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1. Introduction and preliminaries

The concept of weakly compatible of two self mappings was introduced by Jungck [6].

Abass, Babu and Alemayehu [1] proved the existence of common fixed points of two

weakly compatible mappings satisfying a generalized condition (B)’ in metric spaces. In

this paper some theorems in [1] were generalized by using partial metric spaces which was

introduced by Mathews in 1994.

Definition 1.1. [8, 9] A partial metric on a nonempty set X is a function p : X×X → R+

such that for all x, y, z ∈ X;

(a) x = y ⇔ p(x, x) = p(x, y) = p(y, y);

(b) p(x, x) ≤ p(x, y);
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(c) p(x, y) = p(y, x);

(d) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

A pair (X, p) is called a partial metric space, where X is a nonempty set and p is a

partial metric on X.

Each partial metric p on X generates a T0 topology τp on X which has as a base the

family of open p−balls {Bp(x, ε) : x ∈ X and ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) <

p(x, x) + ε} for all x ∈ X and ε > 0.

It is easily to show that if p is a partial metric on X, then the function ps : X×X → R+

defined by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) (1.1)

is a usual metric on X.

We recall some definitions and known results.

Definition1.2. [5, 8, 9]

(a) A sequence {xn} in a partial metric space (X, p) is said to be convergent to a point

z ∈ X if and only if p(z, z) = lim
n→∞

p(z, xn).

(b) A sequence {xn} in a partial metric space (X, p) is said to be a Cauchy sequence

if lim
n,m→∞

p(xn, xm) exists and is finite.

(c) A partial metric space (X, p) is said to be complete if every Cauchy sequence {xn}

in X converges with respect to τp to a point z ∈ X such that

p(z, z) = lim
n,m→∞

p(xn, xm).

Lemma 1.3. [5, 8, 9] Let (X, p) be a partial metric space,

a) A sequence {xn}∞n=0 in a partial metric space is a Cauchy sequence if and only if

it is a Cauchy sequence in the metric space (X, ps).

b) A partial metric space (X, p) is complete if and only if the metric space (X, ps)

is complete. Moreover lim
n→∞

ps(z, xn) = 0 iff lim
n→∞

p(z, xn) = lim
n,m→∞

p(xn, xm) =

p(z, z).

The following Lemmas will be used in the proof of main result.
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Lemma 1.4. [2] Let (X, p) be a partial metric space. Then

(a) If p(x, y) = 0, then x = y,

(b) If x 6= y, then p(x, y) > 0.

Definition 1.5. [2] Let f and g be two selfmappings defined on a set X. A point x ∈ X

is said to be coincidence point of f and g if fx = gx = y, where y ∈ X is called a point

of coincidence of f and g.

Definition 1.6. [2] Two selfmappings f and g are said to be weakly compatible if f and

g commute at their coincidence point, i.e. fgx = gfx, x ∈ X, whenever fx = gx.

Definition 1.7. [1] Let (X, p) be a partial metric space and f, g be two selfmappings

on X such that f(X) ⊂ g(X). For any x0 ∈ X construct a sequence {xn}∞n=0 in X such

that gxn+1 = fxn, n = 0, 1, 2, .... The sequence {gxn}∞n=1 is called an f -sequence with

initial point x0.

In order to prove theorems and corollaries in this paper, generalized condition (B)’ is

used by taking δ, L > 0, and δ + 2L < 1.

Definition 1.8. [1] A mapping f : X → X on a partial metric space X is said to satisfy

generalized condition (B)’ associated with a mapping g : X → X if there exists δ, L > 0,

and δ + 2L < 1 such that

p (fx, fy) ≤ δM(x, y) + Lmin{p(gx, fx), p(gy, fy), p(gx, fy), p(gy, fx)} (1.2)

for every x, y ∈ X, where,

M(x, y) = max{p(gx, gy), p(gx, fx), p(gy, fy),
1

2
[p(gx, fy) + p(gy, fx)]}.

Lemma 1.9. [2] Let f and g be two selfmappings on a nonempty set X, which have a

unique point of coincidence y in X. If f and g are weakly compatible, then y is the unique

common fixed point of f and g.

2. Main results

The proof of the following theorem has been taken from [1]
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Theorem 2.1. Let (X, p) be a partial metric space, and f, g be two selfmappings on

X such that f(X) ⊆ g(X). Assume that f satisfied generalized condition (B)’ associated

with g. If either f(X) or g(X) is a complete subspace of X, then f and g have a unique

point of coincidence. Furthermore if f and g are weakly compatible, then f and g have a

unique common fixed point in X.

Proof. Pick x0 ∈ X. Let {gxn} be an f−sequence with initial point x0. Now compute

the following:

M(xn, xn−1) = max{p(gxn, gxn−1), p(gxn, fxn), p(gxn−1, fxn−1),

1

2
[p(gxn, fxn−1) + p(gxn−1, fxn)]}

= max{p(gxn, gxn−1), p(gxn, gxn+1), p(gxn−1, gxn),

1

2
[p(gxn, gxn) + p(gxn−1, gxn+1)]}

≤ max{p(gxn, gxn−1), p(gxn, gxn+1),

1

2
[p(gxn−1, gxn) + p(gxn, gxn+1)]}

≤ max{p(gxn−1, gxn), p(gxn, gxn+1)}.

The second part of right-hand side of (1.2) is computed as follows:

min{p(gxn, fxn), p(gxn−1, fxn−1), p(gxn, fxn−1), p(gxn−1, fxn)}

= min{p(gxn, gxn+1), p(gxn−1, gxn), p(gxn, gxn), p(gxn−1, gxn+1)}

= min{p(gxn, gxn), p(gxn−1, gxn+1)} (2.1)

Now apply generalzied condition (B)’ for xn and xn−1, it follows that

p(fxn, fxn−1) ≤ δmax{p(gxn−1, gxn), p(gxn, gxn+1)}+

Lmin{p(gxn, gxn), p(gxn−1, gxn+1)}.

This implies that

p(gxn+1, gxn) ≤ δmax{p(gxn−1, gxn), p(gxn, gxn+1)}+Lmin{p(gxn, gxn), p(gxn−1, gxn+1)}.

We have four cases,
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(a) If max{p(gxn−1, gxn), p(gxn, gxn+1)} = p(gxn−1, gxn), and min{p(gxn, gxn), p(gxn−1, gxn+1)} =

p(gxn, gxn) then

p(gxn, gxn+1) ≤ δp(gxn−1, gxn) + Lp(gxn, gxn)

≤ δp(gxn−1, gxn) + Lp(gxn, gxn+1)

=
δ

1− L
p(gxn−1, gxn)

≤ (
δ

1− L
)2 p(gxn−2, gxn−1)

≤ ............

≤ (
δ

1− L
)np(gx0, gx1)

= δn1 p(gx0, gx1). (2.2)

Where δ1 = δ
1−L < 1.

b) If max{p(gxn−1, gxn), p(gxn, gxn+1)} = p(gxn−1, gxn), and min{p(gxn, gxn), p(gxn−1, gxn+1)} =

p(gxn−1, gxn+1), then

p(gxn, gxn+1) ≤ δp(gxn−1, gxn) + Lp(gxn−1, gxn+1)

≤ δp(gxn−1, gxn) + Lp(gxn−1, gxn) + Lp(gxn, gxn+1)− Lp(gxn, gxn)

≤ δp(gxn−1, gxn) + Lp(gxn−1, gxn) + Lp(gxn, gxn+1)

=
δ + L

1− L
p(gxn−1, gxn)

≤ (
δ + L

1− L
)2p(gxn−2, gxn−1)

≤ .............

≤ (
δ + L

1− L
)np(gx0, gx1)

= δn2 p(gx0, gx1) (2.3)

where δ2 = δ+L
1−L < 1.
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c) If max{p(gxn−1, gxn), p(gxn, gxn+1)} = p(gxn, gxn+1), and min{p(gxn, gxn), p(gxn−1, gxn+1)} =

p(gxn, gxn), then

p(gxn, gxn+1) ≤ δp(gxn, gxn+1) + Lp(gxn, gxn)

≤ δp(gxn, gxn+1) + Lp(gxn−1, gxn)

=
L

1− δ
p(gxn−1, gxn)

≤ (
L

1− δ
)2p(gxn−2, gxn−1)

≤ .................

≤ (
L

1− δ
)np(gx0, gx1)

= δn3 p(gx0, gx1) (2.4)

where δ3 = L
1−δ < 1.

d) If max{p(gxn−1, gxn), p(gxn, gxn+1)} = p(gxn, gxn+1), and min{p(gxn, gxn), p(gxn−1, gxn+1)} =

p(gxn−1, gxn+1), then,

p(gxn, gxn+1) ≤ δp(gxn, gxn+1) + Lp(gxn−1, gxn+1)

≤ δp(gxn, gxn+1) + Lp(gxn−1, gxn) + Lp(gxn, gxn+1)

− Lp(gxn, gxn)

≤ δp(gxn, gxn+1) + Lp(gxn−1, gxn) + Lp(gxn, gxn+1)

=
L

1− (δ + L)
p(gxn−1, gxn)

≤ (
L

1− (δ + L)
)2 p(gxn−2, gxn−1)

≤ ........................

≤ (
L

1− (δ + L)
)n p(gx0, gx1)

= δn4 p(gx0, gx1) (2.5)

where δ4 = L
1−(δ+L) < 1.
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Put δ = max{δ1, δ2, δ3, δ4}. Then 0 < δ < 1.From (2.2), (2.3), (2.4) and (2.5), we have

p(gxn, gxn+1) ≤ δn p(gx0, gx1). (2.6)

For any positive integers m and n with m > n, we have from (2.6),

p(gxm, gxn) ≤ p(gxn, gxn+1) + p(gxn+1, gxn+2) + ...+ p(gxm−1, gxm)

− [p(gxn+1, gxn+1) + p(gxn+2, gxn+2) + ...+ p(gxm−1, gxm−1)]

≤ p(gxn, gxn+1) + p(gxn+1, gxn+2) + ...+ p(gxm−1, gxm)

≤ [δn + δn+1 + ...+ δm−1] p(gx0, gx1)

<
δn

1− δ
p(gx0, gx1). (2.7)

This implies that

lim
n,m→∞

p(gxm, gxn) = 0. (2.8)

By using (1.1), we get that,

ps(gxm, gxn) = 2p(gxm, gxn)− p(gxm, gxm)− p(gxn, gxn)

≤ 2p(gxm, gxn). (2.9)

By using (2.8), we have lim
n,m→∞

ps(gxm, gxn) = 0.This implies that {gxn} is a Cauchy

sequence in (g(X), ps). Now if (g(X), p) is complete, then by Lemma 1.3 (g(X), ps) is

complete and so the sequence {gxn} converges to z ∈ g(X). Hence we can find u in X

such that gu = z. Again by Lemma 1.3, we have

p(z, z) = lim
n→∞

p(gxn, z) = lim
n,m→∞

p(gxm, gxn). (2.10)
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From (2.8) and (2.10), we have p(z, z) = 0. Now

p(z, fu) ≤ p(z, gxn+1) + p(gxn+1, fu)− p(gxn+1, gxn+1)

≤ p(z, gxn+1) + p(fxn, fu)

≤ p(z, gxn+1) + δmax{p(gxn, gu), p(gxn, fxn), p(gu, fu),

1

2
[p(gxn, fu) + p(gu, fxn)]}+

+Lmin{p(gxn, fxn), p(gu, fu), p(gxn, fu), p(gu, fxn)}

= p(z, gxn+1) + δmax{p(gxn, z), p(gxn, gxn+1), p(z, fu),

1

2
[p(gxn, fu) + p(z, gxn+1)}+

+Lmin{p(gxn, gxn+1), p(z, fu), p(gxn, fu), p(z, gxn+1)}

≤ p(z, gxn+1) + δmax{p(gxn, z), p(gxn, z) + p(z, gxn+1)− p(z, z), p(z, fu),

1

2
[p(gxn, z) + p(z, fu)− p(z, z) + p(z, gxn+1)]}+

+ Lmin{p(gxn, z) + p(z, gxn+1)− p(z, z)},

p(z, fu), p(gxn, z) + p(z, fu)− p(z, z), p(z, gxn+1)}

≤ p(z, gxn+1) + δmax{p(gxn, z) + p(z, gxn+1), p(z, fu),

1

2
[p(gxn, z) + p(z, fu) + p(z, gxn+1)]}+

+Lmin{p(gxn, z) + p(z, gxn+1), p(z, fu), p(gxn, z) +

+p(z, fu), p(z, gxn+1)}

Letting n→∞, by (2.8) and (2.10) we have

p(z, fu) ≤ δp(z, fu) + L p(z, fu),

≤ (δ + L)p(z, fu),

< p(z, fu).

It follows that p(z, fu) = 0. Hence By Lemma 1.4, fu = gu = z, i.e z is a point of

coincidence of f and g.
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On the other hand, if (f(X), p) is complete, then by Lemma 1.3 (f(X), ps) is complete

and thus the sequence {gxn+1} = {fxn} converges to w ∈ f(X). Hence we can find v in

X such that fv = w. By Lemma 1.3,

p(w,w) = lim
n→∞

p(fxn, z) = lim
n,m→∞

p(fxm, fxn). (2.11)

Since p(fxm, fxn) = p(gxm+1, gxn+1) from (2.8), we have

lim
n,m→∞

p(fxm, fxn) = 0.

This implies that p(w,w) = 0.

Using the same above arguments, we get that w is a point of coincidence.

Finally, we prove the uniqueness of point of coincidence. Assume that there are z1and

z2 in X such that z1 = fu1 = gu1, and z2 = fu2 = gu2 for some u1, u2 in X.

M(u1, u2) = max{p(gu1, gu2), p(gu1, fu1), p(gu2, fu2),
1

2
[p(gu1, fu2) + p(gu2, fu1)]}

= max{p(z1, z2), p(z1, z1), p(z2, z2),
1

2
[p(z1, z2) + p(z2, z1)]}

= p(z1, z2).

It is obvious that min{p(gu1, fu1), p(gu2, fu2), p(gu1,fu2), p(gu2, fu1)} = 0.Using (1.2),

p(z1, z2) = p(fu1, fu2)

≤ δp(z1, z2)

< p(z1, z2).

This implies that p(z1, z2) = 0. By Lemma 1.4, we have z1 = z2. Since the point of

coincidence is unique, by Lemma 1.9 z is the unique common fixed point of f and g.

The next corollary was taken from [1].

Corollary 2.2. Let (X, p) be a partial metric space and f, g be selfmappings on X such

that f(X) ⊆ g(X). Assume that there exists δ, L > 0 and δ + 2L < 1 such that

p(fx, fy) ≤ δM(x, y) + Lmin{p(gx, fx), p(gy, fy), p(gx, fy), p(gy, fx)}, (2.12)
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for all x, y ∈ X, where

M(x, y) = max{p(gx, gy),
1

2
[p(gx, fx) + p(gy, fy)],

1

2
[p(gy, fx) + p(gx, fy)]}.

If either f(X) or g(X) is a complete subspace of X, then f, g have a point of coincidence.

Furthermore if f and g are weakly compatible, then f, g have a unique common fixed point.

Proof. Pick x0 ∈ X. Let {gxn} be an f−sequence with initial point x0. Now compute

the following:

M(xn, xn−1) = max{p(gxn, gxn−1),
1

2
[p(gxn, fxn) + p(gxn−1, fxn−1)],

1

2
[p(gxn, fxn−1) + p(gxn−1, fxn)]}

= max{p(gxn, gxn−1),
1

2
[p(gxn, gxn+1) + p(gxn−1, gxn)],

1

2
[p(gxn, gxn) + p(gxn−1, gxn+1)]}

≤ max{p(gxn, gxn−1),
1

2
[p(gxn, gxn+1) + p(gxn−1, gxn)],

1

2
[p(gxn, gxn) + p(gxn−1, gxn) + p(gxn, gxn+1)− (gxn, gxn)]},

≤ max{p(gxn, gxn−1),
1

2
[p(gxn, gxn+1) + p(gxn−1, gxn)]}.

From (2.1) and (2.12), we get

p(fxn, fxn−1) ≤ δmax{p(gxn−1, gxn),
1

2
[p(gxn, gxn+1) + p(gxn−1, gxn)]}

+Lmin{p(gxn, gxn), p(gxn−1, gxn+1)}.

Now we consider four cases. The first and second ones are similar to a) and b) in

Theorem 2.1. For the third and fourth cases suppose that

M(xn, xn−1) =
1

2
[p(gxn, gxn+1) + p(gxn−1, gxn)].

Then we have the following:
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If min{p(gxn, gxn), p(gxn−1, gxn+1)} = p(gxn, gxn), then,

p(gxn, gxn+1) ≤
δ

2
[p(gxn−1, gxn) + p(gxn, gxn+1)] + Lp(gxn, gxn)

δ

2
[p(gxn−1, gxn) + p(gxn, gxn+1)] + Lp(gxn−1, gxn)

≤ δ + 2L

2− δ
p(gxn−1, gxn) ≤ ... ≤ (

δ + 2L

2− δ
)n p(gx0, gx1)

= kn1 p(gx0, gx1), (2.13)

where k1 = δ+2L
2−δ

If min{p(gxn, gxn), p(gxn−1, gxn+1)} = p(gxn−1, gxn+1), then

p(gxn, gxn+1) ≤
δ

2
[p(gxn−1, gxn) + p(gxn, gxn+1)] + Lp(gxn−1, gxn+1)

≤ δ

2
[p(gxn−1, gxn) + p(gxn, gxn+1)]+

L[p(gxn−1, gxn) + p(gxn, gxn+1)− p(gxn, gxn)]

≤ δ[p(gxn−1, gxn) + p(gxn, gxn+1)] + L[p(gxn−1, gxn) + p(gxn, gxn+1)]

≤ δ + 2L

2− δ − 2L
p(gxn−1, gxn) ≤ ... ≤ (

δ + 2L

2− δ − 2L
)n p(gx0, gx1)

= kn2 p(gx0, gx1), (2.14)

where k2 = δ+2L
2−δ−2L Put k = max{k1, k2}. Then k ∈ (0, 1). From (2.13) and (2.14) we get

that

p(gxn, gxn+1) ≤ kn p(gx0, gx1).

To complete the proof follow the the same arguments of the proof of Theorem 2.1.

We can get the following corollary as in [1] by letting g = IX in the previous theorem.

Corollary 2.3. Let (X, p) be a partial metric space,and f : X → X . Assume that f

satisfies generalized condition (B)’. If f(X) is a complete subspace of X, then f has a

unique fixed point.

Theorem 2.4. Let (X, p) be a partial metric space, and f, g be two selfmappings on X

such that f(X) ⊆ g(X). Assume that there exists a constant δ, L > 0, and δ + 2L < 1
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such that

p(fx, fy) ≤ δm(x, y) + Lmin{p(gx, fx), p(gy, fy), p(gx, fy), p(gy, fx)} , (2.15)

for every x, y ∈ X, where

M(x, y) = max{p(gx, gy), p(gx, fx), p(gy, fy), p(gx, fy), p(gy, fx)}.

If either f(X) or g(X) is a complete subspace of X, then f and g have a unique point of

coincidence. Furthermore, if f and g are weakly compatible, then f and g have a unique

common fixed point.

Proof. Let x0 ∈ X, and {gxn} be an f−sequence with initial point x0. Now we find

M(x, y)

M(xn, xn−1) = max{p(gxn, gxn−1), p(gxn, fxn), p(gxn−1, fxn−1),

p(gxn, fxn−1), p(gxn−1, fxn)}

= max{p(gxn, gxn−1), p(gxn, gxn+1), p(gxn−1, gxn),

p(gxn, gxn), p(gxn−1, gxn+1)}

= max{p(gxn, gxn−1), p(gxn, gxn+1), p(gxn−1, gxn+1)}

≤ max{p(gxn, gxn−1), p(gxn, gxn+1), p(gxn−1, gxn) + p(gxn, gxn+1)}

= p(gxn−1, gxn) + p(gxn, gxn+1). (2.16)

Using (2.1), (2.15) and (2.16), we get

p(gxn, gxn+1) ≤ δ[p(gxn−1, gxn) + p(gxn, gxn+1)] + Lmin{p(gxn, gxn), p(gxn−1, gxn+1)}.

To complete the proof of the theorem follow the same argument of the proof of the

previous corollary.

We need the following definition to prove the next theorem.

Definition 2.5. Let (X, p) be a partial metric space. A mapping f : X → X is said to

be continuous at z ∈ X if for every sequence {xn} in X converges to z, then the sequence
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{fxn} converges to fz, i.e

lim
n→∞

p(xn, z) = p(z, z) =⇒ lim
n→∞

p(fxn, fz) = p(fz, fz).

Theorem 2.6. [1] Let (X, p) be a partial metric space,and f a selfmapping on X satisfy

generalized condition (B)’associated with a selfmapping g on X. If the set F (f, g) = {z ∈

X : fz = gz = z, p(z, z) = 0} of all common fixed points of f and g are nonempty , then

f is continuous at z ∈ F (f, g) whenever g is continuous at z.

Proof. Let z ∈ F (f, g) and {xn} be a sequence in X converges to z. Applying (1.2) for

z and xn, then

p(fz, fxn) ≤ δM(z, xn) + Lmin{p(gz, fz), p(gxn, fxn), p(gz, fxn), p(gxn, fz)}

where

M(z, xn) = max{p(gz, gxn), p(gz, fz), p(gxn, fxn),
1

2
[p(gz, fxn) + p(gxn, fz)}

It follows that

p(fz, fxn) ≤ δmax{p(gz, gxn), p(z, z), p(gxn, fxn),
1

2
[p(fz, fxn) + p(gxn, gz)}+

+Lmin{p(z, z), p(gxn, fxn), p(fz, fxn), p(gxn, gz)}

≤ δmax{p(gz, gxn), p(gxn, gz) + p(fz, fxn)− p(z, z),
1

2
[p(fz, fxn) + p(gxn, gz)}

≤ δmax{p(gz, gxn), p(gxn, gz) + p(fz, fxn),
1

2
[p(fz, fxn) + p(gxn, gz)}

= δ[p(gxn, gz) + p(fz, fxn)]

It follows that

p(fz, fxn) ≤ δ

1− δ
p(gxn, gz) (2.17)

Since g is continuous, lim
n→∞

p(gxn, gz) = p(z, z) = 0. By using (2.17), and the continuity

of g we conclude that lim
n→∞

p(fxn, fz) = p(z, z) = 0.
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