

CONVERGENCE THEOREMS OF IMPLICIT ITERATIVE PROCESSES WITH ERRORS FOR A FINITE FAMILY OF PSEUDOCONTRACTIVE MAPPINGS IN BANACH SPACES

YAN HAO*, AND JIA ZHOU

School of Mathematics Physics and Information Science, Zhejiang Ocean University, Zhoushan 316004, China

Abstract. In this paper, an implicit iterative process with mixed errors is considered. Weak and strong convergence theorems of common fixed points of a finite family of pseudocontractions are established in a real Banach space.

Keywords: pseudocontraction ; fixed point; implicit iterative process with errors.

2000 AMS Subject Classification: 47H09; 47H10

1. Introduction and Preliminaries

Throughout this paper, we always assume that E is a real Banach space and K is a nonempty subset of E. Let J denote the normalized duality mapping from E into 2^{E^*} given by

$$J(x) = \{ f \in E^* : \langle x, f \rangle = \|x\|^2 = \|f\|^2, \ x \in E \},$$
(1.1)

where E^* denotes the dual space of E and $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. In the sequel, we denote a single-valued normalized duality mapping by j, we denote the

^{*}Corresponding author

Received April 9, 2013

fixed point of the mapping T by F(T), \rightarrow and \rightarrow denote weak and strong convergence, respectively.

Recall that T is said to be nonexpansive if

$$||Tx - Ty|| \le ||x - y||, \quad \forall x, y \in K.$$
 (1.2)

T is said to be strictly pseudocontractive if there exists a constant $\kappa>0$ and $j(x-y)\in J(x-y)$ such that

$$\langle Tx - Ty, j(x - y) \rangle \le ||x - y||^2 - \kappa ||x - y - (Tx - Ty)||^2, \quad \forall x, y \in K.$$
 (1.3)

T is said to be pseudocontraction if there exists $j(x-y) \in J(x-y)$ such that

$$\langle Tx - Ty, j(x - y) \rangle \le ||x - y||^2, \quad \forall x, y \in K.$$
 (1.4)

It is well known that [1] (1.4) is equivalent to the following:

$$||x - y|| \le ||x - y + s[(I - T)x - (I - T)y]||, \ \forall s > 0.$$
(1.5)

T is said to be uniformly L-lipschitz if there exists a positive constant L such that

$$||T^n x - T^n y|| \le L ||x - y||, \quad \forall x, y \in K, n \ge 1.$$
 (1.6)

In 2001, Xu and Ori [2], in the framework of Hilbert spaces, introduced the following implicit iteration process for a finite family of nonexpansive mappings $\{T_1, T_2, \dots, T_N\}$ with $\{\alpha_n\}$ a real sequence in (0, 1) and an initial point $x_0 \in C$:

$$x_{1} = \alpha_{1}x_{0} + (1 - \alpha_{1})T_{1}x_{1},$$

$$x_{2} = \alpha_{2}x_{1} + (1 - \alpha_{2})T_{2}x_{2},$$
...
$$x_{N} = \alpha_{N}x_{N-1} + (1 - \alpha_{N})T_{N}x_{N},$$

$$x_{N+1} = \alpha_{N+1}x_{N} + (1 - \alpha_{N+1})T_{1}x_{N+1},$$
...

which can written in the following compact form:

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_n x_n, \quad \forall n \ge 1,$$

$$(1.7)$$

where $T_n = T_{n(modN)}$ (here the mod N takes values in $\{1, 2, \dots, N\}$).

They obtained the following weak convergence theorem.

Theorem XO. Let H be a real Hilbert space, C a nonempty closed convex subset of H, and $T_i: C \to C$ be a finite family of nonexpansive mappings such that $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. Let $\{x_n\}$ be defined by (1.7). If $\{\alpha_n\}$ is chosen so that $\alpha_n \to 0$ as $n \to \infty$, then $\{x_n\}$ converges weakly to a common fixed point of the family of $\{T_i\}_{i=1}^N$.

Subsequently, fixed point problems based on implicit iterative processes have been considered by many authors, see, for example, [3-9]. In 2004, Osilike [6] reconsidered the implicit iterative process (1.7) for a finite family of strictly pseudocontractive mappings. To be more precise, he proved the following theorem.

Theorem O. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let $\{T_i\}_{i=1}^N$ be N strictly pseudocontractive self-maps of C such that $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. Let $x_0 \in C$ and let $\{\alpha_n\}$ be a sequence in (0, 1) such that $\alpha_n \to 0$ as $n \to \infty$, Then the sequence $\{x_n\}$ defined by (1.7) converges weakly to a common fixed point of the mappings $\{T_i\}_{i=1}^N$.

In 2008, Hao [5] considered the following implicit iterative process with mixed errors for a finite family of pseudocontractive mappings:

$$x_0 \in K, \ x_n = \alpha_n x_{n-1} + \beta_n T_n x_n + \gamma_n u_n, \quad \forall n \ge 1,$$

$$(1.8)$$

where $T_n = T_{n(modN)}$ (here the mod N takes values in $\{1, 2, \dots, N\}$). $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ are three sequences in [0, 1] such that $\alpha_n + \beta_n + \gamma_n = 1$ and $\{u_n\}$ is a bounded sequence in K. Weak and strong convergence theorem of the implicit iterative process with mixed errors (1.8) for a finite family of pseudocontractions mappings in Banach spaces was established; see [5] for more details. Very recently, Qin, Su and Shang [7] considered the following implicit iterative process for a family of asymptotically strict pseudocontractions:

$$x_{1} = \alpha_{1}x_{0} + (1 - \alpha_{1})T_{1}x_{1},$$

$$x_{2} = \alpha_{2}x_{1} + (1 - \alpha_{2})T_{2}x_{2},$$

$$\vdots$$

$$x_{N} = \alpha_{N}x_{N-1} + (1 - \alpha_{N})T_{N}x_{N},$$

$$x_{N+1} = \alpha_{N+1}x_{N} + (1 - \alpha_{N+1})T_{1}^{2}x_{N+1},$$

$$\vdots$$

$$x_{2N} = \alpha_{2N}x_{2N-1} + (1 - \alpha_{2N})T_{N}^{2}x_{2N},$$

$$x_{2N+1} = \alpha_{2N+1}x_{2N} + (1 - \alpha_{2N+1})T_{1}^{3}x_{2N+1},$$

$$\vdots$$

Since for each $n \ge 1$, it can be written as n = (h-1)N+i, where $i = i(n) \in \{1, 2, ..., N\}$, $h = h(n) \ge 1$ is a positive integer and $h(n) \to \infty$ as $n \to \infty$. Hence the above table can be rewritten in the following compact form:

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_{i(n)}^{h(n)} x_n, \quad \forall n \ge 1.$$
(1.9)

A weak convergence theorem of the implicit iterative process (1.9) for a finite family of asymptotically strict pseudocontractions was established; see [7] for more details.

In this paper, motivated by the above results, we consider an implicit iterative process with mixed errors for a finite family of pseudocontractions mappings in Banach spaces. To be more precise, we consider the following implicit iterative process:

$$x_0 \in K, \ x_n = \alpha_n x_{n-1} + \beta_n T_{i(n)}^{h(n)} x_n + \gamma_n u_n, \quad \forall n \ge 1,$$
 (1.10)

where $T_n = T_{n(modN)}$ (here the mod N takes values in $\{1, 2, \dots, N\}$). $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ are three sequences in [0, 1] such that $\alpha_n + \beta_n + \gamma_n = 1$ and $\{u_n\}$ is a bounded sequence in K.

In order to prove our main results, we need the following conceptions and lemmas.

Recall that a space E is said to satisfy Opial's condition [10] if, for each sequence $\{x_n\}$ in E, the convergence $x_n \to x$ weakly implies that

$$\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|, \quad \forall y \in E \ (y \neq x).$$

Recall that a mapping $T: K \to K$ is semicompact if any sequence $\{x_n\}$ in K satisfying $\lim_{n\to\infty} ||x_n - Tx_n|| = 0$ has a convergent subsequence.

Recall that a mapping $T: K \to K$ is demiclosed at the origin if for each sequence $\{x_n\}$ in K, the convergence $x_n \to x_0$ weakly and $Tx_n \to 0$ strongly imply that $Tx_0 = 0$.

Lemma 1.1 [12] Let $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ be three nonnegative sequences satisfying the following condition:

$$a_{n+1} \le (1+b_n)a_n + c_n, \quad \forall n \ge n_0,$$

where n_0 is some nonnegative integer, $\sum_{n=1}^{\infty} b_n < \infty$ and $\sum_{n=1}^{\infty} c_n < \infty$. Then the limit $\lim_{n\to\infty} a_n$ exists.

Lemma 1.2 [8] Let E be a uniformly convex Banach space, K a nonempty closed convex subset of E and $T: K \to K$ a continuous pseudocontractive mapping. Then the mapping I - T is demiclosed at zero.

Lemma 1.3 [13] Let E be a uniformly convex Banach space and 0 , for $all <math>n \in N$. Suppose further that $\{x_n\}$ and $\{y_n\}$ are sequences of E such that

$$\limsup_{n \to \infty} \|x_n\| \le r, \limsup_{n \to \infty} \|y_n\| \le r, \lim_{n \to \infty} \|t_n x_n + (1 - t_n)y_n\| = r,$$

hold for some $r \ge 0$, then $\lim_{n\to\infty} ||x_n - y_n|| = 0$

2. Main results

Theorem 2.1. Let E be a uniformly convex Banach space satisfying Opial's condition and K a nonempty closed convex subset of E, $T_i : K \to K$ be an uniformly L_i -Lipschitz pseudocontractive mapping with $F = \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$, $\{u_n\}$ be a bounded sequence in K. Let $\{x_n\}_{n=0}^{\infty}$ be a sequence generated in (1.10). Assume that the control sequence $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ in [0,1] satisfy the following restrictions

- (a) $\beta_n L < 1$, where $L = \max\{L_i : 1 \le i \le N\}, \forall n \ge 1$;
- (b) $\alpha_n + \beta_n + \gamma_n = 1, \forall n \ge 1;$
- (c) $\sum_{n=1}^{\infty} \gamma_n < \infty;$
- (d) $0 < a \le \alpha_n \le b < 1, \forall n \ge 1,$

Then $\{x_n\}$ converges weakly to some point in F.

Proof. First, we show that the sequence $\{x_n\}$ generated in the implicit iterative process (1.10) is well defined. Define mappings $R_n : K \to K$ by

$$R_n(x) = \alpha_n x_{n-1} + \beta_n T_{i(n)}^{h(n)} x + \gamma_n u_n, \quad \forall x \in K, n \ge 1.$$

Notice that

$$||R_{n}(x) - R_{n}(y)|| = ||(\alpha_{n}x_{n-1} + \beta_{n}T_{i(n)}^{h(n)}x + \gamma_{n}u_{n}) - (\alpha_{n}x_{n-1} + \beta_{n}T_{i(n)}^{h(n)}y + \gamma_{n}u_{n})||$$

$$\leq \beta_{n}L||x - y||, \quad \forall x, y \in K.$$

From the restriction (a), we see that R_n is a contraction for each $n \ge 1$. By Banach contraction principle, we see that there exists a unique fixed point $x_n \in K$ such that

$$x_n = \alpha_n x_{n-1} + \beta_n T_{i(n)}^{h(n)} x_n + \gamma_n u_n, \quad \forall n \ge 1.$$

This shows that the implicit iterative process (1.10) is well defined for uniformly Lipschitz pseudocontractions.

Second, we show $\lim_{n\to\infty} ||x_n - p||$ exists, for any given $p \in F$, from the restriction (b), we have

$$\|x_{n} - p\|^{2} = \langle \alpha_{n} x_{n-1} + \beta_{n} T_{i(n)}^{h(n)} x_{n} + \gamma_{n} u_{n} - p, j(x_{n} - p) \rangle$$

$$= \alpha_{n} \langle x_{n-1} - p, j(x_{n} - p) \rangle + \beta_{n} \langle T_{i(n)}^{h(n)} x_{n} - p, j(x_{n} - p) \rangle$$

$$+ \gamma_{n} \langle u_{n} - p, j(x_{n} - p) \rangle$$

$$\leq \alpha_{n} \|x_{n-1} - p\| \|x_{n} - p\| + \beta_{n} \|x_{n} - p\|^{2} + \gamma_{n} \|u_{n} - p\| \|x_{n} - p\|.$$
(2.1)

Simplifying the above inequality, we have

$$\|x_n - p\|^2 \le \frac{\alpha_n}{\alpha_n + \gamma_n} \|x_{n-1} - p\| \|x_n - p\| + \frac{\gamma_n}{\alpha_n + \gamma_n} \|u_n - p\| \|x_n - p\|$$
(2.2)

If $||x_n - p|| = 0$, then the result is apparent, letting $||x_n - p|| > 0$, we obtain

$$\|x_n - p\| \le \frac{\alpha_n}{\alpha_n + \gamma_n} \|x_{n-1} - p\| + \frac{\gamma_n}{\alpha_n + \gamma_n} \|u_n - p\|$$

$$\le \|x_{n-1} - p\| + \gamma_n M.$$
(2.3)

where M is an appropriate constant such that $M \ge \sup_{n\ge 1} ||u_n - p||/a$. Noticing the condition (c)and lemma1.1 to (2.3), we have $\lim_{n\to\infty} ||x_n - p||$ exists. we assume that

$$\lim_{n \to \infty} \|x_n - p\| = d.$$
 (2.4)

On the other hand, from (1.5) and (1.10), we see

$$\begin{aligned} \|x_n - p\| &\leq \|x_n - p + \frac{1 - \alpha_n}{2\alpha_n} (x_n - T_{i(n)}^{h(n)} x_n) \| \\ &= \|x_n - p + \frac{1 - \alpha_n}{2\alpha_n} [\alpha_n (x_{n-1} - T_{i(n)}^{h(n)} x_n) + \gamma_n (u_n - T_{i(n)}^{h(n)} x_n) \| \\ &= \|x_n - p + \frac{1 - \alpha_n}{2} (x_{n-1} - T_{i(n)}^{h(n)} x_n) + \frac{\gamma_n (1 - \alpha_n)}{2\alpha_n} (u_n - T_{i(n)}^{h(n)} x_n) \| \\ &= \|\frac{x_{n-1}}{2} + x_n - p + \frac{1}{2} [\alpha_n x_{n-1} + (1 - \alpha_n) T_{i(n)}^{h(n)} x_n) + \gamma_n (u_n - T_{i(n)}^{h(n)} x_n) \\ &+ \frac{\gamma_n}{2} (u_n - T_{i(n)}^{h(n)} x_n) + \frac{\gamma_n (1 - \alpha_n)}{2\alpha_n} (u_n - T_{i(n)}^{h(n)} x_n) \| \\ &= \|\frac{1}{2} (x_{n-1} - p) + \frac{1}{2} (x_n - p) + \frac{\gamma_n}{2\alpha_n} (u_n - T_{i(n)}^{h(n)} x_n) \| \\ &\leq \|\frac{1}{2} (x_{n-1} - p) + \frac{1}{2} (x_n - p) \| + \frac{\gamma_n}{2\alpha_n} \| (u_n - T_{i(n)}^{h(n)} x_n) \|. \end{aligned}$$

Noticing that the condition (c) and (d) and (2.4), we obtain

$$\liminf_{n \to \infty} \left\| \frac{1}{2} (x_{n-1} - p) + \frac{1}{2} (x_n - p) \right\| \ge d.$$
(2.6)

On the other hand, we have

$$\limsup_{n \to \infty} \left\| \frac{1}{2} (x_{n-1} - p) + \frac{1}{2} (x_n - p) \right\| \le \limsup_{n \to \infty} \left(\frac{1}{2} \| x_{n-1} - p \| + \frac{1}{2} \| x_n - p \| \right) \le d.$$
(2.7)

Combing (2.6) with (2.7), we arrive at

$$\lim_{n \to \infty} \left\| \frac{1}{2} (x_{n-1} - p) + \frac{1}{2} (x_n - p) \right\| = d.$$
(2.8)

By using lemma 1.3, we get

$$\lim_{n \to \infty} \|x_{n-1} - x_n\| = 0.$$
(2.9)

434

That is,

$$\lim_{n \to \infty} \|x_{n+i} - x_n\| = 0, \forall i \in [1, 2, \cdots, N].$$
(2.10)

It follows from (1.10) that

$$\|x_{n-1} - T_{i(n)}^{h(n)}x_n\| = \frac{1}{1 - \alpha_n} \|x_{n-1} - x_n + \gamma_n(u_n - T_{i(n)}^{h(n)}x_n)\| \\ \leq \frac{1}{1 - \alpha_n} \|x_{n-1} - x_n\| + \frac{\gamma_n}{1 - \alpha_n} \|u_n - T_{i(n)}^{h(n)}x_n)\|.$$
(2.11)

From the condition (c) and (d), we obtain

$$\lim_{n \to \infty} \|x_{n-1} - T_{i(n)}^{h(n)} x_n\| = 0.$$
(2.12)

On the other hand, we have

$$\|x_n - T_{i(n)}^{h(n)} x_n\| \le \alpha_n \|x_{n-1} - T_{i(n)}^{h(n)} x_n\| + \gamma_n \|u_n - T_{i(n)}^{h(n)} x_n\|,$$
(2.13)

From the condition (c) and (2.12), we see

$$\lim_{n \to \infty} \|x_n - T_{i(n)}^{h(n)} x_n\| = 0.$$
(2.14)

Since for any positive integer n > N, it can be written as n = (h(n) - 1)N + i(n), where $i(n) \in \{1, 2, \dots, N\}$. Observe that

$$||x_{n} - T_{n}x_{n}|| \leq ||x_{n} - T_{i(n)}^{h(n)}x_{n}|| + ||T_{i(n)}^{h(n)}x_{n} - T_{n}x_{n}||$$

$$= ||x_{n} - T_{i(n)}^{h(n)}x_{n}|| + ||T_{i(n)}^{h(n)}x_{n} - T_{i(n)}x_{n}||$$

$$\leq ||x_{n} - T_{i(n)}^{h(n)}x_{n}|| + L||T_{i(n)}^{h(n)-1}x_{n} - x_{n}||$$

$$\leq ||x_{n} - T_{i(n)}^{h(n)}x_{n}|| + L\left(||T_{i(n)}^{h(n)-1}x_{n} - T_{i(n-N)}^{h(n)-1}x_{n-N}|| + ||T_{i(n-N)}^{h(n)-1}x_{n-N} - T_{i(n-N)}^{h(n)-1}x_{n-N}||$$

$$+ ||T_{i(n-N)}^{h(n)-1}x_{n-N} - x_{(n-N)-1}|| + ||x_{(n-N)-1} - x_{n}|| \right).$$
(2.15)

Since for each n > N, $n = (n - N) \pmod{N}$, on the other hand, we obtain from n = (h(n) - 1)N + i(n) that n - N = ((h(n) - 1) - 1)N + i(n) = (h(n - N) - 1)N + i(n - N). That is,

$$h(n - N) = h(n) - 1$$
 and $i(n - N) = i(n)$.

Notice that

$$\|T_{i(n)}^{h(n)-1}x_n - T_{i(n-N)}^{h(n)-1}x_{n-N}\| = \|T_{i(n)}^{h(n)-1}x_n - T_{i(n)}^{h(n)-1}x_{n-N}\|$$

$$\leq L\|x_n - x_{n-N}\|$$
(2.16)

and

$$\|T_{i(n-N)}^{h(n)-1}x_{n-N} - x_{(n-N)-1}\| = \|T_{i(n-N)}^{h(n-N)}x_{n-N} - x_{(n-N)-1}\|.$$
(2.17)

Substituting (2.16) and (2.17) into (2.15), we arrive at

$$||x_{n} - T_{n}x_{n}|| \leq ||x_{n} - T_{i(n)}^{h(n)}x_{n}|| + L\Big(L||x_{n} - x_{n-N}|| + ||T_{i(n-N)}^{h(n-N)}x_{n-N} - x_{(n-N)-1}|| + ||x_{(n-N)-1} - x_{n}||\Big).$$
(2.18)

In view of (2.10), (2.12) and (2.14), we obtain from (2.18) that

$$\lim_{n \to \infty} \|x_n - T_n x_n\| = 0.$$
 (2.19)

Notice that

$$||x_n - T_{n+j}x_n|| \le ||x_n - x_{n+j}|| + ||x_{n+j} - T_{n+j}x_{n+j}|| + ||T_{n+j}x_{n+j} - T_{n+j}x_n||$$

$$\le (1+L)||x_n - x_{n+j}|| + ||x_{n+j} - T_{n+j}x_{n+j}||, \quad \forall j \in \{1, 2, \dots, N\}.$$

It follows from (2.10) and (2.18) that

$$\lim_{n \to \infty} \|x_n - T_{n+j}x_n\| = 0, \quad \forall j \in \{1, 2, \dots, N\}.$$

Note that any subsequence of a convergent number sequence converges to the same limit. It follows that

$$\lim_{n \to \infty} \|x_n - T_l x_n\| = 0, \quad \forall l \in \{1, 2, \dots, N\}.$$
 (2.20)

Since the sequence $\{x_n\}$ is bounded, we see that there exists a subsequence $\{x_{n_i}\} \subset \{x_n\}$ such that $\{x_{n_i}\}$ converges weakly to a point $x^* \in K$. In view of (2.20), we see from Lemma 1.2 that

$$x^* = T_l x^*, \quad \forall l \in \{1, 2, \dots, N\}.$$

That is, $x^* \in F$. Next we show $\{x_n\}$ converges weakly to x^* . Supposing the contrary, we see that there exists some subsequence $\{x_{n_j}\}$ of $\{x_n\}$ such that $\{x_{n_j}\}$ converges weakly to $x^{**} \in K$, where $x^* \neq x^{**}$. Similarly, we can show $x^{**} \in F$. Notice that we have proved

436

that $\lim_{n\to\infty} ||x_n - p||$ exists for each $p \in F$. Assume that $\lim_{n\to\infty} ||x_n - x^*|| = d$ where d is a nonnegative number. By virtue of the Opial property of H, we see that

$$d = \liminf_{n_i \to \infty} \|x_{n_i} - x^*\| < \liminf_{n_i \to \infty} \|x_{n_i} - x^{**}\|$$
$$= \liminf_{n_j \to \infty} \|x_{n_j} - x^{**}\| < \liminf_{n_j \to \infty} \|x_{n_j} - x^*\| = d.$$

This is a contradiction. Hence $x^{**} = x^*$. This completes the proof.

Next, we give strong convergence theorems with the help of semicompactness.

Theorem 2.2. Let E be a uniformly convex Banach space satisfying Opial's condition and K a nonempty closed convex subset of E, $T_i : K \to K$ be an uniformly L_i -Lipschitz pseudocontractive mapping with $F = \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$, $\{u_n\}$ be a bounded sequence in K. Let $\{x_n\}_{n=0}^{\infty}$ be a sequence generated in (1.10). Assume that the control sequence $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ in [0,1] satisfy the following restrictions

- (a) $\beta_n L < 1$, where $L = \max\{L_i : 1 \le i \le N\}, \forall n \ge 1$;
- (b) $\alpha_n + \beta_n + \gamma_n = 1, \forall n \ge 1;$

(c)
$$\sum_{n=1}^{\infty} \gamma_n < \infty$$

(d) $0 < a \le \alpha_n \le b < 1, \forall n \ge 1$,

If one of $\{T_1, T_2, \ldots, T_N\}$ is semicompact, then $\{x_n\}$ converges strongly to some point in F.

Proof. Without loss of generality, we may assume that T_1 is semicompact. It follows from (2.20) that there exits a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ converging strongly to $x \in K$. Next, we show that $x \in F$. Notice that

$$||x - T_l x|| \le ||x - x_{n_i}|| + ||x_{n_i} - T_l x_{n_i}|| + ||T_l x_{n_i} - T_l x||, \quad \forall l \in \{1, 2, \dots, N\}.$$

Since T_l is uniformly L_i -Lipschitz continuous, we obtain from (2.20) that $x \in F$. Finally, we claim that $x_n \to x$ as $n \to \infty$. Since $\lim_{n\to\infty} ||x_n - p||$ exits for each $p \in F$, we can obtain the desired conclusion easily. This completes the proof.

Acknowledgment

The work was supported by Natural Science Foundation of Zhejiang Province (Y6110270).

YAN HAO, AND JIA ZHOU

References

- F.E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, in: Proc. Sympos. Math. Amer. Math. Soc., Providence RI, 1976, p.18.
- [2] H.K. Xu and R.G. Ori, An implicit iteration process for nonexpansive mappings, Numer. Funct. Anal. Optim. 22(2001), 767-773.
- [3] S.S. Chang, K.K. Tan, H.W.J. Lee and C.K. Chan, On the convergece of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 313 (2006), 273-283.
- [4] X. Qin, Y.J. Cho and M. Shang, Convergence analysis of implicit iterative algorithms for asymptotically nonexpansive mappings, Appl. Math. Comput. 210 (2009), 542-550.
- Y. Hao, Convergence theorems of common fixed points for pseudocontractive mappings, Fixed Point Theory Appl. 2008 (2008), 902985.
- [6] M.O. Osilike, Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps, J. Math. Anal. Appl. 294 (2004), 73-81.
- [7] X. Qin, Y. Su and M. Shang, On the convergence of implicit iteration process for a finite family of k-strictly asymptotically pseudocontractive mappings, Kochi J. Math. 3 (2008), 67-76.
- [8] H. Zhou, Convergence theorems of common fixed points for a finite family of Lipschitz pseudocontractions in Banach spaces, Nonlinear Anal. 68 (2008) 2977-2983.
- [9] Y. Hao, X. Wang, A. Tong, Weak and strong convergence theorems for two finite families of asymptotically nonexpansive mappings in Banach spaces, Adv. Fixed Point Theory, 2 (2012) 417-432.
- [10] Z. Opial, Weak convergence of the sequence of successive approximation for nonexpansive mappings, Bull. Am. Math. Soc. 73 (1967), 591-597.
- [11] K.K. Tan and H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iterative process, J. Math. Anal. Appl. 178 (1993), 301-308.
- [12] J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158 (1991), 407-413.