑥3𝑛 2, 𝑦3𝑛 2 =  𝑥3𝑛 2 =  𝑥3𝑛 3 , 

𝑓𝑜𝑟 𝑛 ≥ 0. By given assumptions, we get 

𝑥3𝑛  𝑓𝑥3𝑛 =  𝑥3𝑛 1  𝑓 𝑥3𝑛 1  𝑥3𝑛 1, 

𝑥3𝑛 1  𝑔𝑥3𝑛 1 =  𝑥3𝑛 2  𝑔 𝑥3𝑛 2  𝑥3𝑛 2, 

𝑥3𝑛 2   𝑥3𝑛 2 =  𝑥3𝑛 3    𝑥3𝑛 3   𝑥3𝑛 3. 

So, for all 𝑛 ≥ 0 we have 𝑥𝑛   𝑥𝑛 1. Suppose that  (𝑦𝑛, 𝑦𝑛 1, 𝑦𝑛 2) > 0 for all 

𝑛 ≥ 0. If not, then for some 𝑚 ≥ 0, 𝑦𝑚 = 𝑦𝑚 1 = 𝑦𝑚 2 and the sequence 

 𝑦𝑛  becomes constant for 𝑛 ≥ 𝑚. 
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Indeed, let 𝑚 =  𝑘 then 𝑦3 = 𝑦3  1 = 𝑦3  2 and from (2.1) we obtain 

 (𝑦3  3, 𝑦3  1, 𝑦3  2) =   (𝑓𝑥3  3, 𝑔𝑥3  1,  𝑥3  2) ≤ 𝑘 (𝑥3  3, 𝑥3  1, 𝑥3  2) 

where 

 (𝑥3  3, 𝑥3  1, 𝑥3  2)

= ma   ( 𝑥3  3,  𝑥3  1,  𝑥3  2),  (𝑓𝑥3  3, 𝑓𝑥3  3,  𝑥3  3),

 (𝑔𝑥3  1, 𝑔𝑥3  1,  𝑥3  1),  ( 𝑥3  2,  𝑥3  2,  𝑥3  2),  (𝑔𝑥3  1, 𝑔𝑥3  1,  𝑥3  3),

 ( 𝑥3  1,  𝑥3  2,  𝑥3  2),  ( 𝑥3  2, 𝑓𝑥3  3, 𝑓𝑥3  3) 

= ma   (𝑦3  2, 𝑦3 , 𝑦3  1),  (𝑦3  3, 𝑦3  3, 𝑦3  2),  (𝑦3  1, 𝑦3  1, 𝑦3 ),

 (𝑦3  2, 𝑦3  2, 𝑦3  1),  (𝑦3  1, 𝑦3  1, 𝑦3  2),  (𝑦3 , 𝑦3  2, 𝑦3  2),  (𝑦3  1, 𝑦3  3, 𝑦3  3) 

≤ ma  0,  (𝑦3  1, 𝑦3  2, 𝑦3  3),0,0,0,0,  (𝑦3  1, 𝑦3  2, 𝑦3  3) 

=  (𝑦3  1, 𝑦3  2, 𝑦3  3).

 

 

Hence 

 (𝑦3  1, 𝑦3  2, 𝑦3  3)  ≤ 𝑘 (𝑦3  1, 𝑦3  2, 𝑦3  3). 

Therefore  (𝑦3  1, 𝑦3  2, 𝑦3  3) =  0, that is 𝑦3  1 = 𝑦3  2 = 𝑦3  3. Similarly, if 

𝑚 =  𝑘 +   one obtain that 𝑦3  2 = 𝑦3  3 = 𝑦3  4 and if 𝑚 =  𝑘 +   we have 

𝑦3  3 = 𝑦3  4 = 𝑦3  5. Thus {𝑦𝑛} becomes a constant sequence and 𝑦3𝑛 is the 

common fixed point of 𝑓 , 𝑔,  ,  ,   and  . Now, suppose that  (𝑦𝑛, 𝑦𝑛 1, 𝑦𝑛 2) > 0 

for all 𝑛 ≥ 0. Since 𝑥𝑛   𝑥𝑛 1 for all 𝑛 ≥ 0, then by (2.1) we have  

 (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2) =   (𝑓𝑥3𝑛,  𝑔𝑥3𝑛 1,  𝑥3𝑛 2) ≤ 𝑘 (𝑥3𝑛, 𝑥3𝑛 1, 𝑥3𝑛 2) 

for 𝑛 = 0, , ,   , where 

 (𝑥3𝑛, 𝑥3𝑛 1, 𝑥3𝑛 2) 

=  𝑚𝑎𝑥  ( 𝑥3𝑛,  𝑥3𝑛 1,  𝑥3𝑛 2),  ( 𝑓𝑥3𝑛, 𝑓𝑥3𝑛,  𝑥3𝑛),  (𝑔𝑥3𝑛 1, 𝑔𝑥3𝑛 1,  𝑥3𝑛 1), 

 ( 𝑥3𝑛 2,  𝑥3𝑛 2,  𝑥3𝑛 2),  (𝑔𝑥3𝑛 1, 𝑔𝑥3𝑛 1,  𝑥3𝑛), 

 ( 𝑥3𝑛 1,  𝑥3𝑛 2,  𝑥3𝑛 2),  ( 𝑥3𝑛 2, 𝑓𝑥3𝑛, 𝑓𝑥3𝑛)  

=  𝑚𝑎𝑥  (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1),  (𝑦3𝑛, 𝑦3𝑛, 𝑦3𝑛 1),  (𝑦3𝑛 1, 𝑦3𝑛 1, 𝑦3𝑛), 

 (𝑦3𝑛 2, 𝑦3𝑛 2, 𝑦3𝑛 1),  (𝑦3𝑛 1, 𝑦3𝑛 1, 𝑦3𝑛 1),  (𝑦3𝑛, 𝑦3𝑛 2, 𝑦3𝑛 2),  (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛)  

≤ 𝑚𝑎𝑥  (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1),  (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1),  (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1), 

 (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2),  (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1),  (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2),  (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1)  

=  𝑚𝑎𝑥  (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1),  (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2) . 

If 𝑚𝑎𝑥  (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1),  (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2) =  (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2) then we 

get  
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  (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2) ≤ 𝑘 (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2), 

which implies that  (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2) = 0, a contradiction. Hence  

𝑚𝑎𝑥  (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1),  (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2) =  (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1) 

and  

  (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2) ≤ 𝑘 (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1). 

Similarly by replacing 𝑥 = 𝑥3𝑛 3, 𝑦 = 𝑥3𝑛 1, 𝑧 = 𝑥3𝑛 2, in (2.1) we obtain  

  (𝑦3𝑛 1, 𝑦3𝑛 2, 𝑦3𝑛 3) ≤ 𝑘 (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2). 

Also, replacing 𝑥 = 𝑥3𝑛 3, 𝑦 = 𝑥3𝑛 4, 𝑧 = 𝑥3𝑛 2, in (2.1) we have  

  (𝑦3𝑛 2, 𝑦3𝑛 3, 𝑦3𝑛 4) ≤ 𝑘 (𝑦3𝑛 1, 𝑦3𝑛 2, 𝑦3𝑛 3). 

Therefore for all 𝑛 we obtain  

  (𝑦𝑛, 𝑦𝑛 1, 𝑦𝑛 2) ≤ 𝑘 (𝑦𝑛 1, 𝑦𝑛, 𝑦𝑛 1) 

≤ ⋯ ≤ 𝑘𝑛 (𝑦0, 𝑦1, 𝑦2). 

Now, for all 𝑙, 𝑚, 𝑛 with 𝑙 > 𝑚 > 𝑛, 

 (𝑦𝑛, 𝑦𝑚, 𝑦𝑙) ≤  (𝑦𝑛, 𝑦𝑛 1, 𝑦𝑛 1) +  (𝑦𝑛 1, 𝑦𝑛 2, 𝑦𝑛 2) 

+⋯+  (𝑦𝑙 1, 𝑦𝑙 1, 𝑦𝑙) 

                       ≤  (𝑦𝑛, 𝑦𝑛 1, 𝑦𝑛 2) +  (𝑦𝑛 1, 𝑦𝑛 2, 𝑦𝑛 3) 

+⋯+  (𝑦𝑙 2, 𝑦𝑙 1, 𝑦𝑙) 

                 ≤ (𝑘𝑛 + 𝑘𝑛 1 + ⋯+ 𝑘𝑙 2) (𝑦0, 𝑦1, 𝑦2) 

≤
𝑘𝑛

 − 𝑘
 (𝑦0, 𝑦1, 𝑦2). 

Also, if 𝑙 = 𝑚 > 𝑛 and 𝑙 > 𝑚 = 𝑛 we obtain  

  (𝑦𝑛, 𝑦𝑚, 𝑦𝑙) ≤
 𝑛

1  
 (𝑦0, 𝑦1, 𝑦2). 

Hence  (𝑦𝑛, 𝑦𝑚, 𝑦𝑙) → 0 as 𝑛,𝑚, 𝑙 → ∞. Therefore  𝑦𝑛  is a  -Cauchy sequence. 

Suppose that  (𝑋) is a  -complete subspace of 𝑋, then there exists a point  ∈  (𝑋) 

such that lim
𝑛→∞

𝑦3𝑛 2 = lim
𝑛→∞

 𝑥3𝑛 3 =  . Also, we can find a point  ∈ 𝑋 such that 

  =  . Since  𝑦𝑛  is a  -Cauchy sequence then lim
𝑛→∞

𝑦3𝑛 = lim
𝑛→∞

𝑦3𝑛 1 =  . We claim 

that 𝑓 =  . Since  

 𝑥3𝑛 2   𝑥3𝑛 2 = 𝑦3𝑛 2 and lim
𝑛→∞

𝑦3𝑛 2 =   then 𝑥3𝑛 2   , 

and since dominating map   is weak annihilators of   we have  
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 𝑥3𝑛 2   =         , (2.2) 

we conclude that 𝑥3𝑛 1  𝑥3𝑛 2   , hence from (2.1) we get  

  (𝑓 , 𝑦3𝑛 1, 𝑦3𝑛 2) =  (𝑓 , 𝑔𝑥3𝑛 1,  𝑥3𝑛 2) ≤ 𝑘 ( , 𝑥3𝑛 1, 𝑥3𝑛 2) 

where

 

 ( , 𝑥3𝑛 1, 𝑥3𝑛 2)

= 𝑚𝑎𝑥  (  ,  𝑥3𝑛 1,  𝑥3𝑛 2),  (𝑓 , 𝑓 ,   ),  (𝑔𝑥3𝑛 1, 𝑔𝑥3𝑛 1,  𝑥3𝑛 1),

 ( 𝑥3𝑛 2,  𝑥3𝑛 2,  𝑥3𝑛 2),  (𝑔𝑥3𝑛 1, 𝑔𝑥3𝑛 1,   ),

 ( 𝑥3𝑛 1,  𝑥3𝑛 2,  𝑥3𝑛 2),  ( 𝑥3𝑛 2, 𝑓 , 𝑓 ) 

= 𝑚𝑎𝑥  ( , 𝑦3𝑛, 𝑦3𝑛 1),  (𝑓 , 𝑓 ,  ),  (𝑦3𝑛 1, 𝑦3𝑛 1, 𝑦3𝑛),

 (𝑦3𝑛 2, 𝑦3𝑛 2, 𝑦3𝑛 1),  (𝑦3𝑛 1, 𝑦3𝑛 1,  ),  (𝑦3𝑛, 𝑦3𝑛 2, 𝑦3𝑛 2),  (𝑦3𝑛 1, 𝑓 , 𝑓 ) .

 

Letting 𝑛 → ∞ we have  

lim
𝑛→∞

 ( , 𝑥3𝑛 1, 𝑥3𝑛 2) = 𝑚𝑎𝑥 0,  (𝑓 , 𝑓 ,  ),0,0,0,0,  ( , 𝑓 , 𝑓 ) =  (𝑓 , 𝑓 ,  ). 

 Hence  

  (𝑓 ,  ,  ) ≤ 𝑘 (𝑓 , 𝑓 ,  ) ≤  𝑘 (𝑓 ,  ,  ). 

Then  (𝑓 ,  ,  ) ≤ 0.  Hence 𝑓 =  =   .  Since 𝑓  is dominating map, 

  𝑓 =  ,  and from (2.2) we have  =  .  Therefore 𝑓 =  =   .  Since 

𝑓 =   and 𝑓(𝑋)   (𝑋), there exists 𝑢 ∈ 𝑋  such that  𝑢 =  . We claim that 

𝑔𝑢 =  . Since 𝑥3𝑛 2   , and since dominating map 𝑓 is weak annihilators of   

we obtain  

𝑥3𝑛 2   =  𝑢  𝑓 𝑢  𝑢,    implies    𝑥3𝑛 2    𝑢, (2.3) 

 so using (2.1) we get  

 ( , 𝑔𝑢, 𝑦3𝑛 2) =  (𝑓 , 𝑔𝑢,  𝑥3𝑛 2) ≤ 𝑘 ( , 𝑢, 𝑥3𝑛 2) 

 where  

 

 ( , 𝑢, 𝑥3𝑛 2)

= 𝑚𝑎𝑥  (  ,  𝑢,  𝑥3𝑛 2),  (𝑓 , 𝑓 ,   ),  (𝑔𝑢, 𝑔𝑢,  𝑢),  ( 𝑥3𝑛 2,  𝑥3𝑛 2,  𝑥3𝑛 2),

 (𝑔𝑢, 𝑔𝑢,   ),  ( 𝑢,  𝑥3𝑛 2,  𝑥3𝑛 2),  ( 𝑥3𝑛 2, 𝑓 , 𝑓 ) 

= 𝑚𝑎𝑥  ( ,  , 𝑦3𝑛 1),0,  (𝑔𝑢, 𝑔𝑢,  ),  (𝑦3𝑛 2, 𝑦3𝑛 2, 𝑦3𝑛 1),  (𝑔𝑢, 𝑔𝑢,  ),

 ( , 𝑦3𝑛 2, 𝑦3𝑛 2),  (𝑦3𝑛 1,  ,  ) .

 

Letting 𝑛 → ∞ we have  

 lim
𝑛→∞

 ( , 𝑢, 𝑥3𝑛 2) = ma  0,0,  (𝑔𝑢, 𝑔𝑢,  ),0,  (𝑔𝑢, 𝑔𝑢,  ),0,0 =  (𝑔𝑢, 𝑔𝑢,  ). 

 Hence  
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  ( , 𝑔𝑢,  ) ≤ 𝑘 (𝑔𝑢, 𝑔𝑢,  ) ≤  𝑘 ( , 𝑔𝑢,  ). 

 We get  ( , 𝑔𝑢,  ) ≤ 0. Thus 𝑔𝑢 =  =  𝑢. Also, Since 𝑔 is dominating map, 

𝑢  𝑔𝑢 =  ,  and from (2.3) we have 𝑢 =  .  Therefore 𝑔 =  =   .  Further, 

since 𝑔 =   and 𝑔(𝑋)   (𝑋), there exists 𝑣 ∈ 𝑋 such that  𝑣 =  . We claim 

that  𝑣 =  . Since dominating map 𝑔 is weak annihilators of   ones gets  

q = Rv  gRv  v  implies  q  v,                               (2.4) 

by (2.1) we obtain  

  ( ,  ,  𝑣) =  (𝑓 , 𝑔 ,  𝑣) ≤ 𝑘 ( ,  , 𝑣) 

where  

 

 ( ,  , 𝑣) = 𝑚𝑎𝑥  (  ,   ,  𝑣),  (𝑓 , 𝑓 ,   ),  (𝑔 , 𝑔 ,   ),  ( 𝑣,  𝑣,  𝑣),

 (𝑔 , 𝑔 ,   ),  (  ,  𝑣,  𝑣),  ( 𝑣, 𝑓 , 𝑓 ) 

= 𝑚𝑎𝑥 0,0,0,  ( 𝑣,  𝑣,  ),0,  ( ,  𝑣,  𝑣),0 =  ( ,  𝑣,  𝑣).

 

 Hence  

  ( ,  ,  𝑣) =  (𝑓 , 𝑔 ,  𝑣) ≤ 𝑘 ( ,  𝑣,  𝑣) ≤  𝑘 ( ,  ,  𝑣), 

which gives that  ( ,  ,  𝑣) = 0, and  𝑣 =  =  𝑣. Since   is dominating map, 

𝑣   𝑣 =  , and from (2.4) we have 𝑣 =  . Therefore   =  =   . We conclude 

that   is a common fixed point of 𝑓, 𝑔,  ,  ,   and  . 

Now, suppose that the set of common fixed points of 𝑓, 𝑔,  ,  ,   and   is well 

ordered. We show that a common fixed points of 𝑓, 𝑔,  ,  ,   and   is unique. Let 

𝑤 is another common fixed point of 𝑓, 𝑔,  ,  ,   and  . Thus from (2.1) it follows 

that  

  ( ,  , 𝑤) =  (𝑓 , 𝑔 ,  𝑤) ≤ 𝑘 ( ,  , 𝑤) 

 where  

 

 ( ,  , 𝑤) = 𝑚𝑎𝑥  (  ,   ,  𝑤),  (𝑓 , 𝑓 ,   ),  (𝑔 , 𝑔 ,   ),  ( 𝑤,  𝑤,  𝑤),

 (𝑔 , 𝑔 ,   ),  (  ,  𝑤,  𝑤),  ( 𝑤, 𝑓 , 𝑓 ) 

= 𝑚𝑎𝑥  ( ,  , 𝑤),0,0,0,0,  ( , 𝑤, 𝑤),  (𝑤,  ,  ) 

≤ 𝑚𝑎𝑥  ( ,  , 𝑤),0,  ( ,  , 𝑤) =   ( ,  , 𝑤).

 

 Hence  

  ( ,  , 𝑤) ≤  𝑘 ( ,  , 𝑤), 

so we have  ( ,  , 𝑤) = 0 and  = 𝑤. Therefore,   is a unique common fixed 

point of 𝑓, 𝑔,  ,  ,   and  . Conversely, if 𝑓, 𝑔,  ,  ,   and   have one and only 
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one common fixed point then it is singleton set, so it is well ordered. The proof is 

similar when  (𝑋) or  (𝑋) is a  -complete subspace of 𝑋. 

 

If we put  =  =  = 𝐼 (where 𝐼 is the identity mapping) we have the following 

Corollary.  

Corollary 2.2  Let (𝑋,  ,  ) be a complete ordered  -metric space and let 𝑓, 𝑔 

and   be self-maps on 𝑋 satisfying the following condition  

  (𝑓𝑥, 𝑔𝑦,  𝑧) ≤ 𝑘 (𝑥, 𝑦, 𝑧), 

where 𝑘 ∈ [0,
1

2
) and  

 
 (𝑥, 𝑦, 𝑧) = ma   (𝑥, 𝑦, 𝑧),  (𝑓𝑥, 𝑓𝑥, 𝑥),  (𝑔𝑦, 𝑔𝑦, 𝑦),  ( 𝑧,  𝑧, 𝑧),

(𝑔𝑦, 𝑔𝑦, 𝑥),  (𝑦,  𝑧,  𝑧),  (𝑧, 𝑓𝑥, 𝑓𝑥) 
 

for all comparable elements 𝑥, 𝑦, 𝑧 ∈ 𝑋. Suppose that 𝑓, 𝑔 and   are dominating 

maps. If, for a non-decreasing sequence  𝑥𝑛  with 𝑥𝑛 →   implies that 𝑥𝑛    for 

all 𝑛. Then 𝑓, 𝑔 and   have a common fixed point. Moreover, the set of common 

fixed points of 𝑓, 𝑔 and   is well ordered if and only if 𝑓, 𝑔 and   have one and 

only one common fixed point.  

Proof. Let 𝑥0 be an arbitrary point in 𝑋. We define the sequence 𝑥𝑛 by  

𝑓𝑥3𝑛 = 𝑥3𝑛 1, 𝑔𝑥3𝑛 1 = 𝑥3𝑛 2,  𝑥3𝑛 2 = 𝑥3𝑛 3   for  𝑛 ≥ 0. 

 By given assumptions, we get  

𝑥3𝑛  𝑓𝑥3𝑛 = 𝑥3𝑛 1  𝑔𝑥3𝑛 1 = 𝑥3𝑛 2   𝑥3𝑛 2 = 𝑥3𝑛 3. 

 So, for all 𝑛 ≥ 0 we have 𝑥𝑛  𝑥𝑛 1. Return the same proof of Theorem 2.1 in [3] 

we conclude that  𝑥𝑛  is a  -Cauchy sequence and 𝑥𝑛 →   as 𝑛 → ∞.  Since 

𝑥𝑛  𝑥𝑛 1  for all 𝑛 ≥ 0  and 𝑥𝑛 →   as 𝑛 → ∞  then 𝑥𝑛    for all 𝑛 ≥ 0. 

Hence from the proof of Theorem 2.1 in [3] we conclude that   is a common fixed of 

𝑓, 𝑔 and  . Also, similarly as the proof of Theorem 2.1 we have the set of common 

fixed points of 𝑓, 𝑔 and   is well ordered if and only if 𝑓, 𝑔 and   have one and 

only one common fixed point.   

Example 2.3 Let 𝑋 = [0,∞) with the  -metric defined by  

 (𝑥, 𝑦, 𝑧) = ma  |𝑥 − 𝑦|, |𝑦 − 𝑧|, |𝑧 − 𝑥| , and suppose that ≤ be the usual 

ordering on 𝑋. We define a new ordering   on X as follows  
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 𝑥  𝑦 ⇔ 𝑦 ≤ 𝑥,        ∀𝑥, 𝑦 ∈ 𝑋. 

 It is clearly that (𝑋,  ,  ) is an ordered  -metric space. Let 𝑓, 𝑔,  ,  ,  ,  : 𝑋 → 𝑋 

be defined by  

 𝑓𝑥 = ln( + 𝑥),    𝑔𝑥 = ln( +
𝑥

4
),     𝑥 = ln( +

𝑥

2
), 

  𝑥 = 𝑒𝑥 −  ,     𝑥 = 𝑒2𝑥 −  ,    𝑎𝑛     𝑥 = 𝑒4𝑥 −  . 

 It is obvious that 𝑓(𝑋) =  (𝑋) = 𝑔(𝑋) =  (𝑋) =  (𝑋) =  (𝑋) = 𝑋.  For each 

𝑥 ∈ 𝑋, we have  

  + 𝑥 ≤ 𝑒𝑥 ,     +
𝑥

4
≤ 𝑒𝑥 ,     +

𝑥

2
≤ 𝑒𝑥 . 

Hence  

 𝑓𝑥 = ln( + 𝑥) ≤ 𝑥,    𝑔𝑥 = ln( +
𝑥

4
) ≤ 𝑥,     𝑥 = ln( +

𝑥

2
) ≤ 𝑥. 

Then 𝑥  𝑓𝑥, 𝑥  𝑔𝑥,  and 𝑥   𝑥.  Therefore 𝑓, 𝑔  and   are dominating 

mappings. Also, for each 𝑥 ∈ 𝑋 we obtain  

 𝑓 (𝑥) = 𝑓(𝑒𝑥 −  ) = ln𝑒𝑥 = 𝑥 ≥ 𝑥, 

 𝑔 (𝑥) = 𝑔(𝑒2𝑥 −  ) = ln(
3 𝑒2𝑥

4
) = ln(𝑒𝑥 3𝑒−𝑥 𝑒𝑥

4
) = 𝑥 + ln(

3𝑒−𝑥 𝑒𝑥

4
) ≥ 𝑥,

   (𝑥) =  (𝑒4𝑥 −  ) = ln(
1 𝑒4𝑥

2
) = ln(𝑒𝑥 𝑒−𝑥 𝑒3𝑥

2
) = 𝑥 + ln(

𝑒−𝑥 𝑒3𝑥

2
) ≥ 𝑥. 

We conclude that 𝑓 (𝑥)  𝑥, 𝑔 (𝑥)  𝑥  and   (𝑥)  𝑥. Thus 𝑓, 𝑔,   are weak 

annihilators of  ,  ,   respectively. Moreover, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋  one obtain the 

following:  

  (𝑓𝑥, 𝑔𝑦,  𝑧) = ma  |𝑓𝑥 − 𝑔𝑦|, |𝑔𝑦 −  𝑧|, | 𝑧 − 𝑓𝑥|  

 = ma  |ln( + 𝑥) − ln( +
𝑦

4
)|, |ln( +

𝑦

4
) − ln( +

𝑧

2
)|, 

 |ln( +
𝑧

2
) − ln( + 𝑥)|  

 ≤ ma  |𝑥 −
𝑦

4
|, |

𝑦

4
−

𝑧

2
|, |

𝑧

2
− 𝑥|  

 =
1

4
ma  |4𝑥 − 𝑦|, |𝑦 −  𝑧|, | 𝑧 − 4𝑥|  

 ≤
1

4
ma  |𝑒4𝑥 − 𝑒𝑦|, |𝑒𝑦 − 𝑒2𝑧|, |𝑒2𝑧 − 𝑒4𝑥|  

 =
1

4
ma  | 𝑥 −  𝑦|, | 𝑦 −  𝑧|, | 𝑧 −  𝑥|  

 =
1

4
 ( 𝑥,  𝑦,  𝑧) 
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 ≤
1

4
 (𝑥, 𝑦, 𝑧), 

 where  

 

 (𝑥, 𝑦, 𝑧) = 𝑚𝑎𝑥  ( 𝑥,  𝑦,  𝑧),  (𝑓𝑥, 𝑓𝑥,  𝑥),  (𝑔𝑦, 𝑔𝑦,  𝑦),  ( 𝑧,  𝑧,  𝑧),

(𝑔𝑦, 𝑔𝑦,  𝑥),  ( 𝑦,  𝑧,  𝑧),  ( 𝑧, 𝑓𝑥, 𝑓𝑥) .
 

The hypotheses of Theorem 2.1 are holds with contractive factor equal to 
1

4
. Also, 0 

is a unique common fixed point of 𝑓, 𝑔,  ,  ,   and  . 

Theorem 2.4 Let (𝑋,  ,  ) be an ordered  -metric space and let 𝑓, 𝑔,  ,  ,   and 

  be self-maps on 𝑋 satisfying the following condition  

  (𝑓𝑥, 𝑔𝑦,  𝑧) ≤ 𝑘 (𝑥, 𝑦, 𝑧), (2.5) 

 where 𝑘 ∈ [0,
1

3
) and  

 
 (𝑥, 𝑦, 𝑧) = 𝑚𝑎𝑥  ( 𝑦, 𝑓𝑥, 𝑓𝑥) +  ( 𝑥, 𝑔𝑦, 𝑔𝑦),  ( 𝑧, 𝑔𝑦, 𝑔𝑦) +  ( 𝑦,  𝑧,  𝑧),

 ( 𝑧, 𝑓𝑥, 𝑓𝑥) +  ( 𝑥,  𝑧,  𝑧) 
 

for all comparable elements 𝑥, 𝑦, 𝑧 ∈ 𝑋. Suppose that   

(𝑖) 𝑓(𝑋)   (𝑋), 𝑔(𝑋)   (𝑋),  (𝑋)   (𝑋), 

(𝑖𝑖)dominating maps 𝑓, 𝑔,   are weak annihilators of  ,  ,   respectively,  

(𝑖𝑖𝑖) one of  (𝑋) ,  (𝑋) or  (𝑋) is a  -complete subspace of 𝑋. 

 If for a non-decreasing sequence  𝑥𝑛  with 𝑥𝑛  𝑦𝑛  for all 𝑛  and 𝑦𝑛 →   

implies that 𝑥𝑛   , then 𝑓, 𝑔,  ,  ,   and   have a common fixed point. Moreover, 

the set of common fixed points of 𝑓, 𝑔,  ,  ,   and   is well ordered if and only if 

𝑓, 𝑔,  ,  ,   and   have one and only one common fixed point. 

Proof. Let 𝑥0 be an arbitrary point in 𝑋. Since 𝑓(𝑋)   (𝑋), 𝑔(𝑋)   (𝑋),  (𝑋)  

 (𝑋), we can choose 𝑥1, 𝑥2, 𝑥3 ∈ 𝑋 such that 𝑦0 = 𝑓𝑥0 =  𝑥1,  𝑦1 = 𝑔𝑥1 =  𝑥2, and 

𝑦2 =  𝑥2 =  𝑥3. Continuing this process, we define the sequences 𝑥𝑛 and 𝑦𝑛 in  X  by 

𝑦3𝑛 = 𝑓𝑥3𝑛 =  𝑥3𝑛 1,   𝑦3𝑛 1 =  𝑔𝑥3𝑛 1 =  𝑥3𝑛 2,   𝑦3𝑛 2 =  𝑥3𝑛 2 =

  𝑥3𝑛 3  𝑓𝑜𝑟 𝑛 ≥ 0. 

By given assumptions, we get 

𝑥3𝑛  𝑓𝑥3𝑛 =  𝑥3𝑛 1  𝑓  𝑥3𝑛 1  𝑥3𝑛 1, 

𝑥3𝑛 1  𝑔𝑥3𝑛 1 =  𝑥3𝑛 2  𝑔 𝑥3𝑛 2  𝑥3𝑛 2, 

𝑥3𝑛 2   𝑥3𝑛 2 =  𝑥3𝑛 3    𝑥3𝑛 3   𝑥3𝑛 3. 
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Hence, for all 𝑛 ≥ 0 we have 𝑥𝑛  𝑥𝑛 1. Suppose that  (𝑦𝑛, 𝑦𝑛 1, 𝑦𝑛 2) > 0 for 

all 𝑛 ≥ 0. If not, then for some 𝑚 ≥ 0, 𝑦𝑚 = 𝑦𝑚 1 = 𝑦𝑚 2 the sequence  𝑦𝑛  is 

constant for 𝑛 ≥ 𝑚. Indeed, let 𝑚 =  𝑘 then 𝑦3 = 𝑦3  1 = 𝑦3  2 and from (2.5) 

we obtain  

 (𝑦3  3, 𝑦3  1, 𝑦3  2) =  (𝑓𝑥3  3, 𝑔𝑥3  1,  𝑥3  2) ≤ 𝑘 (𝑥3  3, 𝑥3  1, 𝑥3  2) 

 where  

 

 (𝑥3  3, 𝑥3  1, 𝑥3  2)

= 𝑚𝑎𝑥  ( 𝑥3  1, 𝑓𝑥3  3, 𝑓𝑥3  3) +  ( 𝑥3  3, 𝑔𝑥3  1, 𝑔𝑥3  1),

 ( 𝑥3  2, 𝑔𝑥3  1, 𝑔𝑥3  1) +  ( 𝑥3  1,  𝑥3  2,  𝑥3  2),

 ( 𝑥3  2, 𝑓𝑥3  3, 𝑓𝑥3  3) +  ( 𝑥3  3,  𝑥3  2,  𝑥3  2) 

= 𝑚𝑎𝑥  (𝑦3 , 𝑦3  3, 𝑦3  3) +  (𝑦3  2, 𝑦3  1, 𝑦3  1),

 (𝑦3  1, 𝑦3  1, 𝑦3  1) +  (𝑦3 , 𝑦3  2, 𝑦3  2),

 (𝑦3  1, 𝑦3  3, 𝑦3  3) +  (𝑦3  2, 𝑦3  2, 𝑦3  2) 

= 𝑚𝑎𝑥  (𝑦3  1, 𝑦3  3, 𝑦3  3),0 

≤ 𝑚𝑎𝑥  (𝑦3  1, 𝑦3  2, 𝑦3  3),0 =  (𝑦3  1, 𝑦3  2, 𝑦3  3).

 

 Hence  

  (𝑦3  1, 𝑦3  2, 𝑦3  3) ≤ 𝑘 (𝑦3  1, 𝑦3  2, 𝑦3  3). 

 Therefore  (𝑦3  1, 𝑦3  2, 𝑦3  3) = 0, that is 𝑦3  1 = 𝑦3  2 = 𝑦3  3. Similarly, 

if 𝑚 =  𝑘 +   one obtain that 𝑦3  2 = 𝑦3  3 = 𝑦3  4  and if 𝑚 =  𝑘 +   we 

have 𝑦3  3 = 𝑦3  4 = 𝑦3  5. Thus,  𝑦𝑛  becomes a constant sequence and 𝑦3𝑛 is 

the common fixed point of 𝑓, 𝑔,  ,  ,   and  .  Now, suppose that 

 (𝑦𝑛, 𝑦𝑛 1, 𝑦𝑛 2) > 0 for all 𝑛 ≥ 0. Since 𝑥𝑛  𝑥𝑛 1  for all 𝑛 ≥ 0, from (2.5) 

we have  

  (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2) =  (𝑓𝑥3𝑛, 𝑔𝑥3𝑛 1,  𝑥3𝑛 2) ≤ 𝑘 (𝑥3𝑛, 𝑥3𝑛 1, 𝑥3𝑛 2) 

 for 𝑛 = 0, , ,⋯, where  
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 (𝑥3𝑛, 𝑥3𝑛 1, 𝑥3𝑛 2)

= 𝑚𝑎𝑥  ( 𝑥3𝑛 1, 𝑓𝑥3𝑛, 𝑓𝑥3𝑛) +  ( 𝑥3𝑛, 𝑔𝑥3𝑛 1, 𝑔𝑥3𝑛 1),

 ( 𝑥3𝑛 2, 𝑔𝑥3𝑛 1, 𝑔𝑥3𝑛 1) +  ( 𝑥3𝑛 1,  𝑥3𝑛 2,  𝑥3𝑛 2),

 ( 𝑥3𝑛 2, 𝑓𝑥3𝑛, 𝑓𝑥3𝑛) +  ( 𝑥3𝑛,  𝑥3𝑛 2,  𝑥3𝑛 2) 

= 𝑚𝑎𝑥  (𝑦3𝑛, 𝑦3𝑛, 𝑦3𝑛) +  (𝑦3𝑛 1, 𝑦3𝑛 1, 𝑦3𝑛 1),

 (𝑦3𝑛 1, 𝑦3𝑛 1, 𝑦3𝑛 1) +  (𝑦3𝑛, 𝑦3𝑛 2, 𝑦3𝑛 2),

 (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛) +  (𝑦3𝑛 1, 𝑦3𝑛 2, 𝑦3𝑛 2) 

≤ 𝑚𝑎𝑥  (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1),  (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2),

 (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1) +  (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛) +  (𝑦3𝑛, 𝑦3𝑛 2, 𝑦3𝑛 2) 

≤ 𝑚𝑎𝑥  (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1),  (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2),

 (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1) +  (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1) +  (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2) 

= 𝑚𝑎𝑥  (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1),  (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2),

  (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1) +  (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2) 

=   (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1) +  (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2).

 

 Then  

  (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2) ≤ 𝑘(  (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1) +  (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2)). 

 Hence  

  (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2) ≤
2 

1  
 (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1). 

 Put 𝜆 =
2 

1  
, clear 0 ≤ 𝜆 <  . Therefore  

  (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2) ≤ 𝜆 (𝑦3𝑛 1, 𝑦3𝑛, 𝑦3𝑛 1). 

Similarly we obtain  

  (𝑦3𝑛 1, 𝑦3𝑛 2, 𝑦3𝑛 3) ≤ 𝜆 (𝑦3𝑛, 𝑦3𝑛 1, 𝑦3𝑛 2). 

Also, we have  

  (𝑦3𝑛 2, 𝑦3𝑛 3, 𝑦3𝑛 4) ≤ 𝜆 (𝑦3𝑛 1, 𝑦3𝑛 2, 𝑦3𝑛 3). 

Therefore, for all 𝑛, 

  (𝑦𝑛, 𝑦𝑛 1, 𝑦𝑛 2) ≤ 𝜆 (𝑦𝑛 1, 𝑦𝑛, 𝑦𝑛 1) 

≤ ⋯ ≤ 𝜆𝑛 (𝑦0, 𝑦1, 𝑦2). 

Following similar arguments to those given in Theorem 2.1 ,  (𝑦𝑛, 𝑦𝑚, 𝑦𝑙) → 0 as 

𝑛,𝑚, 𝑙 → ∞.  Therefore  𝑦𝑛  is a  -Cauchy sequence. Suppose that  (𝑋)  is a 

 -complete subspace of 𝑋 , then there exists a point  ∈  (𝑋)  such that 

lim
𝑛→∞

𝑦3𝑛 2 = lim
𝑛→∞

 𝑥3𝑛 3 =  . Also, we can find a point  ∈ 𝑋 such that   =  . 

We claim that 𝑓 =  . Since  
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 𝑥3𝑛 2   𝑥3𝑛 2 = 𝑦3𝑛 2  and  lim
𝑛→∞

𝑦3𝑛 2 =    then  𝑥3𝑛 2   , 

 and since dominating map   is weak annihilators of   we have  

 𝑥3𝑛 2   =         , (2.6) 

 we conclude that 𝑥3𝑛 1  𝑥3𝑛 2   , thus by (2.5) we obtain  

  (𝑓 , 𝑦3𝑛 1, 𝑦3𝑛 2) =  (𝑓 , 𝑔𝑥3𝑛 1,  𝑥3𝑛 2) ≤ 𝑘 ( , 𝑥3𝑛 1, 𝑥3𝑛 2) 

 where  

 

 ( , 𝑥3𝑛 1, 𝑥3𝑛 2)

= 𝑚𝑎𝑥  ( 𝑥3𝑛 1, 𝑓 , 𝑓 ) +  (  , 𝑔𝑥3𝑛 1, 𝑔𝑥3𝑛 1),

 ( 𝑥3𝑛 2, 𝑔𝑥3𝑛 1, 𝑔𝑥3𝑛 1) +  ( 𝑥3𝑛 1,  𝑥3𝑛 2,  𝑥3𝑛 2),

 ( 𝑥3𝑛 2, 𝑓 , 𝑓 ) +  (  ,  𝑥3𝑛 2,  𝑥3𝑛 2) 

= 𝑚𝑎𝑥  (𝑦3𝑛, 𝑓 , 𝑓 ) +  ( , 𝑦3𝑛 1, 𝑦3𝑛 1),

 (𝑦3𝑛 1, 𝑦3𝑛 1, 𝑦3𝑛 1) +  (𝑦3𝑛, 𝑦3𝑛 2, 𝑦3𝑛 2),

 (𝑦3𝑛 1, 𝑓 , 𝑓 ) +  ( , 𝑦3𝑛 2, 𝑦3𝑛 2) .

 

 Letting 𝑛 → ∞ we have  

 
𝑙𝑖𝑚
𝑛→∞

 ( , 𝑥3𝑛 1, 𝑥3𝑛 2) = 𝑚𝑎𝑥  ( , 𝑓 , 𝑓 ),0,  ( , 𝑓 , 𝑓 ) 

=  (𝑓 , 𝑓 ,  ).
 

 Hence  

  (𝑓 ,  ,  ) ≤ 𝑘 (𝑓 , 𝑓 ,  ) ≤  𝑘 (𝑓 ,  ,  ). 

That is  (𝑓 ,  ,  ) = 0 . Hence 𝑓 =  =   .  Since 𝑓  is dominating map, 

  𝑓 =  ,  and from (2.6) we have  =  .  Therefore 𝑓 =  =   .  Since 

𝑓 =   and 𝑓(𝑋)   (𝑋), there exists 𝑢 ∈ 𝑋  such that  𝑢 =  . We claim that 

𝑔𝑢 =  . Since 𝑥3𝑛 2   , and since dominating map 𝑓 is weak annihilators of   

we obtain  

 𝑥3𝑛 2   =  𝑢  𝑓 𝑢  𝑢,   implies   𝑥3𝑛 2    𝑢. (2.7) 

Using (2.5) we have  

  ( , 𝑔𝑢, 𝑦3𝑛 2) =  (𝑓 , 𝑔𝑢,  𝑥3𝑛 2) ≤ 𝑘 ( , 𝑢, 𝑥3𝑛 2) 

where  

 

 ( , 𝑢, 𝑥3𝑛 2) = ma   ( 𝑢, 𝑓 , 𝑓 ) +  (  , 𝑔𝑢, 𝑔𝑢),

 ( 𝑥3𝑛 2, 𝑔𝑢, 𝑔𝑢) +  ( 𝑢,  𝑥3𝑛 2,  𝑥3𝑛 2),

 ( 𝑥3𝑛 2, 𝑓 , 𝑓 ) +  (  ,  𝑥3𝑛 2,  𝑥3𝑛 2) 

= ma   ( , 𝑔𝑢, 𝑔𝑢),  (𝑦3𝑛 1, 𝑔𝑢, 𝑔𝑢) +  ( , 𝑦3𝑛 2, 𝑦3𝑛 2),

 ( 𝑥3𝑛 2,  ,  ) +  ( , 𝑦3𝑛 2, 𝑦3𝑛 2 .
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 Letting 𝑛 → ∞ we have  

 𝑙𝑖𝑚
𝑛→∞

 ( , 𝑢, 𝑥3𝑛 2) = 𝑚𝑎𝑥  ( , 𝑔𝑢, 𝑔𝑢),  ( , 𝑔𝑢, 𝑔𝑢),0 =  (𝑔𝑢, 𝑔𝑢,  ). 

 Hence  

  ( , 𝑔𝑢,  ) ≤ 𝑘 (𝑔𝑢, 𝑔𝑢,  ) ≤  𝑘 ( , 𝑔𝑢,  ). 

Thus 𝑔𝑢 =  =  𝑢. Also, Since 𝑔 is dominating map, 𝑢  𝑔𝑢 =  , and from (2.7) 

we have 𝑢 =  .  Therefore 𝑔 =  =   .  Further, since 𝑔 =   and 𝑔(𝑋)  

 (𝑋),  there exists 𝑣 ∈ 𝑋  such that  𝑣 =  .  We claim that  𝑣 =  .  Since 

dominating map 𝑔 is weak annihilators of   ones gets  

  =  𝑣  𝑔 𝑣  𝑣, implies   𝑣. (2.8) 

From (2.5) we have  

  ( ,  ,  𝑣) =  (𝑓 , 𝑔 ,  𝑣) ≤ 𝑘 ( ,  , 𝑣) 

where  

 

 ( ,  , 𝑣) = ma   (  , 𝑓 , 𝑓 ) +  (  , 𝑔 , 𝑔 ),  ( 𝑣, 𝑔 , 𝑔 ) +  (  ,  𝑣,  𝑣),

 ( 𝑣, 𝑓 , 𝑓 ) +  (  ,  𝑣,  𝑣) 

= ma  0,  ( ,  𝑣,  𝑣),  ( ,  𝑣,  𝑣) =  ( ,  𝑣,  𝑣).

 

Hence  

  ( ,  ,  𝑣) =  (𝑓 , 𝑔 ,  𝑣) ≤ 𝑘 ( ,  𝑣,  𝑣) ≤  𝑘 ( ,  ,  𝑣), 

which gives that  ( ,  ,  𝑣) = 0, and  𝑣 =  =  𝑣. Since   is dominating map, 

𝑣   𝑣 =  , and from (2.8) we have 𝑣 =  . Therefore   =  =   . We conclude 

that   is a common fixed point of 𝑓, 𝑔,  ,  ,   and  . 

Now, suppose that the set of common fixed points of 𝑓, 𝑔,  ,  ,   and   is well 

ordered. We show that a common fixed points of 𝑓, 𝑔,  ,  ,   and   is unique. Let 

𝑤 is another common fixed point of 𝑓, 𝑔,  ,  ,   and  . Thus from (2.5) one obtain  

  ( ,  , 𝑤) =  (𝑓 , 𝑔 ,  𝑤) ≤ 𝑘 ( ,  , 𝑤) 

where  

 

 ( ,  , 𝑤) = 𝑚𝑎𝑥  (  , 𝑓 , 𝑓 ) +  (  , 𝑔 , 𝑔 ),  ( 𝑤, 𝑔 , 𝑔 ) +  (  ,  𝑤,  𝑤),

 ( 𝑤, 𝑓 , 𝑓 ) +  (  ,  𝑤,  𝑤 

= 𝑚𝑎𝑥 0,  (𝑤,  ,  ) +  ( ,𝑤,𝑤),  (𝑤,  ,  ) +  ( , 𝑤, 𝑤 

=  (𝑤,  ,  ) +  ( , 𝑤, 𝑤).

 

Hence  

  ( ,  , 𝑤) ≤ 𝑘( (𝑤,  ,  ) +  ( , 𝑤, 𝑤)) ≤  𝑘 ( ,  , 𝑤). 
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Thus we have  ( ,  , 𝑤) = 0 and  = 𝑤. Therefore,   is a unique common fixed 

point of 𝑓, 𝑔,  ,  ,   and  . Conversely, if 𝑓, 𝑔,  ,  ,   and   have one and only 

one common fixed point then it is singleton set, so it is well ordered. The proof is 

similar when  (𝑋) or  (𝑋) is a  -complete subspace of 𝑋. 

 

   If we put  =  =  = 𝐼  (where 𝐼  is the identity mapping) we have the 

following corollary.  

Corollary 2.5 Let (𝑋, ,  ) be a complete ordered  -metric space and let 𝑓, 𝑔 and 

  be self-maps on 𝑋 satisfying the following condition  

  (𝑓𝑥, 𝑔𝑦,  𝑧) ≤ 𝑘 (𝑥, 𝑦, 𝑧), 

 where 𝑘 ∈ [0,
1

3
) and  

 (𝑥, 𝑦, 𝑧) = 𝑚𝑎𝑥  (𝑦, 𝑓𝑥, 𝑓𝑥) +  (𝑥, 𝑔𝑦, 𝑔𝑦),  (𝑧, 𝑔𝑦, 𝑔𝑦) +  (𝑦,  𝑧,  𝑧),

 (𝑧, 𝑓𝑥, 𝑓𝑥) +  (𝑥,  𝑧,  𝑧) 
 

for all comparable elements 𝑥, 𝑦, 𝑧 ∈ 𝑋. Suppose that 𝑓, 𝑔 and   are dominating 

maps. If, for a non-decreasing sequence  𝑥𝑛  with 𝑥𝑛 →   implies that 𝑥𝑛    for 

all 𝑛. Then 𝑓, 𝑔 and   have a common fixed point. Moreover, the set of common 

fixed points of 𝑓, 𝑔 and   is well ordered if and only if 𝑓, 𝑔 and   have one and 

only one common fixed point.  

Proof. Let 𝑥0 be an arbitrary point in 𝑋. We define the sequence 𝑥𝑛 by  

𝑓𝑥3𝑛 = 𝑥3𝑛 1, 𝑔𝑥3𝑛 1 = 𝑥3𝑛 2,  𝑥3𝑛 2 = 𝑥3𝑛 3   for 𝑛 ≥ 0. 

 By given assumptions, we get  

𝑥3𝑛  𝑓𝑥3𝑛 = 𝑥3𝑛 1  𝑔𝑥3𝑛 1 = 𝑥3𝑛 2   𝑥3𝑛 2 = 𝑥3𝑛 3  for 𝑛 ≥ 0. 

So, for all 𝑛 ≥ 0 we have 𝑥𝑛  𝑥𝑛 1. Return the same proof of Theorem 2.4 in [3] 

we conclude that  𝑥𝑛  is a  -Cauchy sequence and 𝑥𝑛 →   as 𝑛 → ∞.  Since 

𝑥𝑛  𝑥𝑛 1  for all 𝑛 ≥ 0  and 𝑥𝑛 →   as 𝑛 → ∞  then 𝑥𝑛    for all 𝑛 ≥ 0. 

Hence from the proof of Theorem 2.4 in [3] we conclude that   is a common fixed of 

𝑓, 𝑔 and  . Also, similarly as the proof of Theorem 2.4 we have the set of common 

fixed points of 𝑓, 𝑔 and   is well ordered if and only if 𝑓, 𝑔 and   have one and 

only one common fixed point.  

Example 2.6 Let 𝑋 = [0,∞) with the  -metric defined by  
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 (𝑥, 𝑦, 𝑧) = ma  |𝑥 − 𝑦|, |𝑦 − 𝑧|, |𝑧 − 𝑥| , 

and suppose that ≤ be the usual ordering on 𝑋. We define an ordering   on X as 

follows  

 𝑥  𝑦 ⇔ 𝑦 ≤ 𝑥,     ∀𝑥, 𝑦 ∈ 𝑋. 

It is clearly that (𝑋,  ,  ) is an ordered  -metric space. Let 𝑓, 𝑔,  ,  ,  ,  : 𝑋 → 𝑋 

be defined by  

𝑓𝑥 = {

𝑥

  
if  ∈ [0, )

𝑥

8
if  ∈ [ ,∞)

,    𝑔𝑥 = {

𝑥

4
if  ∈ [0, )

𝑥

6
if  ∈ [ ,∞)

,     𝑥 = {

𝑥

 
if  ∈ [0, )

𝑥 if  ∈ [ ,∞)
, 

 𝑥 = {
4𝑥 if  ∈ [0, )
6𝑥 if  ∈ [ ,∞)

,     𝑥 = {
  𝑥 if  ∈ [0, )
8𝑥 if  ∈ [ ,∞)

 ,    𝑥 = {
 4𝑥 if  ∈ [0, )
48𝑥 if  ∈ [ ,∞)

. 

We see that 𝑓, 𝑔,  ,  ,   and   are discontinuous maps. It is obvious that 𝑓(𝑋) =

 (𝑋) = 𝑔(𝑋) =  (𝑋) =  (𝑋) =  (𝑋) = 𝑋. For each 𝑥 ∈ 𝑋, we have 

𝑓𝑥 ≤ 𝑥,    𝑔𝑥 ≤ 𝑥,     𝑥 ≤ 𝑥. 

Then 𝑥  𝑓𝑥, 𝑥  𝑔𝑥,  and 𝑥   𝑥.  Therefore 𝑓, 𝑔  and   are dominating 

mappings. Also, for each 𝑥 ∈ 𝑋 we obtain  

𝑓 (𝑥) = 𝑥 ≥ 𝑥,    𝑔 (𝑥) = {
6𝑥 ≥ 𝑥 if ∈ [0, )

8𝑥 ≥ 𝑥 if ∈ [ ,∞)
, 

  (𝑥) = {
 𝑥 ≥ 𝑥 if ∈ [0, )
6𝑥 ≥ 𝑥 if ∈ [ ,∞)

. 

We conclude that 𝑓 (𝑥)  𝑥, 𝑔 (𝑥)  𝑥  and   (𝑥)  𝑥. Thus 𝑓, 𝑔,   are weak 

annihilators of  ,  ,   respectively. Now, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 we check the following 

cases:   

(1) If 𝑥, 𝑦, 𝑧 ∈ [0, ) we have  

        (𝑓𝑥, 𝑔𝑦,  𝑧) = 𝑚𝑎𝑥 |
𝑥

  
−

𝑦

4
|, |

𝑦

4
−

𝑧

 
|, |

𝑧

 
−

𝑥

  
|  

=
 

48
𝑚𝑎𝑥 |4𝑥 −   𝑦|, |  𝑦 −  4𝑧|, | 4𝑧 − 4𝑥|  

≤
 

48
𝑚𝑎𝑥 |4𝑥 −

𝑦

4
| + |  𝑦 −

𝑥

  
| + |

𝑥

  
−

𝑦

4
|, 

|  𝑦 −
𝑧

 
| + | 4𝑧 −

𝑦

4
| + |

𝑦

4
−

𝑧

 
|, | 4𝑧 −

𝑥

  
| + |4𝑥 −

𝑧

 
| + |

𝑧

 
−

𝑥

  
|  

=
 

48
𝑚𝑎𝑥  ( 𝑥, 𝑔𝑦, 𝑔𝑦) +  ( 𝑦, 𝑓𝑥, 𝑓𝑥) + |

𝑥

  
−

𝑦

4
|, 

 ( 𝑦,  𝑧,  𝑧) +  ( 𝑧, 𝑔𝑦, 𝑔𝑦) + |
𝑦

4
−

𝑧

 
|, 
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 ( 𝑧, 𝑓𝑥, 𝑓𝑥) +  ( 𝑥,  𝑧,  𝑧) + |
𝑧

 
−

𝑥

  
|  

 ≤
1

48
𝑚𝑎𝑥  ( 𝑥, 𝑔𝑦, 𝑔𝑦) +  ( 𝑦, 𝑓𝑥, 𝑓𝑥) +  (𝑓𝑥, 𝑔𝑦,  𝑧), 

 ( 𝑦,  𝑧,  𝑧) +  ( 𝑧, 𝑔𝑦, 𝑔𝑦) +  (𝑓𝑥, 𝑔𝑦,  𝑧), 

 ( 𝑧, 𝑓𝑥, 𝑓𝑥) +  ( 𝑥,  𝑧,  𝑧) +  (𝑓𝑥, 𝑔𝑦,  𝑧)  

 =
1

48
( (𝑥, 𝑦, 𝑧) +  (𝑓𝑥, 𝑔𝑦,  𝑧)). 

 Hence,  (𝑓𝑥, 𝑔𝑦,  𝑧) ≤
1

47
 (𝑥, 𝑦, 𝑧), where  

  (𝑥, 𝑦, 𝑧) = 𝑚𝑎𝑥  ( 𝑥, 𝑔𝑦, 𝑔𝑦) +  ( 𝑦, 𝑓𝑥, 𝑓𝑥), 

  ( 𝑦,  𝑧,  𝑧) +  ( 𝑧, 𝑔𝑦, 𝑔𝑦),  ( 𝑧, 𝑓𝑥, 𝑓𝑥) +  ( 𝑥,  𝑧,  𝑧)  

(2) If 𝑥, 𝑦, 𝑧 ∈ [ ,∞) we have  

  (𝑓𝑥, 𝑔𝑦,  𝑧) = 𝑚𝑎𝑥 |
𝑥

8
−

𝑦

6
|, |

𝑦

6
− 𝑧|, |𝑧 −

𝑥

8
|  

 =
1

48
𝑚𝑎𝑥 |6𝑥 − 8𝑦|, |8𝑦 − 48𝑧|, |48𝑧 − 6𝑥|  

 ≤
1

48
𝑚𝑎𝑥  ( 𝑥, 𝑔𝑦, 𝑔𝑦) +  ( 𝑦, 𝑓𝑥, 𝑓𝑥) + |

𝑥

8
−

𝑦

6
|, 

  ( 𝑦,  𝑧,  𝑧) +  ( 𝑧, 𝑔𝑦, 𝑔𝑦) + |
𝑦

6
− 𝑧|, 

  ( 𝑧, 𝑓𝑥, 𝑓𝑥) +  ( 𝑥,  𝑧,  𝑧) + |𝑧 −
𝑥

8
|  

 ≤
1

48
( (𝑥, 𝑦, 𝑧) +  (𝑓𝑥, 𝑔𝑦,  𝑧)). 

Hence,  (𝑓𝑥, 𝑔𝑦,  𝑧) ≤
1

47
 (𝑥, 𝑦, 𝑧). 

(3) If 𝑥, 𝑦 ∈ [0, ) and 𝑧 ∈ [ ,∞), one gets  

 (𝑓𝑥, 𝑔𝑦,  𝑧) = 𝑚𝑎𝑥 |
𝑥

  
−

𝑦

4
|, |

𝑦

4
− 𝑧|, |𝑧 −

𝑥

  
|  

 =
1

48
𝑚𝑎𝑥 |4𝑥 −   𝑦|, |  𝑦 − 48𝑧|, |48𝑧 − 4𝑥|  

 ≤
1

48
𝑚𝑎𝑥  ( 𝑥, 𝑔𝑦, 𝑔𝑦) +  ( 𝑦, 𝑓𝑥, 𝑓𝑥) + |

𝑥

12
−

𝑦

4
|, 

  ( 𝑦,  𝑧,  𝑧) +  ( 𝑧, 𝑔𝑦, 𝑔𝑦) + |
𝑦

4
− 𝑧|, 

  ( 𝑧, 𝑓𝑥, 𝑓𝑥) +  ( 𝑥,  𝑧,  𝑧) + |𝑧 −
𝑥

12
|  

 ≤
1

48
( (𝑥, 𝑦, 𝑧) +  (𝑓𝑥, 𝑔𝑦,  𝑧)). 

Therefore,  (𝑓𝑥, 𝑔𝑦,  𝑧) ≤
1

47
 (𝑥, 𝑦, 𝑧). 
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(4) If 𝑥, 𝑧 ∈ [0, ) and 𝑦 ∈ [ ,∞), then  

 (𝑓𝑥, 𝑔𝑦,  𝑧) = 𝑚𝑎𝑥 |
𝑥

  
−

𝑦

6
|, |

𝑦

6
−

𝑧

 
|, |

𝑧

 
−

𝑥

  
|  

 =
1

48
𝑚𝑎𝑥 |4𝑥 − 8𝑦|, |8𝑦 −  4𝑧|, | 4𝑧 − 4𝑥|  

 ≤
1

48
( (𝑥, 𝑦, 𝑧) +  (𝑓𝑥, 𝑔𝑦,  𝑧)). 

Thus,  (𝑓𝑥, 𝑔𝑦,  𝑧) ≤
1

47
 (𝑥, 𝑦, 𝑧). 

(5) If 𝑦, 𝑧 ∈ [0, ) and 𝑥 ∈ [ ,∞), we obtain  

 (𝑓𝑥, 𝑔𝑦,  𝑧) = 𝑚𝑎𝑥 |
𝑥

8
−

𝑦

4
|, |

𝑦

4
−

𝑧

 
|, |

𝑧

 
−

𝑥

8
|  

 =
1

48
𝑚𝑎𝑥 |6𝑥 −   𝑦|, |  𝑦 −  4𝑧|, | 4𝑧 − 6𝑥|  

 ≤
1

48
( (𝑥, 𝑦, 𝑧) +  (𝑓𝑥, 𝑔𝑦,  𝑧)). 

Hence,  (𝑓𝑥, 𝑔𝑦,  𝑧) ≤
1

47
 (𝑥, 𝑦, 𝑧). 

(6) If 𝑥 ∈ [0, ) and 𝑦, 𝑧 ∈ [ ,∞), then  

 (𝑓𝑥, 𝑔𝑦,  𝑧) = 𝑚𝑎𝑥 |
𝑥

  
−

𝑦

6
|, |

𝑦

6
− 𝑧|, |𝑧 −

𝑥

  
|  

 =
1

48
𝑚𝑎𝑥 |4𝑥 − 8𝑦|, |8𝑦 − 48𝑧|, |48𝑧 − 4𝑥|  

 ≤
1

48
𝑚𝑎𝑥  ( 𝑥, 𝑔𝑦, 𝑔𝑦) +  ( 𝑦, 𝑓𝑥, 𝑓𝑥) + |

𝑥

12
−

𝑦

6
|, 

  ( 𝑦,  𝑧,  𝑧) +  ( 𝑧, 𝑔𝑦, 𝑔𝑦) + |
𝑦

6
− 𝑧|, 

  ( 𝑧, 𝑓𝑥, 𝑓𝑥) +  ( 𝑥,  𝑧,  𝑧) + |𝑧 −
𝑥

12
|  

 ≤
1

48
( (𝑥, 𝑦, 𝑧) +  (𝑓𝑥, 𝑔𝑦,  𝑧)). 

Therefore,  (𝑓𝑥, 𝑔𝑦,  𝑧) ≤
1

47
 (𝑥, 𝑦, 𝑧). 

(7) If 𝑦 ∈ [0, ) and 𝑥, 𝑧 ∈ [ ,∞), one obtains  

 (𝑓𝑥, 𝑔𝑦,  𝑧) = 𝑚𝑎𝑥 |
𝑥

8
−

𝑦

4
|, |

𝑦

4
− 𝑧|, |𝑧 −

𝑥

8
|  

 =
1

48
𝑚𝑎𝑥 |6𝑥 −   𝑦|, |  𝑦 − 48𝑧|, |48𝑧 − 6𝑥|  

 ≤
1

48
( (𝑥, 𝑦, 𝑧) +  (𝑓𝑥, 𝑔𝑦,  𝑧)). 

Thus,  (𝑓𝑥, 𝑔𝑦,  𝑧) ≤
1

47
 (𝑥, 𝑦, 𝑧). 
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(8)If 𝑧 ∈ [0, ) and 𝑥, 𝑦 ∈ [ ,∞), we get  

 (𝑓𝑥, 𝑔𝑦,  𝑧) = 𝑚𝑎𝑥 |
𝑥

8
−

𝑦

6
|, |

𝑦

6
−

𝑧

 
|, |

𝑧

 
−

𝑥

8
|  

 =
1

48
𝑚𝑎𝑥 |6𝑥 − 8𝑦|, |8𝑦 −  4𝑧|, | 4𝑧 − 6𝑥|  

 ≤
1

48
𝑚𝑎𝑥  ( 𝑥, 𝑔𝑦, 𝑔𝑦) +  ( 𝑦, 𝑓𝑥, 𝑓𝑥) + |

𝑥

8
−

𝑦

6
|, 

  ( 𝑦,  𝑧,  𝑧) +  ( 𝑧, 𝑔𝑦, 𝑔𝑦) + |
𝑦

6
−

𝑧

2
|, 

  ( 𝑧, 𝑓𝑥, 𝑓𝑥) +  ( 𝑥,  𝑧,  𝑧) + |
𝑧

2
−

𝑥

8
|  

 ≤
1

48
( (𝑥, 𝑦, 𝑧) +  (𝑓𝑥, 𝑔𝑦,  𝑧)). 

 So,  (𝑓𝑥, 𝑔𝑦,  𝑧) ≤
1

47
 (𝑥, 𝑦, 𝑧). 

The hypotheses of Theorem 2.4 are holds with constant 𝑘 =
1

47
. Also, 0 is a unique 

common fixed point of 𝑓, 𝑔,  ,  ,   and  . 
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