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Abstract. In this paper, an implicit iterative process with mixed errors is considered. Weak and strong

convergence theorems of common fixed points of a finite family of pseudocontractions are established in

a real Banach space.
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1. Introduction and Preliminaries

Throughout this paper, we always assume that E is a real Banach space and K is

a nonempty subset of E. Let J denote the normalized duality mapping from E into

2E∗
given by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2, x ∈ E}, (1.1)

where E∗ denotes the dual space of E and 〈·, ·〉 denotes the generalized duality pairing.

In the sequel, we denote a single-valued normalized duality mapping by j, we denote the
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fixed point of the mapping T by F (T ) , ⇀ and → denote weak and strong convergence,

respectively.

Recall that T is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ K. (1.2)

T is said to be strictly pseudocontractive if there exists a constant κ > 0 and j(x−y) ∈

J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − κ‖x− y − (Tx− Ty)‖2, ∀x, y ∈ K. (1.3)

T is said to be pseudocontraction if there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2, ∀x, y ∈ K. (1.4)

It is well known that [1] (1.4) is equivalent to the following:

‖x− y‖ ≤ ‖x− y + s[(I − T )x− (I − T )y]‖, ∀s > 0. (1.5)

T is said to be uniformly L-lipschitz if there exists a positive constant L such that

‖T nx− T ny‖ ≤ L‖x− y‖, ∀x, y ∈ K, n ≥ 1. (1.6)

In 2001, Xu and Ori [2], in the framework of Hilbert spaces, introduced the following

implicit iteration process for a finite family of nonexpansive mappings {T1, T2, · · · , TN}

with {αn} a real sequence in (0, 1) and an initial point x0 ∈ C:

x1 = α1x0 + (1− α1)T1x1,

x2 = α2x1 + (1− α2)T2x2,

· · ·

xN = αNxN−1 + (1− αN)TNxN ,

xN+1 = αN+1xN + (1− αN+1)T1xN+1,

· · ·

which can written in the following compact form:

xn = αnxn−1 + (1− αn)Tnxn, ∀n ≥ 1, (1.7)
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where Tn = Tn(modN) (here the mod N takes values in {1, 2, · · · , N}).

They obtained the following weak convergence theorem.

Theorem XO. Let H be a real Hilbert space, C a nonempty closed convex subset of H,

and Ti : C → C be a finite family of nonexpansive mappings such that F = ∩Ni=1F (Ti) 6= ∅.

Let {xn} be defined by (1.7). If {αn} is chosen so that αn → 0 as n → ∞, then {xn}

converges weakly to a common fixed point of the family of {Ti}Ni=1.

Subsequently, fixed point problems based on implicit iterative processes have been

considered by many authors, see, for example, [3-9]. In 2004, Osilike [6] reconsidered the

implicit iterative process (1.7) for a finite family of strictly pseudocontractive mappings.

To be more precise, he proved the following theorem.

Theorem O. Let H be a real Hilbert space and let C be a nonempty closed convex subset of

H. Let {Ti}Ni=1 be N strictly pseudocontractive self-maps of C such that F = ∩Ni=1F (Ti) 6=

∅. Let x0 ∈ C and let {αn} be a sequence in (0, 1) such that αn → 0 as n→∞, Then the

sequence {xn} defined by (1.7) converges weakly to a common fixed point of the mappings

{Ti}Ni=1.

In 2008, Hao [5]considered the following implicit iterative process with mixed errors for

a finite family of pseudocontractive mappings:

x0 ∈ K, xn = αnxn−1 + βnTnxn + γnun, ∀n ≥ 1, (1.8)

where Tn = Tn(modN) (here the mod N takes values in {1, 2, · · · , N}). {αn},{βn}and{γn}

are three sequences in [0, 1] such that αn + βn + γn = 1 and {un} is a bounded sequence

in K. Weak and strong convergence theorem of the implicit iterative process with mixed

errors (1.8) for a finite family of pseudocontractions mappings in Banach spaces was

established; see [5] for more details.
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Very recently, Qin, Su and Shang [7] considered the following implicit iterative process

for a family of asymptotically strict pseudocontractions:

x1 = α1x0 + (1− α1)T1x1,

x2 = α2x1 + (1− α2)T2x2,

...

xN = αNxN−1 + (1− αN)TNxN ,

xN+1 = αN+1xN + (1− αN+1)T
2
1 xN+1,

...

x2N = α2Nx2N−1 + (1− α2N)T 2
Nx2N ,

x2N+1 = α2N+1x2N + (1− α2N+1)T
3
1 x2N+1,

...

Since for each n ≥ 1, it can be written as n = (h−1)N+i, where i = i(n) ∈ {1, 2, . . . , N},

h = h(n) ≥ 1 is a positive integer and h(n)→∞ as n→∞. Hence the above table can

be rewritten in the following compact form:

xn = αnxn−1 + (1− αn)T
h(n)
i(n) xn, ∀n ≥ 1. (1.9)

A weak convergence theorem of the implicit iterative process (1.9) for a finite family of

asymptotically strict pseudocontractions was established; see [7] for more details.

In this paper, motivated by the above results, we consider an implicit iterative process

with mixed errors for a finite family of pseudocontractions mappings in Banach spaces.

To be more precise, we consider the following implicit iterative process:

x0 ∈ K, xn = αnxn−1 + βnT
h(n)
i(n) xn + γnun, ∀n ≥ 1, (1.10)

where Tn = Tn(modN) (here the mod N takes values in {1, 2, · · · , N}). {αn},{βn} and{γn}

are three sequences in [0, 1] such that αn + βn + γn = 1 and {un} is a bounded sequence

in K.

In order to prove our main results, we need the following conceptions and lemmas.
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Recall that a space E is said to satisfy Opial’s condition [10] if, for each sequence {xn}

in E, the convergence xn → x weakly implies that

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖, ∀y ∈ E (y 6= x).

Recall that a mapping T : K → K is semicompact if any sequence {xn} in K satisfying

limn→∞ ‖xn − Txn‖ = 0 has a convergent subsequence.

Recall that a mapping T : K → K is demiclosed at the origin if for each sequence {xn}

in K, the convergence xn → x0 weakly and Txn → 0 strongly imply that Tx0 = 0.

Lemma 1.1 [12] Let {an}, {bn} and {cn} be three nonnegative sequences satisfying the

following condition:

an+1 ≤ (1 + bn)an + cn, ∀n ≥ n0,

where n0 is some nonnegative integer,
∑∞

n=1 bn < ∞ and
∑∞

n=1 cn < ∞. Then the limit

limn→∞ an exists.

Lemma 1.2 [8] Let E be a uniformly convex Banach space, K a nonempty closed convex

subset of E and T : K → K a continuous pseudocontractive mapping. Then the mapping

I − T is demiclosed at zero.

Lemma 1.3 [13] Let E be a uniformly convex Banach space and 0 < p ≤ tn ≤ q < 1, for

all n ∈ N .Suppose further that {xn} and {yn} are sequences of E such that

lim sup
n→∞

‖xn‖ ≤ r, lim sup
n→∞

‖yn‖ ≤ r, lim
n→∞

‖tnxn + (1− tn)yn‖ = r,

hold for some r ≥ 0, then limn→∞ ‖xn − yn‖ = 0

2. Main results

Theorem 2.1. Let E be a uniformly convex Banach space satisfying Opial’s condition

and K a nonempty closed convex subset of E, Ti : K → K be an uniformly Li -Lipschitz

pseudocontractive mapping with F = ∩Ni=1F (Ti) 6= ∅, {un} be a bounded sequence in K.

Let {xn}∞n=0 be a sequence generated in (1.10). Assume that the control sequence {αn},

{βn} and {γn} in [0, 1] satisfy the following restrictions
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(a) βnL < 1, where L = max{Li : 1 ≤ i ≤ N}, ∀n ≥ 1;

(b) αn + βn + γn = 1, ∀n ≥ 1;

(c)
∑∞

n=1 γn <∞;

(d) 0 < a ≤ αn ≤ b < 1, ∀n ≥ 1,

Then {xn} converges weakly to some point in F .

Proof. First, we show that the sequence {xn} generated in the implicit iterative process

(1.10) is well defined. Define mappings Rn : K → K by

Rn(x) = αnxn−1 + βnT
h(n)
i(n) x+ γnun, ∀x ∈ K,n ≥ 1.

Notice that

‖Rn(x)−Rn(y)‖ = ‖
(
αnxn−1 + βnT

h(n)
i(n) x+ γnun

)
−
(
αnxn−1 + βnT

h(n)
i(n) y + γnun

)
‖

≤ βnL‖x− y‖, ∀x, y ∈ K.

From the restriction (a), we see that Rn is a contraction for each n ≥ 1. By Banach

contraction principle, we see that there exists a unique fixed point xn ∈ K such that

xn = αnxn−1 + βnT
h(n)
i(n) xn + γnun, ∀n ≥ 1.

This shows that the implicit iterative process (1.10) is well defined for uniformly Lipschitz

pseudocontractions.

Second, we show limn→∞ ‖xn − p‖ exists, for any given p ∈ F , from the restriction (b),

we have

‖xn − p‖2 = 〈αnxn−1 + βnT
h(n)
i(n) xn + γnun − p, j(xn − p)〉

= αn〈xn−1 − p, j(xn − p)〉+ βn〈T h(n)
i(n) xn − p, j(xn − p)〉

+ γn〈un − p, j(xn − p)〉

≤ αn‖xn−1 − p‖‖xn − p‖+ βn‖xn − p‖2 + γn‖un − p‖‖xn − p‖.

(2.1)

Simplifying the above inequality, we have

‖xn − p‖2 ≤
αn

αn + γn
‖xn−1 − p‖‖xn − p‖+

γn
αn + γn

‖un − p‖‖xn − p‖ (2.2)
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If ‖xn − p‖ = 0, then the result is apparent, letting ‖xn − p‖ > 0, we obtain

‖xn − p‖ ≤
αn

αn + γn
‖xn−1 − p‖+

γn
αn + γn

‖un − p‖

≤ ‖xn−1 − p‖+ γnM.

(2.3)

where M is an appropriate constant such that M ≥ supn≥1 ‖un − p‖/a. Noticing the

condition (c)and lemma1.1 to (2.3), we have limn→∞ ‖xn − p‖ exists. we assume that

lim
n→∞

‖xn − p‖ = d. (2.4)

On the other hand, from (1.5)and(1.10), we see

‖xn − p‖ ≤ ‖xn − p+
1− αn

2αn

(xn − T h(n)
i(n) xn)‖

= ‖xn − p+
1− αn

2αn

[αn(xn−1 − T h(n)
i(n) xn) + γn(un − T h(n)

i(n) xn)‖

= ‖xn − p+
1− αn

2
(xn−1 − T h(n)

i(n) xn) +
γn(1− αn)

2αn

(un − T h(n)
i(n) xn)‖

= ‖xn−1
2

+ xn − p+
1

2
[αnxn−1 + (1− αn)T

h(n)
i(n) xn) + γn(un − T h(n)

i(n) xn)

+
γn
2

(un − T h(n)
i(n) xn) +

γn(1− αn)

2αn

(un − T h(n)
i(n) xn)‖

= ‖1

2
(xn−1 − p) +

1

2
(xn − p) +

γn
2αn

(un − T h(n)
i(n) xn)‖

≤ ‖1

2
(xn−1 − p) +

1

2
(xn − p)‖+

γn
2αn

‖(un − T h(n)
i(n) xn)‖.

(2.5)

Noticing that the condition (c) and (d)and (2.4), we obtain

lim inf
n→∞

‖1

2
(xn−1 − p) +

1

2
(xn − p)‖ ≥ d. (2.6)

On the other hand, we have

lim sup
n→∞

‖1

2
(xn−1 − p) +

1

2
(xn − p)‖ ≤ lim sup

n→∞
(
1

2
‖xn−1 − p‖+

1

2
‖xn − p‖) ≤ d. (2.7)

Combing (2.6)with (2.7),we arrive at

lim
n→∞

‖1

2
(xn−1 − p) +

1

2
(xn − p)‖ = d. (2.8)

By using lemma1.3, we get

lim
n→∞

‖xn−1 − xn‖ = 0. (2.9)
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That is,

lim
n→∞

‖xn+i − xn‖ = 0, ∀i ∈ 1, 2, · · · , N. (2.10)

It follows from (1.10) that

‖xn−1 − T h(n)
i(n) xn‖ =

1

1− αn

‖xn−1 − xn + γn(un − T h(n)
i(n) xn)‖

≤ 1

1− αn

‖xn−1 − xn‖+
γn

1− αn

‖un − T h(n)
i(n) xn)‖.

(2.11)

From the condition (c) and (d), we obtain

lim
n→∞

‖xn−1 − T h(n)
i(n) xn‖ = 0. (2.12)

On the other hand, we have

‖xn − T h(n)
i(n) xn‖ ≤ αn‖xn−1 − T h(n)

i(n) xn‖+ γn‖un − T h(n)
i(n) xn‖, (2.13)

From the condition (c) and (2.12), we see

lim
n→∞

‖xn − T h(n)
i(n) xn‖ = 0. (2.14)

Since for any positive integer n > N, it can be written as n = (h(n)−1)N+ i(n), where

i(n) ∈ {1, 2, · · · , N}. Observe that

‖xn − Tnxn‖ ≤ ‖xn − T h(n)
i(n) xn‖+ ‖T h(n)

i(n) xn − Tnxn‖

= ‖xn − T h(n)
i(n) xn‖+ ‖T h(n)

i(n) xn − Ti(n)xn‖

≤ ‖xn − T h(n)
i(n) xn‖+ L‖T h(n)−1

i(n) xn − xn‖

≤ ‖xn − T h(n)
i(n) xn‖+ L

(
‖T h(n)−1

i(n) xn − T h(n)−1
i(n−N)xn−N‖

+ ‖T h(n)−1
i(n−N)xn−N − x(n−N)−1‖+ ‖x(n−N)−1 − xn‖

)
.

(2.15)

Since for each n > N , n = (n − N)(mod N), on the other hand, we obtain from n =

(h(n)− 1)N + i(n) that n−N =
(
(h(n)− 1)− 1

)
N + i(n) = (h(n−N)− 1)N + i(n−N).

That is,

h(n−N) = h(n)− 1 and i(n−N) = i(n).
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Notice that

‖T h(n)−1
i(n) xn − T h(n)−1

i(n−N)xn−N‖ = ‖T h(n)−1
i(n) xn − T h(n)−1

i(n) xn−N‖

≤ L‖xn − xn−N‖
(2.16)

and

‖T h(n)−1
i(n−N)xn−N − x(n−N)−1‖ = ‖T h(n−N)

i(n−N) xn−N − x(n−N)−1‖. (2.17)

Substituting (2.16) and (2.17) into (2.15), we arrive at

‖xn − Tnxn‖ ≤ ‖xn − T h(n)
i(n) xn‖+ L

(
L‖xn − xn−N‖

+ ‖T h(n−N)
i(n−N) xn−N − x(n−N)−1‖+ ‖x(n−N)−1 − xn‖

)
.

(2.18)

In view of (2.10), (2.12) and (2.14), we obtain from (2.18) that

lim
n→∞

‖xn − Tnxn‖ = 0. (2.19)

Notice that

‖xn − Tn+jxn‖ ≤ ‖xn − xn+j‖+ ‖xn+j − Tn+jxn+j‖+ ‖Tn+jxn+j − Tn+jxn‖

≤ (1 + L)‖xn − xn+j‖+ ‖xn+j − Tn+jxn+j‖, ∀j ∈ {1, 2, . . . , N}.

It follows from (2.10) and (2.18) that

lim
n→∞

‖xn − Tn+jxn‖ = 0, ∀j ∈ {1, 2, . . . , N}.

Note that any subsequence of a convergent number sequence converges to the same limit.

It follows that

lim
n→∞

‖xn − Tlxn‖ = 0, ∀l ∈ {1, 2, . . . , N}. (2.20)

Since the sequence {xn} is bounded, we see that there exists a subsequence {xni
} ⊂ {xn}

such that {xni
} converges weakly to a point x∗ ∈ K. In view of (2.20), we see from

Lemma 1.2 that

x∗ = Tlx
∗, ∀l ∈ {1, 2, . . . , N}.

That is, x∗ ∈ F. Next we show {xn} converges weakly to x∗. Supposing the contrary, we

see that there exists some subsequence {xnj
} of {xn} such that {xnj

} converges weakly

to x∗∗ ∈ K, where x∗ 6= x∗∗. Similarly, we can show x∗∗ ∈ F . Notice that we have proved
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that limn→∞ ‖xn − p‖ exists for each p ∈ F . Assume that limn→∞ ‖xn − x∗‖ = d where d

is a nonnegative number. By virtue of the Opial property of H, we see that

d = lim inf
ni→∞

‖xni
− x∗‖ < lim inf

ni→∞
‖xni

− x∗∗‖

= lim inf
nj→∞

‖xnj
− x∗∗‖ < lim inf

nj→∞
‖xnj

− x∗‖ = d.

This is a contradiction. Hence x∗∗ = x∗. This completes the proof.

Next, we give strong convergence theorems with the help of semicompactness.

Theorem 2.2.Let E be a uniformly convex Banach space satisfying Opial’s condition

and K a nonempty closed convex subset of E, Ti : K → K be an uniformly Li -Lipschitz

pseudocontractive mapping with F = ∩Ni=1F (Ti) 6= ∅, {un} be a bounded sequence in K.

Let {xn}∞n=0 be a sequence generated in (1.10). Assume that the control sequence {αn},

{βn} and {γn} in [0, 1] satisfy the following restrictions

(a) βnL < 1, where L = max{Li : 1 ≤ i ≤ N}, ∀n ≥ 1;

(b) αn + βn + γn = 1, ∀n ≥ 1;

(c)
∑∞

n=1 γn <∞;

(d) 0 < a ≤ αn ≤ b < 1, ∀n ≥ 1,

If one of {T1, T2, . . . , TN} is semicompact, then {xn} converges strongly to some point in

F .

Proof. Without loss of generality, we may assume that T1 is semicompact. It follows

from (2.20) that there exits a subsequence {xni
} of {xn} converging strongly to x ∈ K.

Next, we show that x ∈ F. Notice that

‖x− Tlx‖ ≤ ‖x− xni
‖+ ‖xni

− Tlxni
‖+ ‖Tlxni

− Tlx‖, ∀l ∈ {1, 2, . . . , N}.

Since Tl is uniformly Li-Lipschitz continuous, we obtain from (2.20) that x ∈ F. Finally,

we claim that xn → x as n → ∞. Since limn→∞ ‖xn − p‖ exits for each p ∈ F, we can

obtain the desired conclusion easily. This completes the proof.
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