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Abstract. In this paper, we consider, in a general Banach space, a nonlinear integro-differential equation with
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1. INTRODUCTION

Integrodifferential equations with delay are important for investigating some problems

araised from natural phenomena. They have been studied in many different aspects, see

[2, 12, 19, 21, 22] for more details. In [9], Ezzinbi et al. investigated the existence and regularity
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of solutions of equation of the following integrodifferential equation

(1.1)


u′(t) = Au(t)+

∫ t

0
B(t− s)u(s)ds+F(t,ut) for t ≥ 0,

u0 = ϕ ∈ C =C
(
[−r,0];X

)
,

where A and B are linear and closed operators, r is the delay, F : R+×C → X is a continuous

function and as usual, the history function ut ∈ C is defined by

ut(θ) = u(t +θ) for θ ∈ [−r,0].

The authors obtained the uniqueness, the representation of solutions via a variation of constant

formula and other properties of the resolvent operator were studied. In [8], Ezzinbi et al. studied

a local existence and regularity of equation (1.1). To achieve their goal, the authors used the

variation of constant formula, the theory of resolvent operator and the principle contraction

method. Ezzinbi et al. in [10] studied the local existence and global continuation for equation

(1.1). For more results about integrodifferential equation, the reader can see [?, 14, 15, 16, 17].

In the case where the nonlinear part involves spatial derivative, the above obtained results

become invalid. To overcome this difficulty, Diao et al. in [4] restrict the problem in a Banach

space Xα ⊂ X and they consider the following equation

(1.2)


u′(t) =−Au(t)+

∫ t

0
B(t− s)u(s)ds+F(t,ut) for t ≥ 0,

u0 = ϕ ∈ Cα =C
(
[−r,0],D(Aα)]

)
,

where −A is the infinitesimal generator of an analytic semigroup (T (t))t≥0 on a Banach space

X. B(t) is a closed linear operator with domain D(B)⊃D(A) time-independent. For 0 < α < 1,

Aα is the fractional power of A which will be precised in the sequel. The domain D(Aα) =

Xα ⊃ D(A), endowed with the norm ‖x‖α = ‖Aαx‖, called α-norm, is a Banach space. Cα

is the Banach space C([−r,0],D(Aα)) of continuous functions from [−r,0] to D(Aα) endowed

with the following norm

‖φ‖Cα
= sup
−r≤θ≤0

‖φ(θ)‖α for φ ∈ Cα .
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F : R+×Cα → X is a continuous function and as usual, ut ∈ Cα is the history function. They

obtained, used the resolvent operators theory, the existence, uniqueness, regularity and compact-

ness properties of the so-called mild solution of equation (1.2). Their results are a genaralization

of the paper of Travis et al. in [20] where they considered the case B = 0. For the previous case,

more results can be founded in [1, 7].

Recently, Koumla et al. [6] investigated the study of equation (1.1) where the kernel B is

nonlinear, that is they consider the following system

(1.3)

 u′(t) =−Au(t)+
∫ t

0
g
(
t− s,u(s)

)
ds+F(t,ut), for t ≥ 0,

u0 = ϕ ∈ C = C ([−r,0];D(A)),

where g : R+×D(A) −→ X and F : R+×C −→ D(A) are two nonlinear functions and C is

the espace of continuous function from [−r,0] to D(A). In this case, the theory of resolvent

operators do not work, so they used the semigroup theory to obtain existence, regularity and

continuous dependance of the initial data.

The main purpose of this work is to study the existence, uniqueness, continuous dependence

and regularity properties of a class for nonlinear partial functional integrodifferential equations

of retarded type with deviating arguments in terms involving spatial partial derivatives in the

form

(1.4)


u′(t) =−Au(t)+

∫ t

0
g
(
t− s,u(s)

)
ds+F(t,ut), for t ≥ 0,

u0 = ϕ ∈ Cα = C ([−r,0];Xα),

where g : R+×Xα −→ Xα and F : R+×Cα −→X are two nonlinear functions. We recall that

Xα is larger than D(A), that is D(A) ⊂ Xα . As such a system, one can consider the following

equation

(1.5)



∂

∂ t
w(t,x) =

∂ 2

∂x2 w(t,x)+
∫ t

0
g(t− s,w(s,x))ds

+
∫ 0

−r
k(t,

∂

∂x
w(t +θ ,x))dθ for t ≥ 0 and x ∈ [0,π],

w(t,0) = w(t,π) = 0 for t ≥ 0,

w(θ ,x) = w0(θ ,x) for θ ∈ [−r,0] and x ∈ [0,π],
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where w0 : [−r,0]× [0,π] −→ R, k : R+×R −→ R and h : R+×R −→ R are appropriates

functions. The present paper is motivated by the paper of Travis et al. in [20] and Diao et al.

[4].

The paper is organized as follows. In Section 2, we recall some fundamental properties of the

semigroup theory and fractional powers of closed operators. The global existence, uniqueness

and continuous dependence with respect to the initial data are studied in the Section 3. In section

4 we prove under some conditions, the regularity of the mild solution. And finally we illustrate

our main results in Section 5 by examining an example.

2. FRACTIONAL POWER OF CLOSED OPERATORS AND SEMIGROUP THEORY

In this section, we shall write Y for D(A) endowed with the graph norm, Xα for D(Aα) and

L (E,F) will denote the space of bounded linear operators from the Banach espace E to the

Banach espace F and if E = F, we write L (E) with norm ‖.‖. We assume that −A generates

an analytic semigroup and, without loss of generality that 0 ∈ ρ(A), then one can define the

fractional power Aα for 0 < α < 1, as a closed linear operator on its domain Xα with its inverse

A−α is given by

A−α =
1

Γ(α)

∫
∞

0
tα−1T (t)dt,

where Γ is the Gamma function

Γ(α) =
∫

∞

0
tα−1e−t dt.

See Pazy [18], for more details. We have the following known results.

Theorem 2.1. [18] The following properties are true.

(i) Xα = D(Aα) is a Banach space with the norm ‖x‖α = ‖Aαx‖ for x ∈ Xα ,

(ii) Aα is a closed linear operator with domain Xα = Im(A−α) and Aα = (A−α)−1,

(iii) A−α is a bounded linear operator in X,

(iv) If 0 < α ≤ β then D(Aβ ) ↪→ D(Aα). Moreover the injection is compact if T (t) is

compact for t > 0.

Now, we collect the definition and basic results about the theory of semigroup.
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Definition 2.1. [18] A fammily of bounded linear operators T (z), z ∈ ∆ where

∆ = {z ∈ C : ϕ1 < argz < ϕ2,ϕ1 < 0 < ϕ2}

is called analytic semigroup in ∆ if the following properties hold:

(i) z−→ T (z) is analytic in ∆,

(ii) T (0) = I and lim
z∈∆
z→0

T (z)x = x for x ∈ X,

(iii) T (z1 + z2) = T (z1)T (z2) for z1,z2 ∈ ∆.

We say that a semigroup is analytic if it is analytic in some sector ∆ containing the nonnegative

real axis.

In this paper, we assume that the operator −A is an infinitesimal generator of an analytic

semigroup. See [5, 13, 11] for more informations.

Theorem 2.2. [18] The following properties are true:

(i) T (t) : X−→ Xα for t ≥ 0 and α ≥ 0.

(ii) T (t)Aαx = AαT (t)x for x ∈ Xα .

(iii) For t > 0, AαT (t) is a bounded operator and there exists Mα ,w ∈ R such that

‖AαT (t)‖ ≤Mαt−αe−ωt .

We gives in next, the definition of the so-called strict and mild solutions. Consider the fol-

lowing nonhomogeneous equation

(2.1)


u′(t) =−Au(t)+ f (t) for t ∈ [0,b],

u(0) = u0 ∈ X.

Definition 2.2. [18] A continuous function u : [0,b]→ X is called a strict solution of the equa-

tion (2.1) if

(i) t→ u(t) is continuously differentiable on [0,b],

(ii) u(t) ∈ Y for t ∈ [0,b],

(iii) u satisfies equation (2.1) on [0,b].
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Theorem 2.3. [18] If u is a strict solution of equation (2.1), then u is given by the following

formula

(2.2) u(t) = T (t)u0 +
∫ t

0
T (t− s) f (s)ds for t ∈ [0,b].

Remark 2.1. If u satisfies formula (2.2), u is not generally a strict solution of equation (2.1).

This motive the following definition.

Definition 2.3. [18] A continuous function u : [0,b]→ X is called a mild solution of equation

(2.1) if u satisfies equation (2.2).

3. GLOBAL EXISTENCE AND CONTINUOUS DEPENDANCE OF INITIAL DATA

This section is asserted to the results of global existence, uniqueness and continuous depen-

dence with respect to the initials data. We give the definitions of the so-called mild and strict

solutions of equation (1.4).

Definition 3.1. A function u : [0,b]→ Xα is called a strict solution of equation (1.4), if

(i) t→ u(t) is continuously differentiable on [0,b],

(ii) u(t) ∈ Y for t ∈ [0,b],

(iii) u satisfies equation (1.4) on [0,b].

Definition 3.2. If u is a mild solution of equation (1.4), then u is given by

(3.1)
u(t) = T (t)ϕ(0)+

∫ t

0
T (t− s)

∫ s

0
g
(
s− τ,u(τ)

)
dτds+

∫ t

0
T (t− s)F (s,us)ds, ∀ t > 0.

u0 = ϕ ∈ Cα .

Definition 3.3. A continuous function u : [−r,+∞[−→Xα is called a mild solution of equation

(1.4) if u satisfies the equation (3.1).

Now to obtain our first result, we take the following assumptions

(H1) F : R+×Cα −→ Xα is continuous and there exists L f ≥ 0 such that

|F (t,ϕ)−F (t,ψ)| ≤ L f |ϕ−ψ|Cα
for t ≥ 0 and ϕ,ψ ∈ Cα .
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(H2) g : R+×Xα −→ X is continuous and there exists Lg ≥ 0 such that

|g(t,x)−g(t,y)| ≤ Lg |x− y|
α

for t ≥ 0 and x,y ∈ Xα .

Theorem 3.1. Assume that (H1)-(H2) hold. Then for ϕ ∈ Cα , equation (1.4) has an unique

mild solution which is defined for all t ≥ 0.

Proof. Let t1 > 0. For ϕ ∈ Cα we define the set Mt1(ϕ) by

Mt1 (ϕ) := {u ∈ C ([0, t1] ;Xα) : u(0) = ϕ (0)} .

We claim that Mt1 (ϕ) is a closed set of C
(
[0, t1] ;Xα

)
, where C

(
[0, t1] ;Xα

)
is the set of contin-

uous functions define from [0, t1] to Xα endowed with the uniforme norm topology. Inded, let a

sequence (un)n≥0 of Mt1 (ϕ) such that lim
n→+∞

un = u. By uniform convergence, u is continuous

and u(0) = ϕ(0). For u ∈Mt1 (ϕ), we define it extension on [−r, t1] by
∼
u = ϕ(t) if t ∈ [−r,0]

and
∼
u = u(t) if t ∈ [0, t1]. Let L the operator define on Mt1(ϕ) by

(Lu)(t) = T (t)ϕ(0)+
∫ t

0
T (t− s)

[∫ s

0
g
(

s− τ,
∼
u (τ)

)
dτ +F

(
s,
∼
us

)]
ds.

Let u ∈ Mt1 (ϕ). Then we have (Lu)(0) = ϕ(0) and by continuity of F and g we deduce that

Lu ∈Mt1(ϕ), whiche imply that Γ
(
Mt1 (ϕ)

)
⊆Mt1 (ϕ). Now we prove that L is a contraction on

Mt1(ϕ). To sow this, let u,v ∈Mt1(ϕ), t ≥ 0. Then

Aα (Lu)(t)−Aα (Lv)(t) =
∫ t

0
AαT (t− s)

∫ s

0

(
g(s− τ,

∼
u (τ) )−g(s− τ,

∼
v (τ) )

)
dτds

+
∫ t

0
AαT (t− s)

(
F(s,

∼
us)−F(s,

∼
vs)
)

ds.

Taking the norm and using the hypothesis (H1)-(H2), we obtain

‖Aα (Lu)(t)−Aα (Lv)(t)‖ ≤ Lgt1
∫ t

0
Mα (t− s)−α e−w(t−s) sup

0≤s≤t1
‖u(s)− v(s)‖

α
ds

+L f

∫ t

0
Mα (t− s)−α e−w(t−s)

∥∥∥∼us−
∼
vs

∥∥∥
Cα

.

We deduce that

‖(Lu)− (Lv)‖Cα
≤
(
t1Lg +L f

)
Mα

(∫ t1

0
s−αe−wsds

)
‖u− v‖Cα

.
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Now we choose t1 such that

(
t1Lg +L f

)
Mα

(∫ t1

0
s−αe−wsds

)
< 1.

Then L is a contraction on Mt1 (ϕ) and it has an unique fixed point u which is the unique mild

solution of equation (1.4) on [0, t1]. To extend the solution of equation (1.4) in [t1,2t1], we show

the existence and uniqueness of the following equation

(3.2)


z′(t) =−Az(t)+

∫ t

t1
g(t− s,z(s))ds+F(t,zt) for t ∈ [t1,2t1],

zt1 = ut1 ∈C
(
[−r, t1],Xα

)
.

Notice that the solution of equation (3.2) is given by

z(t) = T (t− t1)z(t1)+
∫ t

t1
T (t− s)

∫ s

t1
g
(
s− τ,z(τ)

)
dτds+

∫ t

t1
T (t− s)F(s,zs)ds, t ∈ [t1,2t1]

Let z be the function define by z(t) = z(t) for t ∈ [t1,2t1] et z(t) = u(t) for t ∈]− r, t1]. Consider

the set M2t1(ϕ) =
{

z ∈ Ct1 =C
(
[t1,2t1];Xα

)
;z(t1) = u(t1)

}
provided with the induced topolog-

ical norm. We define the operator H on M2t1(ϕ) by

(Hz)(t) = T (t− t1)z(t1)+
∫ t

t1
T (t− s)

∫ s

t1
g
(
s− τ,z(τ)

)
dτds+

∫ t

t1
T (t− s) f (s,zs)ds, t ∈ [t1,2t1]

We have (Hz)(t1) = u(t1) and Hz is continuous. Then we deduce the following inclusion

H
(
M2t1(ϕ)

)
⊂M2t1(ϕ). Moreover, for u,v ∈M2t1(ϕ), we have

∥∥Aα
(
(H(u))(t)− (H(v))(t)

)∥∥≤ LgMαt1
∫ t

t1

e−w(t−s)

(t− s)α sup
t1≤s≤2t1

‖u(s)− v(s)‖
α

ds

+L f Mα

∫ t

t1

e−w(t−s)

(t− s)α ‖us− vs‖Cα
ds.

Since u = v = ϕ in [−r,0], we deduce that

‖(Hu)− (Hv)‖Cα
≤
(
t1Lg +L f

)
Mα

(∫ t1

0
s−αe−wsds

)
‖u− v‖Cα

.

One can conclude that H has an unique fixed point on M2t1(ϕ) which extend the solution u on

[t1,2t1]. Proceeding inductively, u is uniquely and continuously extended to intervalles [nt1,(n+

1)t1], for n≥ 1 and this ends the proof. �
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Now we show the continuous dependence of the mild solutions with respect to the initial

data.

Theorem 3.2. Assume that (H1)-(H2) hold. Then the mild solution u(.,ϕ) of equation (1.4)

defines a continuous Lipschitz operator U(t), t ≥ 0 in Cα by U(t)ϕ = ut(.,ϕ). Moreover there

exists a real number δ and a scalar function β such that for t ≥ 0 and ϕ1,ϕ2 ∈ Cα we have

(3.3) ‖U(t)ϕ1−U(t)ϕ2‖ ≤ β (δ )eδ t‖ϕ1−ϕ2‖α .

Proof. The continuity is obvious on what the map t→ ut(.,ϕ) is continuous. Now, let ϕ1,ϕ2 ∈

Cα . If we pose w(t) = u(t,ϕ1)−u(t,ϕ2), then we have

w(t) = T (t)
(
ϕ1(0)−ϕ2(0)

)
+
∫ t

0
T (t− s)

∫ s

0

[
g
(
s− τ,u(τ,ϕ1)

)
−g
(
s− τ,u(τ,ϕ2)

)]
dτds

+
∫ t

0
T (t− s)

[
F
(
s,us(·,ϕ1)

)
−F

(
s,us(·,ϕ2)

)]
ds.

(3.4)

Taking the α-norm, we obtain

‖w(t)‖
α
≤
∥∥T (t)Aα

(
ϕ1(0)−ϕ2(0)

)∥∥
+

∥∥∥∥Aα

∫ t

0
T (t− s)

∫ s

0

[
g
(
s− τ,u(τ,ϕ1)

)
−g
(
s− τ,u(τ,ϕ2)

)]
dτds

∥∥∥∥
+

∥∥∥∥Aα

∫ t

0
T (t− s)

[
F
(
s,us(·,ϕ1)

)
−F

(
s,us(·,ϕ2)

)]
ds
∥∥∥∥ .

Which imply that

‖w(t)‖α ≤Mewt ‖ϕ1(0)−ϕ2(0)‖α
+MαLgt1

∫ t

0

e−w(t−s)

(t− s)α
sup

0≤τ≤t1
‖u(τ,ϕ1)−u(τ,ϕ2)‖αds

+MαL f

∫ t

0

e−w(t−s)

(t− s)α
‖us(·,ϕ1)−us(·,ϕ2)‖Cα

ds.

(3.5)

Let δ a real number such that ω−δ < 0. For −r ≤ τ ≤ 0, we have

(3.6) e−δτ‖w(τ)‖ ≤ N1L where N1 = max{eδ r,1} and L = ‖ϕ1−ϕ2‖Cα
.
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Now, for 0≤ τ ≤ t1, we have from (3.5)

e−δτ‖wτ‖Cα
≤ LMe(w−δ )τ +MαLgt1

∫
τ

0
e−(w−δ )(τ−s) (τ− s)−α e−τs‖ws‖Cα

ds

+MαL f

∫
τ

0
e−(w−δ )(τ−s) (τ− s)−α e−τs‖ws‖Cα

ds.(3.7)

Since w−δ ≤ 0, then we have

(3.8) e−δτ‖wτ‖Cα
≤ LM+Mα

(
L f +Lgt1

)∫ τ

0
e−(w−δ )(τ−s) (τ− s)−α e−τs‖ws‖Cα

ds.

Then from (3.6) and (3.8) we deduce that

(3.9) sup
−r≤τ≤t1

e−δτ ‖wτ‖Cα
≤ LMN1 +

(
t1Lg +L f

)
MαWΓ(1−α)(w−δ )α−1,

where

W = sup
0≤t≤t1

e−δ t ‖wt‖Cα
and Γ(1−α)kα−1 =

∫
∞

0
e−kss−αds,

with k > 0 (See [?], p.265). On the other hand, for 0≤ t ≤ t1, we have

e−δ t ‖wt‖Cα
= sup
−r≤θ≤0

eδθ e−δ (t+θ) ‖w(t +θ)‖
α

≤ N2 sup
−r≤θ≤0

e−δ (t+θ) ‖w(t +θ)‖
α

≤ N2 sup
−r≤τ≤t1

e−δτ ‖wτ‖Cα
.

where N2 = max{e−δ r,1}. Therefore, we have

W ≤ LMN1N2 +N2Mα

(
t1Lg +L f

)
Γ(1−α)(w−δ )α−1W.

Then we deduce that

‖U(t)ϕ1−U(t)ϕ2‖Cα
≤ β (δ )eδ t ‖ϕ1−ϕ2‖Cα

,

where

β (δ ) = MN1N2

(
1−N2Mα(t1Lg +L f )Γ(1−α)(ω−δ )α−1

)−1

.

This end the proof. �
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4. REGULARITY OF THE MILD SOLUTION

In this section we prove, under certains conditions, that the mild solution obtained in The-

orem 3.1 is a strict solution. To do this, we denote by C 1
α = C 1([−r,0];Xα

)
as the espace of

continuously differentiables functions from [−r,0] to Xα and we consider the following hypoth-

esis:

(H3) The functions F and g are continuously differentiables, theire partials derivatives are

loccaly Lipschitzian with respect to the second argument and g(0,x) = g(0,y) for x,y ∈

Xα .

Theorem 4.1. Assume that (H1)-(H3) hold. Let ϕ ∈ C 1
α such that ϕ

′
(0) =−Aϕ(0)+F(0,ϕ)

with ϕ(0) ∈ D(A). Then the mild solution of equation (1.2) is a strict solution.

Proof. Let a > 0 and u = u(·,ϕ) be the mild solution of equation (1.2) which is defined in the

intervalle [0,+∞[. Consider now the equation

(4.1)


v(t) = T (t)ϕ ′(0)+

∫ t

0
T (t− s)

∫ s

0

[
Dtg
(
s− τ,u(τ)

)
+Dϕg

(
s− τ,u(τ)

)
v(τ)

]
dτds

+
∫ t

0
T (t− s)

[
DtF(s,us)+DϕF(s,us)vs

]
ds+

∫ t

0
T (t− s)g(0,u(s))ds

v0 = ϕ
′
.

Using the strict contraction principle, we can show that there exists an unique continuous func-

tion v solution in [0,a] of equation (4.1). We introduce the function w defined by:

w(t) = ϕ(0)+
∫ t

0
v(s)ds if t ≥ 0 and w(t) = ϕ(t) if − r ≤ t ≤ 0.

It follows that

wt = ϕ +
∫ t

0
vs ds for t ∈ [0,a].

Then the maps t 7→ wt , t 7→
∫ t

0
T (t− s)F(s,ws)ds and t 7→

∫ t

0
T (t− s)

∫ s

0
g
(
s− τ,w(τ)

)
dτds

are continuously differentiables and the following formula hold:

d
dt

∫ t

0
T (t− s)F(s,ws)ds = T (t)F(0,ϕ)+

∫ t

0
T (t− s)

[
DtF(s,ws)+DϕF(s,ws)vs

]
ds
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and

d
dt

∫ t

0
T (t− s)

∫ s

0
g
(
s− τ,w(τ)

)
dτds =

∫ t

0
T (t− s)g(0,w(s))ds

+
∫ t

0
T (t− s)

∫ s

0

[
Dtg
(
s− τ,w(τ)

)
+Dϕg

(
s− τ,w(τ)

)
v(τ)

]
dτds.

Then ∫ t

0
T (s)F(0,ϕ)ds =

∫ t

0
T (t− s)F(s,ws)ds

−
∫ t

0

∫ s

0
T (s− τ)

[
DtF(τ,wτ)+DϕF(τ,wτ)vτ

]
dτds(4.2)

and ∫ t

0

∫ s

0
T (s− τ)g(0,w(τ))dτds =

∫ t

0
T (t− s)

∫ s

0
g
(
s− τ,w(τ)

)
dτds

−
∫ t

0

∫ s

0
T (s− τ)

∫
τ

0

[
Dtg
(
τ− y,w(y)

)
+Dϕg

(
τ− y,w(y)

)
v(y)

]
dydτds.(4.3)

It follows that

w(t) = T (t)ϕ(0)+
∫ t

0
T (t− s)F(s,ws)ds+

∫ t

0
T (t− s)

∫ s

0
g
(
s− τ,w(τ)

)
dτds

+
∫ t

0

∫ s

0
T (s− τ)

∫
τ

0

[
Dtg
(
τ− y,u(y)

)
−Dtg

(
τ− y,w(y)

)]
dydτds

+
∫

τ

0

[
Dϕg

(
τ− y,u(y)

)
v(y)−Dϕg

(
τ− y,w(y)

)
v(y)

]
dydτds

+
∫ t

0

∫ s

0
T (s− τ)

[
DtF(τ,uτ)−DtF(τ,wτ)]dτds

+
∫ t

0

∫ s

0
T (s− τ)

[
DϕF(τ,uτ)vτ −DϕF(τ,wτ)vτ

]
dτds.

We deduce, for t ∈ [0,a], that

‖w(t)−u(t)‖
α
≤
∫ t

0

∥∥∥∥AαT (t− s)
∫ s

0

(
g
(
s− τ,u(τ)

)
−g
(
s− τ,w(τ)

))
dτ

∥∥∥∥ds

+
∫ t

0

∥∥AαT (t− s)
(
F(s,us)−F(s,ws)

)∥∥ds

+
∫ t

0

∫ s

0

∥∥∥∥AαT (s− τ)
∫

τ

0
Dtg
(
τ− y,u(y)

)
−Dtg

(
τ− y,w(y)

)
dy
∥∥∥∥dτds

+
∫ t

0

∫ s

0

∥∥∥∥AαT (s− τ)
∫

τ

0

[
Dϕg

(
τ− y,u(y)

)
−Dϕg

(
τ− y,w(y)

)]
v(y)dy

∥∥∥∥dτds
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+
∫ t

0

∫ s

0
‖AαT (s− τ)‖‖Dt f (τ,uτ)−Dt f (τ,wτ)‖dτds

+
∫ t

0

∫ s

0
‖AαT (s− τ)‖

∥∥[Dϕ f (τ,uτ)−Dϕ f (τ,wτ)
]

vτ

∥∥dτds.

The set K = {us,ws;s ∈ [0,a]} is compact in Cα . Since the partial derivatives of F and g are

locally Lipschitz with respect to the second argument, it is well-known that they are globally

Lipschitz on K. Then we deduce that

‖w(t)−u(t)‖
α
≤MαaLG

∫ t

0

e−w(t−s)

(t− s)α
sup

0≤τ≤s
‖w(τ)−u(τ)‖ds

+MαLF

∫ t

0

e−w(t−s)

(t− s)α
sup

0≤τ≤s
‖w(τ)−u(τ)‖ds

+MαaLip(Dtg)
∫ t

0

∫ s

0

e−w(s−τ)

(s− τ)α
sup

0≤y≤τ

‖u(y)−w(y)‖dτds

+MαaLip(Dϕg)
∫ t

0

∫ s

0

e−w(s−τ)

(s− τ)α
sup

0≤y≤τ

‖u(y)−w(y)‖dτds

+MαLip(DtF)
∫ t

0

∫ s

0

e−w(s−τ)

(s− τ)α
sup

0≤y≤τ

‖u(y)−w(y)‖dτds

+MαLip(DϕF)
∫ t

0

∫ s

0

e−w(s−τ)

(s− τ)α
sup

0≤y≤τ

‖u(y)−w(y)‖dτds.

Here Lip
(
Dϕg

)
, Lip(Dtg), Lip(DtF)) and Lip

(
DϕF

)
are respectively the Lipschitz constant

of Dϕg, Dtg, Dtg and DϕF . Since the map

s−→
∫ s

0

e−w(s−τ)

(s− τ)α
sup

0≤y≤τ

‖u(y)−w(y)‖dτ

is a nondecresing function, then we deduce that

‖w(t)−u(t)‖
α
≤Mαβ (a)

∫ a

0

e−w(t−s)

(t− s)α
sup

0≤τ≤a
‖u(τ)−w(τ)‖αds,

where

β (a) = aLg +LF +a2(Lip(Dtg)+Lip
(
Dϕg

))
+Lip(DtF)+Lip

(
DϕF

)
.

Then it follows that

‖u−w‖Cα
≤
(

Mαβ (a)
∫ a

0

e−ws

sα
ds
)
‖u−w‖Cα

.
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Now we choose a such that

Mαβ (a)
∫ a

0

e−ws

sα
ds < 1,

then u=w in [0,a]. We claim that u=w in [0,+∞[. Indeed, suppose that there exists t1 > 0 such

that u(t1) 6= w(t1). Let t2 = inf{t > 0 : ‖u(t)−w(t)‖α > 0}. By continuity, we has u(t) = w(t)

for t ≤ t2 and there exists ε > 0 such that ‖u(t)−w(t)‖α > 0 for t ∈]t2, t2 + ε[. On the other

hand

‖u(t)−w(t)‖α ≤Mαβ (ε)
∫

ε

0

e−ws

sα
sup

ε≤τ≤t1+ε

‖u(τ)−w(τ)‖αds.

Now we choose ε such that

Mαβ (ε)
∫

ε

0

e−ws

sα
ds < 1.

Then u = w in [t2, t2 + ε] which gives a contradiction. Therefore, u(t) = w(t) for t ≥ 0. We

conclude that t 7→ ut from [0,+∞[ to D(Aα), (t,s) 7→ g
(
t− s,u(s)

)
from R+×Xα to Xα and

t 7→ F(t,ut) from R+×Cα to X are continuisly differentiables. Then u is a stricte solution �

5. APPLICATION

We consider the following system for illustration

(5.1)



∂

∂ t
w(t,x) =

∂ 2

∂x2 w(t,x)+
∫ t

0
g(t− s,w(s,x))ds

+
∫ 0

−r
k(t,

∂

∂x
w(t +θ ,x))dθ for t ≥ 0 and x ∈ [0,π],

w(t,0) = w(t,π) = 0 for t ≥ 0,

w(θ ,x) = w0(θ ,x) for θ ∈ [−r,0] and x ∈ [0,π],

where w0 : [−r,0]× [0,π] −→ R, k : R+×R −→ R and h : R+×R −→ R are appropriates

functions. To study this equation, we choose X= L2([0, π]), with with its usual norm ‖.‖. We

define the operator A : Y= D(A)⊂ X→ X by

Aw =−w′′ with domain D(A) = H2(0,π)∩H1
0 (0,π).
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For α = 1/2, we define X1/2 =
(
D(A1/2), | · |1/2

)
where |x|1/2 = ‖A1/2x‖ for each x ∈X1/2. We

define C1/2= C([−r ,0],X1/2) equipped with norm | · |∞ and the functions, u and ϕ and F by

u(t) = w(t,x), ϕ(θ)(x) = w0(θ ,x) for a.e x ∈ [0,π] and θ ∈ [−r,0], t ≥ 0 and finaly

F(t,ϕ)(x) =
∫ 0

−r
k(t,

∂

∂x
ϕ(θ)(x))dθ for a.e x ∈ [0,π] and ϕ ∈ C1/2.

Then the equation (5.1) takes the abstract form

(5.2)


u′(t) =−Au(t)+

∫ t

0
g(t− s,u(s))ds+F(t,ut) for t ≥ 0,

u0 = ϕ ∈ C1/2 =C
(
[−r,0],X1/2]

)
.

The operator −A is closed operator and generates an analytic compact semigroup (T (t))t≥0 on

X. Thus, there exists δ in (0,π/2) and M ≥ 0 such that

Λ =
{

λ ∈ C : |argλ |< π

2
+δ

}
∪{0}

is contained in ρ(−A), the resolvent set of −A and ‖R(λ ,−A)‖ < M/ |λ | for λ ∈ Λ. The

operator A has a discrete spectrum, the eigenvalues are n2 and the corresponding normalized

eigenvectors are

en(x) =

√
2
π

sin(nx), n = 1,2, · · · .

Moreover the following formula hold.

(i) Au =
∞

∑
n=1

n2〈u,en〉en u ∈ D(A),

(ii) A−1/2u =
∞

∑
n=1

1
n
〈u,en〉en for u ∈ X,

(iii) A1/2u =
∞

∑
n=1

n〈u,en〉en for u ∈ D(A1/2) = {u ∈ X : ∑
∞
n=1

1
n〈u,en〉en ∈ X}.

One also have the following result.

Lemma 5.1. [20] Let ϕ ∈ X1/2. Then ϕ is absolutely continuous, ϕ
′ ∈ X and

‖ϕ
′
‖= ‖A

1
2 ϕ‖.

We assume the following assumptions.
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(H4) The functions k : R+×R −→ R and g : R+×R −→ R are continuous and Lipschitz

with respect to the second variable.

The functions F is continuous in the first variable from the fact that k is continuous in the first

variable. Moreover from Lemma 5.1 and the continuity of k, we deduce that F is continuous

with respect to the second argument. This yields the continuity of F in R+×C1/2. In addition,

by assumption (H4) we deduce that

‖F(t,ϕ1)−F(t,ϕ2)‖ ≤ rL f ‖ϕ1−ϕ2‖C1/2
.

Where L f is the Lipchitz constante of F . Then F is a continuous globally Lipschitz function

with respect to the second argument. We obtain the following important result.

Proposition 5.1. Suppose that the assumptions (H4) hold. Then the equation (5.2) has a mild

solution wich is defined for t ≥ 0.
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