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1. Introduction

Let E be a nonempty real normed linear space. A subset K of E is called proximinal if for each

x ∈ E there exists k ∈ K such that

‖x− k‖= inf{‖x− y‖ : y ∈ K}= d(x,K).

It is known that every closed convex subset of a uniformly convex Banach space is proximinal.

In fact, if K is a closed and convex subset of a uniformly convex Banach space E, then for any

x ∈ E there exists a unique point ux ∈ K such that (see, e.g., [12], [11], [18] and [19])

‖x−ux‖= inf{‖x− y‖ : y ∈ K}= d(x,K).

We will denote the family of all nonempty proximinal subsets of E by P(E), the family of all

nonempty closed, bounded and convex subsets of E by CBC(E), the family of all nonempty

closed and bounded subsets of E by CB(E) and the family of all nonempty subsets of E by 2E

for a nonempty real normed space E.

Let D be the Hausdorff metric induced by the metric d on E, that is, for every A,B ∈CB(E),

D(A,B) = max{sup
a∈A

d(a,B),sup
b∈B

d(b,A)}.

Let T : D(T ) ⊆ E → 2E be a multivalued mapping on E. A point x ∈ D(T ) is called a fixed

point of T if x ∈ T x. The set F(T ) = {x ∈ D(T ) : x ∈ T x} is called a fixed point set of T. A

multivalued mapping T : D(T )⊆ E→CB(E) is called L-Lipschitzian if there exists L≥ 0 such

that for all x,y ∈ D(T ), we have

(1) D(T x,Ty)≤ L‖x− y‖.

In (1), if L ∈ [0,1), T is said to be a contraction, while T is nonexpansive if L = 1.

A mapping T : D(T )⊂ E →CB(E) is said to be hemicontractive-type in the terminology of

Hicks and Cubicek [21], if F(T ) 6= /0 and for all p ∈ F(T ), x ∈ D(T )

(2) D2(T x,T p)≤ ‖x− p‖2 +‖x−u‖2,∀ u ∈ T x,
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where D2(T x,T p)= [D(T x,T p)]2. A mapping T : D(T )⊂E→CB(E) is said to be demicontractive-

type, if F(T ) 6= /0 and for all p ∈ F(T ), x ∈ D(T ) there exists k ∈ [0,1) such that

(3) D2(T x,T p)≤ ‖x− p‖2 + k‖x−u‖2,∀ u ∈ T x.

If in (3), we have k = 0, then T is called quasi-nonexpansive-type mapping.

Note that the class of quasi- nonexpansive type mappings is contained in a class of demicontractive-

type mappings while the class of demicontractive-type mappings is contained in a class of

hemicontractive-type mappings. As the following examples show, the inclusions are strict. We

first give an example of a hemicontractive-type mapping which is not demicontractive-type.

Example 1.1 Let T : R→CB(R) be given by

T x =


[−
√

2x,0] x ∈ [0,∞]

[0,−
√

2x], x ∈ [−∞,0].

Then, F(T ) = {0} and for any x ∈ R,

D(T x,T 0)2 = |
√

2x−0|2

= |x−0|2 + |x−0|2.

But, d(x,T x)2 = |x−0|2. Thus,

D(T x,T 0)2 = |x−0|2 +d(x,T x)2 ≤ |x−0|2 + |x−u|2, ∀u ∈ T x.

So, T is hemicontractive-type but not demicontractive-type mapping. To see this take x = 1 and

u = 0.

A demicontractive-type mapping may not be quasi nonexpansive-type.

Example 1.2 Let T : [0,∞)→CB(R) be given by

T x =
[
−4

3
,−x

]
.

Then, F(T ) = {0} and T is demicontractive-type, but not quasi nonexpansive-type mapping.
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A mapping T : K → CB(E) is said to be k-strictly pseudocontractive-type mapping if there

exists k ∈ [0,1) such that

(4) D2(T x,Ty)≤ ‖x− y‖2 + k‖x− y− (u− v)‖2,∀ u ∈ T x,v ∈ Ty.

In (4), if k = 0, then T reduces to a nonexpansive-type mapping.

A mapping T : K→CB(E) is said to be pseudocontractive-type mapping if

(5) D2(T x,Ty)≤ ‖x− y‖2 +‖x− y− (u− v)‖2,∀ u ∈ T x,v ∈ Ty.

From the definitions, we observe that every multivalued nonexpansive-type mapping is k-

strictly pseudocontractive-type and every k-strictly pseudocontractive-type mapping is pseudo-

contractive-type mapping. However, the converses may not hold, as can be seen from the fol-

lowing examples.

Example 1.3 Let T : [0,1]→CB(R) be given by T x =
{

0,4− 4
3

x
}

.

Then we have

D(T x,Ty) = max

{
sup
a∈T x

d(a,Ty), sup
b∈Ty

d(b,T x)

}

= max
{

min
{
|4− 4

3
x|, 4

3
|x− y|

}
,min

{
|4− 4

3
y|, 4

3
|x− y|

}}
=

4
3
|x− y|.

Hence,

D2(T x,Ty) = |x− y|2 + 7
9
|x− y|2 .

Obviously, T is not nonexpansive-type. To show that it is k- strictly pseudocontractive-type,

with out loss of generality assume that x < y.

We will take four cases.

Case 1: Let u = 0 and v = 0. Then |x− y− (u− v)|= |x− y| and hence

D2(T x,Ty)≤ |x− y|2 + 7
9
|x− y− (u− v)|2 .
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Case 2: Let u = 4− 4
3

x and v = 0. Then x− y− (4− 4
3

x)< x− y≤ 0. Thus∣∣∣∣x− y− (4− 4
3

x−0)
∣∣∣∣2 = ∣∣∣∣x− y− (4− 4

3
x)
∣∣∣∣2 ≥ |x− y|2. This gives us

D2(T x,Ty)≤ |x− y|2 + 7
9
|x− y− (u− v)|2.

Case 3: Let u = 0 and v = 4− 4
3

x. Then x− y ∈ [−1,0] and (4− 4
3

y) ≥ 2(y− x). Thus, since

x− y+(4− 4
3

y)≥ x− y+2(y− x)≥ y− x≥ 0, we get that∣∣∣∣x− y− (0− (4− 4
3

y))
∣∣∣∣2 = ∣∣∣∣x− y+(4− 4

3
y)
∣∣∣∣2 ≥ |x− y|2. This implies that

D2(T x,Ty)≤ |x− y|2 + 7
9
|x− y− (u− v)|2.

Case 4: Let u = 4− 4
3

x and v = 4− 4
3

y. Then

|x− y− (−4
3
(x− y))|2 = (1+

4
3
)2|x− y|2 ≥ |x− y|2. Thus,

D2(T x,Ty)≤ |x− y|2 + 7
9
|x− y− (u− v)|2.

Therefore, T is k-strictly pseudocontractive-type mapping.

The following mapping is shown to be pseudocontractive-type but not k- strictly pseudocontractive-

type mapping (see; [26]).

Example 1.4 Let T : [0,∞]→CB(R) be given by

T x =


{2}, x = 0;

{0,x}, x 6= 0.

It is well known that nonexpansive-type mappings are quasi-nonexpansive-type, though the

converse may not hold.

Example 1.5 Let T : [0,∞)→CB(R) be given by

T x =


0, x≤ 1;[

x− 1
3
,x− 1

4

]
, x > 1.

Then, F(T ) = {0} and

D(T x,T 0)≤ |x−0|,
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and hence T is quasi nonexpansive-type. Taking x = 2 and y = 1, it can be seen that T is not

nonexpansive-type mapping.

From the definitions it is also clear that the class of k- strictly pseudocontractive-type map-

pings is properly contained in a class of demicontractive-type mappings, while the class of

pseudocontractive-type mappings is properly contained in a class of hemicontractive-type map-

pings.

Example 1.6 Let T : [0,∞)→CB(R) be given by T x =
[
−3x,−5

2
x
]

.

Now, d(x,T x)2 =

∣∣∣∣x−(−5
2

x
)∣∣∣∣2 = 49

4
|x−0|2 and F(T ) = {0}. In addition,

D(T x,T 0)2 = |x−0|2 +8|x−0|2

= |x−0|2 + 32
49

d(x,T x)2

≤ |x−0|2 + 32
49
|x−u|2, ∀u ∈ T x.

So, T is demicontractive-type but not k- strictly pseudocontractive-type mapping. To see this

take x = 1, y = 2,u =−5
2

and v =−6.

Example 1.7 Let T : R→CB(R) be given by

T x =


[−
√

2x,0] x ∈ [0,∞]

[0,−
√

2x], x ∈ [−∞,0].

Then, F(T ) = {0} and for any x,

D(T x,T 0)2 = |
√

2x−0|2

= |x−0|2 + |x−0|2.

But, d(x,T x)2 = |x−0|2. Thus,

D(T x,T 0)2 = |x−0|2 +d(x,T x)2 ≤ |x−0|2 + |x−u|2, ∀u ∈ T x.

So, T is hemicontractive-type but not psuedocontractive-type mapping. To see this take x =

1, y = 2, u =−1 and v =−1
2

.
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Remark 1.1 Example 1.4 shows that the set of fixed points of a hemicontractive-type mapping

may not be closed.

Following the introduction of the study of fixed points for multi-valued nonexpansive map-

pings using the Hausdorff metric by Markin [6] (see also [7]), the theory has developed greatly

with applications in control theory, convex optimization, differential inclusion and economics

(see, for example, [8] and references therein). Currently, several schemes have been given on

the approximation of fixed points of multi-valued nonexpansive mappings (see for example [9],

[10], [11], [12] and [13], and the references therein) and their generalizations (see e.g., [14]).

In 2005, Sastry and Babu [12] introduced Mann and Ishikawa schemes for multivalued map-

pings and proved the following result.

Theorem 1.1 Let H be a real Hilbert space, K be a nonempty, compact and convex subset of H,

and T : K→ P(K) be a multivalued nonexpansive mapping with nonempty fixed point set. For

x0 ∈ K let {xn} be a sequence defined by

(6)


yn = (1−βn)xn +βnzn,zn ∈ T xn,‖zn− p‖= d(p,T xn),

xn+1 = (1−αn)xn +αnun,un ∈ Tyn,‖un− p‖= d(p,Tyn),

where p ∈ F(T ) and {αn},{βn} are real sequences which satisfy the following conditions: [i.]

0 ≤ αn,βn < 1, [ii.] lim
n→∞

βn = 0 and [iii.]
∞

∑
n=1

αnβn = 0. Then, the sequence {xn} converges

strongly to a fixed point of T .

In 2007, Panyanak [11] extended the above result of Sastry and Babu [12] to uniformly

convex real Banach spaces. He proved the following result. Before we state his theorem, we

need the following definition.

Definition 1.1 [25] A mapping T : K → CB(K) is said to satisfy condition (I) if there exists a

strictly increasing function f : [0,∞)→ [0,∞) with f (0) = 0, f (r) > 0 for all r ∈ (0,∞) such

that d(x,T (x))≥ f (d(x,F(T )),∀ x ∈ D.

Theorem 1.2 Let E be a uniformly convex real Banach space. Let K be a nonempty, closed,

bounded and convex subset of E, and T : K → P(K) be a multivalued nonexpansive mapping

that satisfies condition (I). Assume that [i.] 0≤ αn < 1, [ii.]
∞

∑
n=1

αn = ∞. Suppose that F(T ) is a
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nonempty proximinal subset of K. Let {xn} be defined by

(7)


x0 ∈ K,

xn+1 = (1−αn)xn +αnyn,

αn ∈ [a,b],0 < a < b < 1,n ≥ 0, where yn ∈ T xn is such that ‖yn− un‖ = d(un,T xn), and

un ∈ F(T ) is such that ‖xn−un‖= d(xn,F(T )). Then, {xn} converges strongly to a fixed point

of T .

The scheme of Sastry and Babu [12] requires knowing points p ∈ F(T ). This seems inappro-

priate because, if a fixed point is already known there is no need to construct a scheme to search

for it. Panyanak’s [11] scheme also seems to have a similar difficulty. In 2008, Song and Wang

[13] proved the following theorem.

Theorem 1.3 Let K be a nonempty, compact and convex subset of a uniformly convex real

Banach space E. Let T : K→CB(K) be a multivalued nonexpansive mapping with F(T ) 6= /0

satisfying T (p) = p for all p ∈ F(T ). Assume that [i.] 0 ≤ αn,βn < 1, [ii.] βn,γn → 0, [iii.]
∞

∑
n=1

αnβn = ∞. Then, the sequence {xn} defined by

(8)


yn = (1−βn)xn +βnzn,

xn+1 = (1−αn)xn +αnun,

where zn ∈ T xn,un ∈ Tyn, are such that ‖zn − un‖ = D(T xn,Tyn) + γn and ‖zn+1 − un‖ ≤

D(T xn+1,Tyn)+ γn. Then, the sequence in (8) converges strongly to a fixed point of T .

Recently, Shahzad and Zegeye [15] showed their concerns on the work of Song and Wang

[13]. In particular, they pointed out that the assumption “T p = {p} for any p ∈ F(T )” in [13]

is quite strong. They observed that if E is a normed linear space and T : D(T ) ⊂ E → P(E) is

any multivalued mapping then the mapping PT : D(T )→ P(E) defined for each x by

(9) PT (x) = {y ∈ T x : d(x,T x) = ‖x− y‖},

has the property that PT (p) = {p} for all p ∈ F(T ). Using this idea they removed the strong

condition “T (p) = {p} for all p ∈ F(T )” and extended and improved the results of Song and

Wang [13] to multivalued quasi-nonexpansive mappings. The assumption that K is compact is
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dispensed with. Also, in an attempt to remove the restriction T p = {p},∀ p∈ F(T ) in Theorem

1.3, they introduced a new iteration scheme as follows: Let K be a nonempty closed convex

subset of a real Banach space E. Let αn,βn ∈ [0,1]. Choose x0 ∈ K and define {xn} as follows:

(10)


yn = (1−βn)xn +βnzn,

xn+1 = (1−αn)xn +αnun,

where zn ∈ PT xn,un ∈ PT yn. Then, they proved the following result.

Theorem 1.4 [15] Let E be a uniformly convex real Banach space, K be a nonempty, closed

and convex subset of E, and T : K→ P(K) be a multivalued mapping with F(T ) 6= /0 such that

PT is nonexpansive. Let {xn} be the iterates defined by (10). Assume that T satisfies condition

(I) and αn,βn ∈ [0,1]. Then, {xn} converges strongly to a fixed point of T .

We note that Song and Wang [13] imposed the assumption that K is compact while Shahzad

and Zegeye [15] imposed the condition that the mapping T satisfies condition (I).

It is our purpose in this paper to introduce an iterative scheme which converges strongly

to a common point of the fixed point set of a finite family of Lipschitz hemicintractive-type

mappings under some mild conditions. As consequence, we obtain a convergent sequence to

a common point of the fixed point set of a finite family of k-strictly pseudocontractive-type

mappings which extend results in the literature that rely on either compactness of K or T or

Condition (I) for strong convergence to common fixed points.

2. Preliminaries

Definition 2.1 Let E be a Banach space. Let T : D(T ) ⊆ E → 2E be a multivalued mapping.

I−T is said to be demiclosed at zero, if for any sequence {xn}⊆D(T ) such that {xn} converges

weakly to p and D(xn,T xn)→ 0, then p ∈ T p.

Lemma 2.1 [16] Let H be a real Hilbert space. Then, the following equations hold:

(1) ‖tx+(1− t)y‖2 = t‖x‖2 +(1− t)‖y‖2− t(1− t)‖x− y‖2,∀t ∈ [0,1],

(2) Given any x,y in H, ‖x− y‖2 = ‖x− z‖2 +‖z− y‖2 +2〈x− z,z− y〉.
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Lemma 2.2 [4] Let H be a real Hilbert space. Then, the following equation holds: If {xn} is a

sequence in H such that xn ⇀ z ∈ H, then

limsup
n→∞

‖xn− y‖2 = limsup
n→∞

‖xn− z‖2 +‖z− y‖2,∀y ∈ H.

Lemma 2.3 [20] Let K be a nonempty closed convex subset of a real Hilbert space H. Let

T : K→CBC(K) be a multivalued mapping and PT (x) = {y ∈ T x : ‖x− y‖= d(x,T x)}. Then,

for any x ∈ K,x0 ∈ PT (x) if and only if 〈z− x0,x− x0〉 ≤ 0,∀z ∈ T x.

Lemma 2.4 [21] Let {an} be a sequence of real numbers such that there exists a subsequence

{ni} of {n} such that ani < ani+1, for all i ∈ N. Then, there exists a nondecreasing sequence

{mk} ⊂N such that mk→∞ and the following properties are satisfied by all (sufficiently large)

numbers k ∈ N:

amk ≤ amk+1, and ak ≤ amk+1.

In fact, mk := max{ j ≤ k : a j < a j+1}.

Lemma 2.5 [22] Let K be a metric space. Let T : K→ P(K) be a multivalued mapping. Then,

the following are equivalent: (i) x ∈ T x, (ii) PT x = {x} and (iii) x ∈ F(PT ). Moreover, F(T ) =

F(PT ).

Lemma 2.6 Let H be a real Hilbert space. Then,

‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉, ∀x,y ∈ H.

Lemma 2.7 [3] Let H be a Hilbert space. Let K be a nonempty closed and convex subset of

H. Let T : K → CB(K) be k-strictly pseudocontractive-type multivalued mapping. Then T is

L-Lipschitz mapping.

Lemma 2.8 [1] Let {an} be a sequence of nonnegative real numbers satisfying the following

relation:

an+1 ≤ (1−αn)an +αnδn,n≥ n0,

where {αn} ⊂ (0,1) and {δn} ⊂ R satisfying the following conditions:

lim
n→∞

αn = 0,
∞

∑
n=1

αn = ∞, and limsup
n→∞

δn ≤ 0. Then, lim
n→∞

an = 0.
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3. Main results

Theorem 3.1 Let K be a non-empty, closed and convex subset of a real Hilbert space H. Let

Ti : K → CB(K), i = 1,2, . . . ,N, be a finite family of Lipschitz hemicontractive-type mappings

with Lipschitz constants Li, i = 1,2, . . . ,N, respectively. Assume that I − Ti, i = 1, . . . ,N are

demiclosed at zero and F =∩N
i=1F(Ti) is non-empty, closed and convex with Ti(p) = {p}, ∀p∈

F(T ) and for each i = 1,2, . . . ,N. Let {xn} be the sequence generated from an arbitrary x1 =

w ∈ K by

(11)


yn = (1−βn)xn +βnun, un ∈ Tnxn,

zn = γnwn +(1− γn)xn, wn ∈ Tnyn,

xn+1 = αnw+(1−αn)zn, n≥ 1,

where Tn := Tn( mod N) and {αn}, {βn}, {γn} ⊂ (0,1) satisfy the following conditions:

i. 0≤ αn ≤ c < 1, ∀n≥ 1 such that lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞,

ii. 0 < α ≤ γn ≤ βn ≤ β <
1√

4L2 +1+1
, ∀n≥ 1, for L := max{Li : 1,2, . . . ,N}.

Then, {xn} converges strongly to some point p in F nearest to w.

Proof. Let p = PF (w). Now, using (1) of Lemma 2.1,

‖xn+1− p‖2 = ‖αn(w− p)+(1−αn)(zn− p)‖2

≤ αn‖w− p‖2 +(1−αn)‖zn− p‖2

= αn‖w− p‖2 +(1−αn)‖γn(wn− p)+(1− γn)(xn− p)‖2

= αn‖w− p‖2 +(1−αn)γn‖wn− p‖2 +(1−αn)(1− γn)‖xn− p‖2

−(1−αn)γn(1− γn)‖wn− xn‖2

= αn‖w− p‖2 +(1−αn)(1− γn)‖xn− p‖2 +(1−αn)γn‖wn− p‖2

−(1−αn)γn(1− γn)‖wn− xn‖2

≤ αn‖w− p‖2 +(1−αn)(1− γn)‖xn− p‖2 +(1−αn)γnD(Tnyn,Tn p)2

−(1−αn)γn(1− γn)‖wn− xn‖2
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≤ αn‖w− p‖2 +(1−αn)(1− γn)‖xn− p‖2 +(1−αn)γn[
‖yn− p‖2 +‖yn−wn‖2]− (1−αn)γn(1− γn)‖wn− xn‖2.

Thus,

(12) ‖xn+1− p‖2 ≤ αn‖w− p‖2 +(1−αn)(1− γn)‖xn− p‖2 +(1−αn)

× γn‖yn− p‖2 +(1−αn)γn‖yn−wn‖2− (1−αn)γn(1− γn)‖wn− xn‖2.

On the other hand, from (11) and the fact that ‖un−wn‖ ≤ 2D(Tnxn,Tnyn) we have

‖yn−wn‖2 = ‖(1−βn)(xn−wn)+βn(un−wn)‖2

= (1−βn)‖xn−wn‖2 +βn‖un−wn‖2−βn(1−βn)‖xn−un‖2

≤ (1−βn)‖xn−wn‖2 +βn4D2(Tnxn,Tnyn)−βn(1−βn)‖xn−un‖2

≤ (1−βn)‖xn−wn‖2 +βn4L2‖xn− yn‖2−βn(1−βn)‖xn−un‖2

≤ (1−βn)‖xn−wn‖2 +4L2
β

3
n ‖xn−un‖2−βn(1−βn)‖xn−un‖2.

Hence,

(13) ‖yn−wn‖2 ≤ (1−βn)‖xn−wn‖2−βn(1−βn−4L2
β

2
n )‖xn−un‖2.

Again,

‖yn− p‖2 = ‖(1−βn)xn +βnun− p)‖2

= ‖(1−βn)(xn− p)+βn(un− p)‖2

= (1−βn)‖xn− p‖2 +βn‖un− p‖2−βn(1−βn)‖xn−un‖2

≤ (1−βn)‖xn− p‖2 +βnD2(Tnxn,Tn p)−βn(1−βn)‖xn−un‖2

≤ (1−βn)‖xn− p‖2 +βn
[
‖xn− p‖2 +‖xn−un‖2]

−βn(1−βn)‖xn−un‖2.

Thus,

(14) ‖yn− p‖2 ≤ ‖xn− p‖2 +β
2‖xn−un‖2.
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Now substituting (14), (13) into (12),

‖xn+1− p‖2 ≤ αn‖w− p‖2 +(1−αn)(1− γn)‖xn− p‖2 +(1−αn)γn||xn− p||2

+ (1−αn)γnβ
2
n ‖xn−un‖2 +(1−αn)γn(1−βn)‖xn−wn‖2

− βn(1−αn)γn(1−βn−4L2
β

2
n )‖un− xn‖2

−(1−αn)γn(1− γn)‖wn− xn‖2.

which reduces to

(15) ‖xn+1− p‖2 ≤ αn‖w− p‖2 +(1−αn)‖xn− p‖2−βn(1−αn)

× γn(1−2βn−4L2
β

2
n )‖un− xn‖2 +(1−αn)γn(γn−βn)‖xn−wn‖2.

From the hypothesis (ii) in (11) we have that

1−2βn−4L2
β

2
n ≥ 1−2β −4L2

β
2,(16)

γn ≤ βn.(17)

Using (16) and (17) in (15) we get that

(18) ‖xn+1− p‖2 ≤ (1−αn)‖xn− p‖2 +αn‖w− p‖2.

Thus, by induction

‖xn+1− p‖2 ≤max{‖x1− p‖2,‖w− p‖2}, ∀n≥ 1.
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This implies that {xn},{yn} and {zn} are all bounded. Furthermore, from (11), Lemma 2.6 and

(15) we get that

‖xn+1− p‖2 = ‖(1−αn)(γnwn +(1− γn)xn)+αnw− p‖2

= ‖(1−αn)((γnwn +(1− γn)xn)− p)+αn(w− p)‖2

≤ (1−αn)‖γnwn +(1− γn)xn− p‖2 +2αn〈w− p,xn+1− p〉

= (1−αn)
[
γn‖wn− p‖2 +(1− γn)‖xn− p‖2− γn(1− γn)‖xn−wn‖2]

+2αn〈w− p,xn+1− p〉

≤ (1−αn)
[
γnD(Tnyn,Tn p)2 +(1− γn)‖xn− p‖2− γn(1− γn)‖xn−wn‖2]

+2αn〈w− p,xn+1− p〉

≤ (1−αn)
[
γn(‖yn− p‖2 +‖yn−wn‖2)+(1− γn)‖xn− p‖2]

−(1−αn)γn(1− γn)‖xn−wn‖2 +2αn〈w− p,xn+1− p〉,

(19)

which implies

‖xn+1− p‖2 ≤ (1−αn)γn‖xn− p‖2 +(1−αn)γnβ
2
n ‖xn−un‖2 +(1−αn)γn

×
[
(1−βn)‖xn−wn‖2−βn(1−βn−4L2

β
2
n )‖xn−un‖2]

−(1−αn)γn(1− γn)‖wn− xn‖2 +2αn〈w− p,xn+1− p〉

= (1−αn)‖xn− p‖2− (1−αn)γnβn(1−2βn−4L2
β

2
n )‖xn−un‖2

+2αn〈w− p,xn+1− p〉+(1−αn)γn(γn−βn)‖xn−wn‖2.

That is, we get that

‖xn+1− p‖2 ≤ (1−αn)‖xn− p‖2− (1−αn)γnβn(1−2βn−4L2
β

2
n )(20)

×‖xn−un‖2 +2αn〈w− p,xn+1− p〉,
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and

‖xn+1− p‖2 ≤ (1−αn)‖xn− p‖2− (1− c)α2(1−2β −4L2
β

2)(21)

×‖xn−un‖2 +2αn〈w− p,xn+1− p〉.

Now we consider the following two cases:

Case 1. Suppose that there exists n0 ∈N such that {‖xn− p‖} is non-increasing, ∀n≥ n0. Then,

we get that {‖xn− p‖} is convergent. So, from (21) and the fact that αn→ 0, we have that

(1− c)α2(1−2β −4L2
β

2)‖xn−un‖2 ≤ (1−αn)‖xn− p‖2−‖xn+1− p‖2,

which gives that

xn−un→ 0.(22)

Now, from (11) and (22) we get

yn− xn = βn(un− xn)→ 0,

and hence we get that

‖zn− xn‖ = γn‖wn− xn‖= γn‖wn−un +un− xn‖

≤ γn‖wn−un‖+ γn‖un− xn‖

≤ γn2D(Tnyn,Tnxn)+ γn‖un− xn‖

≤ γn2L‖yn− xn‖+ γn‖un− xn‖→ 0,(23)

and by (11), (23), the fact that ‖w− zn‖ is bounded and αn→ 0, we have

‖xn+1− xn‖ = ‖xn+1− zn + zn− xn‖

≤ ‖xn+1− zn‖+‖zn− xn‖

= αn‖w− zn‖+‖zn− xn‖→ 0.(24)

But then, since, ‖xn+i− xn‖ ≤ ‖xn+i− xn+i−1‖+ . . .+‖xn+1− xn‖, we get that

(25) ‖xn+i− xn‖→ 0, ∀i = 1,2, . . . ,N.
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Now, since Tn+ixn and Tn+ixn+i are closed and bounded there exist u∗n ∈ Tn+ixn and u∗n+i ∈

Tn+ixn+i such that ‖xn− u∗n‖ = d(xn,Tn+ixn) and ‖xn+i− u∗n+i‖ = d(xn+i,Tn+ixn+i). Now, by

(22) and (25)

d(xn,Tn+ixn) = ‖xn−u∗n‖

≤ ‖xn− xn+i‖+‖xn+i−u∗n‖

≤ ‖xn− xn+i‖+‖xn+i−u∗n+i‖+‖u∗n+i−u∗n‖

≤ ‖xn− xn+i‖+‖xn+i−u∗n+i‖+2D(Tn+ixn+i,Tn+ixn)

≤ ‖xn− xn+i‖+‖xn+i−u∗n+i‖+2L‖xn− xn+i‖→ 0.(26)

Now, since {‖xn− p‖} converges, there exists a subsequence {xn j+1} of {xn} such that

limsup
n→∞

〈w− p,xn+1− p〉= lim
j→∞
〈w− p,xn j+1− p〉,

and xn j+1 ⇀ z, for some z ∈ K. Now, from (24) we get xn j ⇀ z. Hence, from (26) and since

Ti, ∀i = 1, . . . ,N are demiclosed by assumption, we get that z∈ F(Ti), ∀i = 1, . . . ,N, i.e., z∈F .

Therefore, since by assumption F is closed and convex, Lemma 2.3 implies that

limsup
n→∞

〈w− p,xn+1− p〉 = lim
j→∞
〈w− p,xn j+1− p〉

= 〈w− p,z− p〉 ≤ 0.(27)

Now, from (21) we have that

(28) ‖xn+1− p‖2 ≤ (1−αn)‖xn− p‖2 +2αn〈w− p,xn+1− p〉.

It then follows from (28), (27) and Lemma 2.8 that ‖xn− p‖→ 0, i.e., xn→ p.

Case 2 Suppose there exists a subsequence {nk} of {n} such that

‖xnk− p‖< ‖xnk+1− p‖, ∀k ∈ N.

Thus, by Lemma 2.4, there is a nondecreasing sequence {mk} ⊂ N such that mk → ∞, ‖xmk −

p‖≤ ‖xmk+1− p‖ and ‖xk− p‖≤ ‖xmk+1− p‖, ∀k ∈N. Now, from (21) and the fact that αn→ 0
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we get that xmk−umk→ 0, when umk ∈ Tixmk , ∀i= 1, . . . ,N. Hence as in Case 1, xmk+1−xmk→ 0

and that

(29) limsup
n→∞

〈w− p,xmk+1− p〉 ≤ 0.

From (21) we have that

(30) ‖xmk+1− p‖2 ≤ (1−αmk)‖xmk− p‖2 +2αmk〈w− p,xmk+1− p〉,

and since ‖xmk− p‖ ≤ ‖xmk+1− p‖, (30) implies that

αmk‖xmk− p‖2 ≤ ‖xmk− p‖2−‖xmk+1− p‖2 +2αmk〈w− p,xmk+1− p〉

≤ 2αmk〈w− p,xmk+1− p〉

So, from (29) we get that ‖xmk − p‖2 ≤ 2αmk〈w− p,xmk+1− p〉 ≤ 0. Hence, xmk → p which

implies from (30) that ‖xmk+1− p‖→ 0 as k→∞. But, ‖xk− p‖≤ ‖xmk+1− p‖, ∀k ∈N. There-

fore, {xn} converges strongly to an element p in F nearest to w.

Remark 3.2 We note that, since every pseudocontractive-type mapping with F(T ) 6= /0 is hemi-

contractive-type the above theorem holds for a finite family of pseudocontractive-type map-

pings.

Lemma 3.3 Again, since every quasi-nonexpansive type is a demicontractive-type and every

demicontractive-type mapping is hemicontractive-type the above theorem also holds for a finite

family of quasi-nonexpansive type and demicontractive-type mappings.

If, in Theorem 3.1, we consider a single hemicontractive-type mapping we get the following

corollary.

Corollary 3.4 Let H be a real Hilbert space and K be a non-empty, closed and convex subset

of H. Let T : K→CB(K), be Lipschitz hemicontractive-type mapping with Lipschitz constant

L. Assume that I− T is demiclosed at zero and F(T ) is non-empty, closed and convex with
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T (p) = {p}, ∀p ∈ F(T ). Let {xn} be the sequence generated from an arbitrary x1 = w ∈ K by

(31)


yn = (1−βn)xn +βnun, un ∈ T xn,

zn = γnwn +(1− γn)xn, wn ∈ Tyn,

xn+1 = αnw+(1−αn)zn, n≥ 1,

where {αn}, {βn}, {γn} ⊂ (0,1) satisfy the following conditions:

i. 0≤ αn ≤ c < 1, ∀n≥ 1 such that lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞,

ii. 0 < α ≤ γn ≤ βn ≤ β <
1√

4L2 +1+1
.

Then, {xn} converges strongly to some point p in F nearest to w.

Proof. Put Ti := T, ∀i = 1, . . . ,N in (11) and the scheme reduces to (31). Now, as in (20) and

(21)

‖xn+1− p‖2 ≤ (1−αn)‖xn− p‖2− (1−αn)γnβn(1−2βn−4L2
β

2
n )

×‖xn−un‖2 +2αn〈w− p,xn+1− p〉, un ∈ T xn

≤ (1−αn)‖xn− p‖2− (1− c)α2(1−2β −4L2
β

2)‖xn−un‖2

+2αn〈w− p,xn+1− p〉

≤ (1−αn)‖xn− p‖2 +2αn〈w− p,xn+1− p〉.

The rest of the proof is as in Theorem 3.1.

If, in Theorem 3.1 we assume that PTi, i = 1, . . . ,N are Lipschitz hemicontractive-type map-

pings, then by Lemma 2.5, the requirement that Ti(p) = {p} may not be needed. Thus, we

obtain the following corollary.

Corollary 3.5 Let H be a real Hilbert space and K be a non-empty, closed and convex subset

of H. Let Ti : K → CB(K), i = 1,2, . . . ,N, be a finite family of multivalued mappings. Let

PTi, i = 1,2, . . . ,N, be Lipschitz hemicontractive-type mappings with Lipschitz constants Li, i =

1,2, . . . ,N, respectively. Assume that I−PTi, i = 1, . . . ,N are demiclosed and F = ∩N
i=1F(Ti) is

non-empty, closed and convex. Let {xn} be the sequence generated from an arbitrary x1 =w∈K
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by

(32)


yn = (1−βn)xn +βnun, un ∈ PTnxn,

zn = γnwn +(1− γn)xn, wn ∈ PTnyn,

xn+1 = αnw+(1−αn)zn, n≥ 1

where Tn := Tn( mod N) and {αn}, {βn}, {γn} ⊂ (0,1) satisfy the following conditions:

i. 0≤ αn ≤ c < 1, ∀n≥ 1 such that lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞,

ii. 0 < α ≤ γn ≤ βn ≤ β <
1√

4L2 +1+1
, ∀n≥ 1 for L := max{Li : 1,2, . . . ,N}.

Then, {xn} converges strongly to some point p in F nearest to w.

If, in Theorem 3.1 we assume that PTi : K→CBC(K), i= 1, . . . ,N are Lipschitz pseudocontractive-

type mappings, then, since PTi(x) is singleton, for every x ∈C by Lemma 2.3 and Lemma 2.5

we have F(Ti) = F(PTi), which is closed and convex and I−PTi is demiclosed at zero for each

i ∈ {1,2, ..., ,N} and hence the following corollary follows.

Corollary 3.6 Let H be a real Hilbert space and K be a non-empty, closed and convex sub-

set of H. Let Ti : K → CBC(K), i = 1,2, . . . ,N, be a finite family of multivalued mappings.

Let PTi, i = 1,2, . . . ,N, be Lipschitz pseudocontractive-type mappings with Lipschitz constants

Li, i = 1,2, . . . ,N, respectively. Suppose that F = ∩N
i=1F(Ti) is non-empty. Let {xn} be the

sequence generated from an arbitrary x1 = w ∈ K by

(33)


yn = (1−βn)xn +βnun, un ∈ PTnxn,

zn = γnwn +(1− γn)xn, wn ∈ PTnyn,

xn+1 = αnw+(1−αn)zn, n≥ 1

where Tn := Tn( mod N) and {αn}, {βn}, {γn} ⊂ (0,1) satisfy the following conditions:

i. 0≤ αn ≤ c < 1, ∀n≥ 1 such that lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞,

ii. 0 < α ≤ γn ≤ βn ≤ β <
1√

4L2 +1+1
, ∀n≥ 1 for L := max{Li : 1,2, . . . ,N}.

Then, {xn} converges strongly to some point p in F nearest to w.

In the sequel we shall make use of the following lammas.
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Lemma 3.7 Let K be a closed, convex, nonempty subset of a real Hilbert space H. Let T : K→

CB(K) be a demicontractive-type multivalued mapping with constant k ∈ [0,1). Assume that

F(T ) 6= /0. If T (p) = {p},∀p ∈ F(T ), then F(T ) is closed and convex.

Proof. Let x,y ∈ K. By (2) of Lemma 2.2, we have that

‖x− y‖2 = ‖x− z‖2 +‖z− y‖2 +2〈x− z,z− y〉.

For p ∈ F(T ),x ∈ K, let u ∈ T x be such that ‖p−u‖= inf{‖p−y‖ : y ∈ T x}. Then, we get that

‖p−u‖2 = ‖p− x‖2 +‖x−u‖2 +2〈p− x,x−u〉,

which is the same as,

d(p,T x)2 = ‖p− x‖2 +‖x−u‖2 +2〈p− x,x−u〉,

which in turn implies that

‖p− x‖2 +‖x−u‖2 +2〈p− x,x−u〉 ≤ D(p,T x)2 ≤ ‖p− x‖2 + k‖x−u‖2.

Hence,

(34) ‖x−u‖2 ≤
(

2
1− k

)
〈p− x,u− x〉.

Now, we show that F(T ) is closed. Let {xn} ⊆ F(T ) be such that xn→ z. Let u ∈ T z such that

‖u− z‖= inf{‖z− y‖ : y ∈ T z}. Then, from (34) we have that for each n≥ 1,

‖z−u‖2 ≤
(

2
1− k

)
〈xn− z,u− z〉

→ 0,as n→ ∞.

Hence, z = u ∈ T z. Therefore, F(T ) is closed. Next, let us show that F(T ) is convex. Let

p,q ∈ F(T ) and z = α p+(1−α)q, where α ∈ (0,1). Then, we want to show that z ∈ F(T ).

Let u ∈ T z be such that ‖u− z‖= inf{‖z− y‖ : y ∈ T z}. But, from (34),

‖x−u‖2 ≤
(

2
1− k

)
〈p− x,u− x〉

and

‖x−u‖2 ≤
(

2
1− k

)
〈q− x,u− x〉.
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Then,

‖z−u‖2 = α‖z−u‖2 +(1−α)‖z−u‖2

≤
(

2
1− k

)
〈α(p− z)+(1−α)(q− z),u− z〉

=

(
2

1− k

)
〈z− z,u− z〉= 0.

So, z = u ∈ T z. Therefore, F(T ) is convex.

Lemma 3.8 Let K be a closed, convex, nonempty subset of a real Hilbert space H. Let T : K→

CB(K) be a k-strictly pseudocontractive-type multivalued mapping with constant k ∈ [0,1).

Then, I−T is demiclosed at zero.

Proof. Let {xn} ⊆ K be such that xn ⇀ y and suppose D(xn,T xn)→ 0. We want to show that

0 ∈ (I−T )y, i.e., y ∈ Ty.

Let q ∈ Ty be arbitrary. Then, there exists yn ∈ T xn such that

(35) ‖yn−q‖ ≤ D(T xn,Ty), ∀n ∈ N.

Furthermore, since yn ∈ T xn, we have that

(36) ‖xn− yn‖ ≤ D(xn,T xn)→ 0.

Now, define f : H→ [0,∞) by f (x) := limsup
n→∞

‖xn− x‖2. Then, by Lemma 2.2 we get that

f (x) = limsup
n→∞

‖xn− y‖2 +‖y− x‖2, ∀x ∈ H,

which implies that

f (x) = f (y)+‖y− x‖2, ∀x ∈ H.

Hence,

(37) f (q) = f (y)+‖y−q‖2.
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On the other hand, using (35), (36) and the fact that T is k-strictly pseudocontractive-type we

get that

f (q) = limsup
n→∞

‖xn−q‖2

= limsup
n→∞

‖xn− yn + yn−q‖2

≤ limsup
n→∞

‖yn−q‖2

≤ limsup
n→∞

D2(T xn,Ty)

≤ limsup
n→∞

[‖xn− y‖2 + k‖xn− yn +q− y‖2]

≤ limsup
n→∞

[‖xn− y‖2 + k‖q− y‖2],

which gives that

(38) f (q)≤ f (y)+ k‖q− y‖2.

Thus, from (37) and (38) we get that ‖y−q‖2 ≤ k‖y−q‖2 or (1−k)‖y−q‖2 ≤ 0. This implies

y = q ∈ Ty. Therefore, I−T is demiclosed.

If, in Theorem 3.1, we assume that Ti, i = 1, . . . ,N, are k-strictly pseudocontractive-type map-

pings then by Proposition , Ti are Lipschitz with Li =
1+
√

ki

1−
√

ki
, i = 1, . . . ,N. Also by Lemma 3.7

and 3.8, we have that F(T ) is closed and convex and I−Ti are demiclosed. Hence, we have the

following theorem.

Theorem 3.9 Let H be a real Hilbert space and K be a non-empty, closed and convex subset

of H. Let Ti : K→CB(K), i = 1,2, . . . ,N, be a finite family of k-strictly pseudocontractive-type

mappings. Assume that F = ∩N
i=1F(Ti) is non-empty with Ti(p) = {p}, ∀p ∈ F(T ) and for

each i = 1,2, . . . ,N. Let {xn} be the sequence generated from an arbitrary x1 = w ∈ K by

(39)


yn = (1−βn)xn +βnun, un ∈ Tnxn,

zn = γnwn +(1− γn)xn, wn ∈ Tnyn,

xn+1 = αnw+(1−αn)zn, n≥ 1

where Tn := Tn( mod N) and {αn}, {βn}, {γn} ⊂ (0,1) satisfy the following conditions:

i. 0≤ αn ≤ c < 1, ∀n≥ 1 such that lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞,
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ii. 0 < α ≤ γn ≤ βn ≤ β <
1√

4L2 +1+1
, ∀n≥ 1 for L := max{1+

√
ki

1−
√

ki
, i = 1, . . . ,N}.

Then, {xn} converges strongly to some point p in F nearest to w.

If, in Theorem 3.9, we assume that PTi are k-strictly pseudocontractive-type mappings, we

have that PTi are Lipschitz, and hence the following corollary follows.

Corollary 3.10 Let H be a real Hilbert space and K be a non-empty, closed and convex subset of

H. Let Ti : K→CBC(K), i = 1,2, . . . ,N, be a finite family of multivalued mappings. Let PTi, i =

1,2, . . . ,N, be k- strictly pseudocontractive-type mappings. Suppose also that F = ∩N
i=1F(Ti)

is non-empty. Let {xn} be the sequence generated from an arbitrary x1 = w ∈ K by

(40)


yn = (1−βn)xn +βnun, un ∈ PTnxn,

zn = γnwn +(1− γn)xn, wn ∈ PTnyn,

xn+1 = αnw+(1−αn)zn, n≥ 1

where Tn := Tn( mod N) and {αn}, {βn}, {γn} ⊂ (0,1) satisfy the following conditions:

i. 0≤ αn ≤ c < 1, ∀n≥ 1 such that lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞,

ii. 0 < α ≤ γn ≤ βn ≤ β <
1√

4L2 +1+1
, ∀n≥ 1 for L := max{Li : 1,2, . . . ,N}.

Then, {xn} converges strongly to some point p in F nearest to w.

If, in Theorem 3.9, we assume that Ti, i = 1, . . . ,N, are nonexpansive-type mappings then

Ti are Lipschitz with L = 1 and k-strictly pseudocontractive-type with k = 0. So, we get the

following corollary.

Corollary 3.11 Let H be a real Hilbert space and K be a non-empty, closed and convex subset

of H. Let Ti : K→CB(K), i = 1,2, . . . ,N, be a finite family of nonexpansive-type mappings. As-

sume that F =∩N
i=1F(Ti) is non-empty with Ti(p)= {p}, ∀p∈F(T ) and for each i= 1,2, . . . ,N.

Let {xn} be the sequence generated from an arbitrary x1 = w ∈ K by

(41)


yn = (1−βn)xn +βnun, un ∈ Tnxn,

zn = γnwn +(1− γn)xn, wn ∈ Tnyn,

xn+1 = αnw+(1−αn)zn, n≥ 1
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where Tn := Tn( mod N) and {αn}, {βn}, {γn} ⊂ (0,1) satisfy the following conditions:

i. 0≤ αn ≤ c < 1, ∀n≥ 1 such that lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞,

ii. 0 < α ≤ γn ≤ βn ≤ β <
1√

5+1
, ∀n≥ 1.

Then, {xn} converges strongly to some point p in F nearest to w.

Remark 3.12 The definitions of hemicontractive-type, demicontractive-type, k-strictly pseudo-

contractive-type and pseudocontractive-type multivalued mappings used here are those consid-

ered by Chidume et al [3]. Isiogugu [4] defined these mappings somewhat differently (See also

[23]).

Remark 3.13 Theorem 3.1 improves Theorem 1 and Theorem 2 of Sang and Wang [13] and

Theorem 2.7 of Shahzad and Zegeye [15] in the sense that no compactness assumption on either

the domain or in the functions Ti are assumed. Furthermore, the requirement that T satisfies

Condition (I) is dispensed with in our more general setting.

Remark 3.14 Our work extends the work of Daman and Zegeye [24] for the multivalued case.
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