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Abstract. In this article, Noor iteration is considered for finding a common element in the set of fixed points

of a non-expansive mapping and in the set of solutions of a variational inclusion problem. Strong convergence

theorems are established in the framework of Hilbert spaces.
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1. Introduction-Preliminaries

Variational inclusion problems are being used as mathematical programming models to study

a large number of optimization problems arising in finance, economics, network, transportation,

and engineering sciences; see [1-21] and the references therein.

Let H be a real Hilbert space H and A a mapping on H. Recall that A is said to be monotone

if

〈Ax−Ay,x− y〉 ≥ 0, ∀x,y ∈ H;
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A is said to be α-strongly monotone if there exists a constant α > 0 such that

〈Ax−Ay,x− y〉 ≥ α‖x− y‖2, ∀x,y ∈ H;

A is said to be α-strongly anti-monotone if there exists a constant α > 0 such that

〈Ax−Ay,x− y〉 ≤ (−α)‖x− y‖2, ∀x,y ∈ H;

A is said to be L-Lipschitz continuous if there exits a constant such that L > 0 such that

‖Ax−Ay‖ ≤ L‖x− y‖, ∀x,y ∈ H;

A is said to be nonexpansive if

‖Ax−Ay‖ ≤ ‖x− y‖, ∀x,y ∈ H.

A is said to be strictly pseudocontractive if

‖Ax−Ay‖2 ≤ ‖x− y‖2 +κ‖(I−A)x− (I−A)y‖2, ∀x,y ∈ H.

Let C be a nonempty, closed and convex subset of H. Recall that the classical variational

inequality problem is to find u ∈C such that

〈Au,v−u〉 ≥ 0, ∀v ∈C. (1.1)

One can see that the variational inequality problem (1.1) is equivalent to a fixed point problem.

u ∈C is a solution of the variational inequality (1.1) if and only if u ∈C is a fixed point of the

mapping PC(I−λA), where I is the identity mapping and λ > 0 is a constant.

Recently, Noor and Huang [15] consider a three-step iterative method for finding a common

element in the set of fixed points of a non-expansive mapping and in the set of solutions of the

variational inequality problem (1.1) in a real Hilbert space. To be more precise, they introduced

the following algorithm:

x0 ∈C,

zn = (1− cn)xn + cnSPC(xn−ρT xn),

yn = (1−bn)xn +bnSPC(yn−ρTyn),

xn+1 = (1−an)xn +anSPC(yn−ρTyn), ∀n≥ 0
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where {an}, {bn} and {cn} are sequences in [0,1] for all n ≥ 0, S is a non-expansive mapping

and T is a monotone-type operator. They showed that the sequence {xn} generated by the above

iterative sequence converges strongly to a common element in the set of fixed points of a non-

expansive mapping S and in the set of solutions of the variational inequality problem (1.1); see

[15] for details.

In [16], Noor and Huang considered the following variational inclusion problem. Find an

u ∈ H such that

0 ∈ Au+Tu, (1.2)

where T and A are monotone operators. They also consider the following three-step iterative

algorithm: 

x0 ∈ H,

zn = (1− cn)xn + cnSJA(xn−ρT xn),

yn = (1−bn)xn +bnSJA(yn−ρTyn),

xn+1 = (1−an)xn +anSJA(yn−ρTyn), ∀n≥ 0

where {an}, {bn} and {cn} are sequences in [0,1] for all n≥ 0, S is a non-expansive mapping,

JA = (I+ρA)−1. They showed that the sequence {xn} generated by the above iterative sequence

converges strongly to a common element in the set of fixed points of a non-expansive mapping

S and in the set of solutions of the variational inclusion problem (1.2); see [16] for details.

Motivated by the recent research work, we continue to study the problem of finding a solution

of the problem by a Noor iteration.

Lemma 1.1 [22] Suppose that {δn} is a nonnegative sequence satisfying the following inequal-

ity

δn+1 ≤ (1−λn)δn, ∀n≥ 0,

where {λn} is a sequence in [0,1] such that ∑
∞
n=0 λn = ∞. Then limn→∞ δn = 0.

Lemma 1.2 [21] Let H be a Hilbert space. An element u ∈ H is a solution of the problem (1.3)

if and only if u ∈ H is a fixed point of the mapping JA(I +ρT ), where JA = (I +ρA)−1, I is the

identity mapping and T is a strongly anti-monotone mapping.
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Lemma 1.3. Let H be a Hilbert space and S : H → H a nonexpansive mapping with a fixed

point. Assume that F(S)∩S(A,T ) 6= /0. If u ∈ F(S)∩S(A,T ), then u = SJA(I +ρT )u.

Proof. Fix u ∈ F(S)∩ S(A,T ). From Lemma 1.2, we see that u = JA(I +ρT )u. We also have

u = Su. It follows that u = JA(I +ρT ) = Su = SJA(I +ρT ). This completes the proof.

2. Main results

Theorem 2.1. Let H be a Hilbert space, A a maximal monotone mapping on H and T an α-

strongly anti-monotone and β -Lipschitz continuous mapping on H. Let R : H→ H be a strictly

pseudocontractive mapping with a fixed point and let {xn} be a sequence generated by the

following manner:



x0 ∈ H,

zn = (1− cn)xn + cn
(
αI +(1−α)R

)
JA(xn +ρT xn),

yn = (1−bn)xn +bn
(
αI +(1−α)R

)
JA(zn +ρT zn),

xn+1 = (1−an)xn +an
(
αI +(1−α)R

)
JA(yn +ρTyn), ∀n≥ 0

where {an}, {bn} and {cn} are sequences in [0,1] for all n ≥ 0, JA = (I + ρA)−1 and ρ is a

constant satisfying the restriction 0 < ρ < 2α

β 2 . Assume that κ ∈ [α,1) F(R)∩S(A,T ) 6= /0 and

∑
∞
n=0 an = ∞. Then the sequence {xn} converges strongly to a point in F(R)∩S(A,T ).

Proof. Put S := αI +(1−α)R. From Zhou [23], we see that S is nonexpansive with F(R) =

F(S). Let x∗ ∈ F(S)∩S(A,T ). It follows from (2.1) that

‖xn+1− x∗‖= ‖(1−an)(xn− x∗)+an
(
SJA(yn +ρTyn)−SJA(x∗+ρT x∗)

)
‖

≤ (1−an)‖xn− x∗‖+an‖JA(yn +ρTyn)− JA(x∗+ρT x∗)‖

≤ (1−an)‖xn− x∗‖+an‖yn− x∗+ρ(Tyn−T x∗)‖.
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From the α-strongly anti-monotone and β -Lipschitz assumptions on T , we have

‖yn− x∗+ρn(Tyn−T x∗)‖2

≤ ‖yn− x∗‖2−2ρα‖yn− x∗‖2 +ρ
2
β

2‖yn− x∗‖2

= (1−2ρα +ρ
2
β

2)‖yn− x∗‖2.

That is, ‖yn− x∗+ ρ(Tyn− T x∗)‖ ≤ θn‖yn− x∗‖, where θ =
√

1−2ρα +ρ2β 2. From the

assumption 0 < ρ < 2α

β 2 , we see that θ < 1.

Next, we estimate ‖yn− x∗‖. It follows that

‖yn− x∗‖= ‖(1−bn)(xn− x∗)+bn
(
SJA(zn +ρT zn)−SJA(x∗+ρT x∗)

)
‖

≤ (1−bn)‖xn− x∗‖+bn‖JA(zn +ρT zn)− JA(x∗+ρT x∗)‖

≤ (1−bn)‖xn− x∗‖+bn‖zn− x∗+ρ(T zn−T x∗)‖.

From the α-strongly anti-monotone and β -Lipschitz assumptions on T , we have

‖zn− x∗+ρ(T zn−T x∗)‖2

≤ ‖zn− x∗‖2−2ρα‖zn− x∗‖2 +ρ
2
β

2‖zn− x∗‖2

= (1−2ρα +ρ
2
β

2)‖zn− x∗‖2.

That is, ‖zn− x∗+ρ(T zn−T x∗)‖ ≤ θ‖zn− x∗‖.

Finally, we estimate ‖zn− x∗‖. It follows that

‖zn− x∗‖ ≤ (1− cn)‖xn− x∗‖+ cn‖JA(xn +ρT xn)− JA(x∗+ρT x∗)‖

≤ (1− cn)‖xn− x∗‖+ cn‖xn− x∗+ρ(T xn−T x∗)‖.

In a similar way, we can obtain that ‖xn− x∗+ρ(T xn−T x∗)‖ ≤ θ‖xn− x∗‖. Notice that ‖zn−

x∗‖ ≤ [1− cn(1−θ)]‖xn− x∗‖, It follows that that

‖yn− x∗‖ ≤
(

1−bn
(
1−θ(1− cn(1−θ))

))
‖xn− x∗‖ ≤ ‖xn− x∗‖.

It follows that
‖xn+1− x∗‖ ≤ (1−an)‖xn− x∗‖+anθ‖yn− x∗‖

≤ [1−an(1−θ)]‖xn− x∗‖.

Applying Lemma 1.1, we can conclude the desired conclusion immediately.
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