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Abstract. In this paper, we establish some nonlinear Volterra-Fredholm integral inequalities which provide an

explicit bound on unknown function, and can be used as a tool in the study of certain nonlinear mixed integral

equations.
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1. Introduction

The differential and integral inequalities occupy a very privileged position in the theory of

differential and integral equations. On the basis of various motivations, in the recent years

nonlinear integral inequalities have received considerable attention because of the important

applications to a variety of problems in diverse fields of nonlinear differential and integral e-

quations. Some integral inequalities for differential and integral equations are established by

Gronwall [6], Bellman [2] and Pachpatte [8, 9] which provide explicit bounds on solutions
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of a class of differential and integral equations, which are further studied and generalized by

succeeding mathematicians; see [1, 3, 4, 5, 7, 10, 11, 12].

In this paper, we establish some nonlinear Volterra-Fredholm integral inequalities, which can

be used as handy tools to study the qualitative as well as the quantitative properties of solutions

of some Volterra-Fredholm nonlinear integral equations. Some applications are also given to

convey the importance of our results.

The following Lemma is useful in our main results.

Lemma 1.1. [13] Assume that a≥ 0, p≥ 1, then a
1
p ≤ 1

pk
1−p

p a+ p−1
p k

1
p , for any k > 0.

Throughout this paper, we denote R+= [0,∞), I = [α,β ] and D=
{
(t,s) ∈ I2 : α ≤ s≤ t ≤ β

}
.

2. Main Results

In this section, we state and prove some Volterra-Fredholm nonlinear integral inequalities

which can be useful to study certain properties of solutions of some Volterra-Fredholm nonlin-

ear integral equations.

Theorem 2.1. Let u(t), f (t),g(t),c′(t) ∈C(I,R+) and

up(t)≤ c(t)+
∫ t

α

f (s)u(s)ds+
∫

β

α

g(s)up(s)ds.(2.1)

If R1 =
∫

β

α

g(s)exp
(∫ s

α

m1 f (σ)dσ

)
ds < 1, then

up(t)≤
c(α)+

∫
β

α
g(s)(

∫ s
α
[c′(τ)+m2 f (τ)]exp(

∫ s
τ

m1 f (σ)dσ)dτ)ds
1−R1

exp
(∫ t

α

m1 f (σ)dσ

)
+
∫ t

α

[
c′(s)+m2 f (s)

]
exp
(∫ t

s
m1 f (σ)dσ

)
ds,(2.2)

where p≥ 1,k > 0,m1 =
1
pk

1−p
p and m2 =

p−1
p k

1
p .

Proof. Define a function z(t) by

z(t) = c(t)+
∫ t

α

f (s)u(s)ds+
∫

β

α

g(s)up(s)ds.



SOME NONLINEAR INTEGRAL INEQUALITIES FOR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS 3

Then u(t)≤ z
1
p (t),

z(α) = c(α)+
∫

β

α

g(s)up(s)ds(2.3)

and

z′(t) = c′(t)+ f (t)u(t)≤ c′(t)+ f (t)z
1
p (t).(2.4)

From Lemma 1.1 and equation (2.4), we have

z′(t)≤ c′(t)+m1 f (t)z(t)+m2 f (t)

z′(t)−m1 f (t)z(t)≤ c′(t)+m2 f (t)[
z(t)

exp
(∫ t

α
m1 f (s)ds

)]′ ≤ [c′(t)+m2 f (t)]exp
(
−
∫ t

α

m1 f (s)ds
)

ds.(2.5)

Set t = s; in equation (2.5) and integrate with respect to s from α to t, we get

z(t)
exp
(∫ t

α
m1 f (s)ds

) ≤ z(α)+
∫ t

α

[
c′(s)+m2 f (s)

]
exp
(
−
∫ s

α

m1 f (σ)dσ

)
ds,

and hence

z(t)≤ z(α)exp
(∫ t

α

m1 f (s)ds
)
+ exp

(∫ t

α

m1 f (s)ds
)(∫ t

α

[
c′(s)+m2 f (s)

]
exp
(
−
∫ s

α

m1 f (σ)dσ

)
ds
)
.

(2.6)

As up(t)≤ z(t) from equation (2.6), we have

up(t)≤ z(α)exp
(∫ t

α

m1 f (s)ds
)
+
∫ t

α

[
c′(s)+m2 f (s)

]
exp
(∫ t

s
m1 f (σ)dσ

)
ds.(2.7)

Now from equation (2.3) and (2.7), we have

z(α)≤ c(α)+
∫

β

α

g(s)
(

z(α)exp
(∫ s

α

m1 f (σ)dσ

)
+
∫ s

α

[
c′(τ)+m2 f (τ)

]
exp
(∫ s

τ

m1 f (σ)dσ

)
dτ

)
ds

z(α)≤ c(α)+ z(α)
∫

β

α

g(s)exp
(∫ s

α

m1 f (σ)dσ

)
ds

+
∫

β

α

g(s)
(∫ s

α

[
c′(τ)+m2 f (τ)

]
exp
(∫ s

τ

m1 f (σ)dσ

)
dτ

)
ds

z(α)≤
c(α)+

∫
β

α
g(s)(

∫ s
α
[c′(τ)+m2 f (τ)]exp(

∫ s
τ

m1 f (σ)dσ)dτ)ds(
1−

∫
β

α
g(s)exp(

∫ s
α

m1 f (σ)dσ)ds
) .(2.8)
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From equation (2.7) and (2.8), we obtain (2.2). This completes the proof.

Remark 2.2. If we take p = 1, then the Theorem 2.1 reduces to inequality given by Pachpatte

in [10] and if p = 1 and g = 0 it reduces to one of the well known Gronwall’s inequality.

Theorem 2.3. Let u(t),g(t),c′(t) ∈C(I,R+), ft(t,s) ∈C(D,R+) and

up(t)≤ c(t)+
∫ t

α

f (t,s)u(s)ds+
∫

β

α

g(s)up(s)ds.(2.9)

If R2 =
∫

β

α

g(s)exp
(∫ s

α

m1A(σ)dσ

)
ds < 1, then

up(t)≤
c(α)+

∫
β

α
g(s)(

∫ s
α
[c′(τ)+m2A(τ)]exp(

∫ s
τ

m1A(σ)dσ)dτ)ds
1−R2

exp
(∫ t

α

m1A(s)ds
)

+
∫ t

α

[
c′(s)+m2A(s)

]
exp
(∫ t

s
m1A(σ)dσ

)
ds,(2.10)

where p,k,m1,m2 are as same defined in Theorem 2.1 and A(t) = f (t, t)+
∫ t

α
ft(t,s)ds.

Proof. Define a function z(t) by right hand side of (2.9). Then we observe that

z(α) = c(α)+
∫

β

α

g(s)up(s)ds(2.11)

and

z′(t)≤ c′(t)+A(t)z
1
p (t).(2.12)

From Lemma 1.1 and equation (2.12), we have

z′(t)−m1A(t)z(t)≤ c′(t)+m2A(t),[
z(t)

exp
(∫ t

α
n1A(s)ds

)]′ ≤ c′(t)+m2A(t).(2.13)

Set t = s; in equation (2.13) and integrate with respect to s from α to t, we get

z(t)
exp
(∫ t

α
m1A(s)ds

) ≤ z(α)+
∫ t

α

[
c′(s)+m2A(s)

]
exp
(
−
∫ s

α

m1A(s)ds
)

ds

z(t)≤ z(α)exp
(∫ t

α

m1A(s)ds
)
+

(∫ t

α

[
c′(s)+m2A(s)

]
exp
(∫ t

s
m1A(σ)dσ

)
ds
)
.(2.14)

As up(t)≤ z(t) from equation (2.14), we have

up(t)≤ z(α)exp
(∫ t

α

m1A(s)ds
)
+
∫ t

α

[
c′(s)+m2A(s)

]
exp
(∫ t

s
m1A(σ)dσ

)
ds.(2.15)
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Now from equation (2.11) and (2.15), we have

z(α)≤ c(α)+ z(α)
∫

β

α

g(s)exp
(∫ s

α

m1A(σ)dσ

)
ds

+
∫

β

α

g(s)
(∫ s

α

[
c′(τ)+m2A(τ)

]
exp
(∫ s

τ

m1A(σ)dσ

)
dτ

)
ds,

≤
c(α)+

∫
β

α
g(s)(

∫ s
α
[c′(τ)+m2A(τ)]exp(

∫ s
τ

m1A(σ)dσ)dτ)ds(
1−

∫
β

α
g(s)exp(

∫ s
α

m1A(σ)dσ)ds
) .(2.16)

From equation (2.15) and (2.16), we get (2.10). This completes the proof.

Theorem 2.4. Let u(t),c′(t) ∈C(I,R+), ft(t,s),g(t,s) ∈C(D,R+) and

up(t)≤ c(t)+
∫ t

α

f (t,s)u(s)ds+
∫

β

α

g(t,s)up(s)ds.(2.17)

If R3 =
∫

β

α

g(α,s)exp
(∫ s

α

[m1A(s)+B1(σ)]dσ

)
ds < 1, then

up(t)≤
c(α)+

∫
β

α
g(α,s)(

∫ s
α
[c′(τ)+m2A(τ)]exp(

∫ s
τ
[m1A(σ)+B1(σ)]dσ)dτ)ds(

1−
∫

β

α
g(α,s)exp(

∫ s
α
[m1A(σ)+B1(σ)]dσ)ds

) exp
(∫ t

α

[m1A(s)+B1(s)]ds
)

+
∫ t

α

[
c′(s)+m2A(s)

]
exp
(∫ t

s
[m1A(σ)+B1(σ)]dσ

)
ds,

(2.18)

where p,k,m1,m2 are as same defined in Theorem 2.1, A(t) is same as defined in Theorem 2.3

and B1(t) =
∫

β

α
gt(t,s)ds.

Proof. Define a function z(t) by

z(t) = c(t)+
∫ t

α

f (t,s)u(s)ds+
∫

β

α

g(t,s)up(s)ds.

Then u(t)≤ z
1
p (t),

z(α) = c(α)+
∫

β

α

g(α,s)up(s)ds(2.19)

and

z′(t) = c′(t)+
∫ t

α

ft(t,s)u(s)ds+ f (t, t)u(t)+
∫

β

α

gt(t,s)up(s)ds,

z′(t)≤ c′(t)+A(t)z
1
p (t)+B1(t)z(t),(2.20)
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From Lemma 1.1 and equation (2.20), we have

z′(t)− [m1A(t)+B1(t)]z(t)≤ c′(t)+m2A(t)[
z(t)

exp
(∫ t

α
[m1A(s)+B1(s)]ds

)]′ ≤ c′(t)+m2A(t).(2.21)

Integrating (2.21) with respect to s from α to t, we get

z(t)
exp
(∫ t

α
[m1A(s)+B1(s)]ds

) ≤ z(α)+
∫ t

α

[
c′(s)+m2A(s)

]
exp
(
−
∫ s

α

[m1A(σ)+B1(σ)]dσ

)
ds.

z(t)≤ z(α)exp
(∫ t

α

[m1A(s)+B1(s)]ds
)
+

(∫ t

α

[
c′(s)+m2A(s)

]
exp
(∫ t

s
[m1A(σ)+B1(σ)]dσ

)
ds
)
.

(2.22)

As up(t)≤ z(t) from equation (2.22), we have

up(t)≤ z(α)exp
(∫ t

α

[m1A(s)+B1(s)]ds
)
+
∫ t

α

[
c′(s)+m2A(s)

]
exp
(∫ t

s
[m1A(σ)+B1(σ)]dσ

)
ds.

(2.23)

Now from equation (2.19) and (2.23), we have

z(α)≤
c(α)+

∫
β

α
g(α,s)(

∫ s
α
[c′(τ)+m2A(τ)]exp(

∫ s
τ
[m1A(σ)+B1(σ)]dσ)dτ)ds(

1−
∫

β

α
g(α,s)exp(

∫ s
α
[m1A(σ)+B1(σ)]dσ)ds

) .(2.24)

From equation (2.23) and (2.24), we obtain (2.18). This completes the proof.

Theorem 2.5. Let u(t) ∈C(I,R+), ft(t,s),gt(t,s),at(t,s) ∈C(D,R+) and c ≥ 0 be a real con-

stant. If

up(t)≤ c+
∫ t

α

a(t,s)
[

u(s)+
∫ s

α

f (s,σ)u(σ)dσ

]
+
∫

β

α

g(t,s)up(s)ds, for t ∈ I(2.25)

and R4 =
∫

β

α

g(α,s)exp
(∫ s

α

[m1A1(σ)+B1(σ)]dσ

)
ds < 1, then

up(t)≤
c+

∫
β

α
g(α,s)(

∫ s
α

m2A1(τ)exp(
∫ s

τ
[m1A1(σ)+B1(σ)]dσ)dτ)ds

1−
∫

β

α
g(α,s)exp(

∫ s
α
[m1A1(σ)+B1(σ)]dσ)ds

exp
(∫ t

α

[m1A1(σ)+B1(σ)]dσ

)

+
∫ t

α

m2A1(s)exp
(∫ t

s
[m1A1(σ)+B1(σ)]dσ

)
,

(2.26)
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where p,k,m1,m2 are as same defined in Theorem 2.1,

A1(t) =
∫ t

α

at(t,s)
[

1+
∫ s

α

f (s,σ)dσ

]
+a(t, t)

[
1+

∫ t

α

f (t,σ)dσ

]
ds and B1(t) =

∫
β

α

gt(t,s)ds.

Proof. Define a function z(t) by

z(t) = c+
∫ t

α

a(t,s)
[

u(s)+
∫ s

α

f (s,σ)u(σ)dσ

]
ds+

∫
β

α

g(t,s)up(s)ds.

Then u(t)≤ z
1
p (t),

z(α) = c+
∫

β

α

g(α,s)up(s)ds(2.27)

and

z′(t)≤ A1(t)z
1
p (t)+ z(t)B1(t).(2.28)

From Lemma 1.1 and equation (2.28), we have

z′(t)− [m1A1(t)+B1(t)]z(t)≤ m2A1(t),[
z(t)

exp
(∫ t

α
[m1A1(σ)+B1(σ)]dσ

)]′ ≤ m2A1(t)exp
(
−
∫ t

α

[m1A1(σ)+B1(σ)]dσ

)
.(2.29)

Set t = s; in equation (2.29) and integrate with respect to s from α to t, we get

z(t)≤ z(α)exp
(∫ t

α

[m1A1(σ)+B1(σ)]dσ

)
+
∫ t

α

m2A1(s)exp
(∫ t

s
[m1A1(σ)+B1(σ)]dσ

)
ds.

(2.30)

As up(t)≤ z(t) from equation (2.30), we have

up(t)≤ z(α)exp
(∫ t

α

[m1A1(σ)+B1(σ)]dσ

)
+
∫ t

α

m2A1(s)exp
(∫ t

s
[m1A1(σ)+B1(σ)]dσ

)
ds.

(2.31)

Now from equation (2.27) and (2.31), we have

z(α)≤ c+
∫

β

α

g(α,s)
{

z(α)exp
(∫ s

α

[m1A1(σ)+B1(σ)]dσ

)
+
∫ s

α

m2A1(τ)exp
(∫ s

τ

[m1A1(σ)+B1(σ)]dσ

)
dτ

}
ds

≤
c+

∫
β

α
g(α,s)(

∫ s
α

m2A1(τ)exp(
∫ s

τ
[m1A1(σ)+B1(σ)]dσ)dτ)ds

1−
∫

β

α
g(α,s)exp(

∫ s
α
[m1A1(σ)+B1(σ)]dσ)ds

.(2.32)
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From equation (2.31) and (2.32), we obtain desired result given by (2.26). This completes the

proof.

Theorem 2.6. Let u(t), f (t),a(t),g(t) ∈C(I,R+) and c≥ 0 be a real constant. If

up(t)≤ c+
∫ t

α

a(s)
[

u(s)+
∫ s

α

f (σ)u(σ)dσ +
∫

β

α

g(σ)up(σ)dσ

]
ds,(2.33)

then

up(t)≤ cexp
(∫ t

α

[m1A2(σ)+B2(σ)]dσ

)
+
∫ t

α

m2A2(s)exp
(∫ t

s
[m1A2(σ)+B2(σ)]dσ

)
ds,

(2.34)

where p,k,m1,m2 are as same defined in Theorem 2.1, A2(t)= a(t)
[
1+

∫ t
α

f (σ)dσ
]

and B2(t)=

a(t)
∫

β

α
g(σ)dσ .

Proof. Define a function z(t) by right hand side of (2.33). Then we have u(t)≤ z
1
p (t), z(α) = c

and

z′(t)≤ A2(t)z
1
p (t)+ z(t)B2(t).(2.35)

Applying Lemma 1.1 to equation (2.35), we obtain

z′(t)− [m1A2(t)+B2(t)]z(t)≤ m2A2(t),[
z(t)

exp
(∫ t

α
[m1A2(σ)+B2(σ)]dσ

)]′ ≤ m2A2(t)exp
(
−
∫ t

α

[m1A2(σ)+B2(σ)]dσ

)
.(2.36)

Integrating (2.36) with respect to s and using the fact that up(t)≤ z(t), we get

up(t)≤ z(α)exp
(∫ t

α

[m1A2(σ)+B2(σ)]dσ

)
+
∫ t

α

m2A2(s)exp
(∫ t

s
[m1A2(σ)+B2(σ)]dσ

)
ds.

(2.37)

Now from equation (2.37) and z(α) = c, we get (2.34). This completes the proof.

3. Applications

One of the main motivations for the study of different type inequalities given in the previous section

is to apply them as tools in the study of various classes of integral equations. In the following section we

give application of some theorems of previous section. In fact we discuss the boundedness behavior of

solutions of a general nonlinear Volterra-Fredholm integral equations.
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Example 3.1. We calculate the explicate bound on the solution of the nonlinear integral equation of the

form:

u3(t) = 4+
∫ t

0

1
1− s

u(s)ds+
∫ 1

2

0

1

(1− s)
1
3

u3(s)ds(3.38)

where u(t) is defined as in Theorem 2.1 and we assume that every solution u(t) of (3.38) exists on R+.

Also, here

Q1 =
∫ 1/2

0

1

(1− s)
1
3

exp
(∫ s

α

m1
1

1−σ
dσ

)
ds = −

3
(
22/3−2m1

)
22/3(3m1−2)

< 1, for 0≤ m1 <
2
3
.

Hence, by Theorem 2.1 and equation (3.38), we get

up(t)≤ exp
(

1
3

∫ t

0

1
1− x

dx
)∫ 1

2

0

∫ s
0

exp
(∫ s

x
1

3(1−y) dy
)

1−x dx

3 3
√

1− s
ds+4

+
1
3

∫ t

0

exp
(∫ t

x
1

3(1−y) dy
)

1− x
dx

=

3
4

(
2+ 3
√

2−2 22/3
)
+4

3
√

1− t
+

3−3 3
√

1− t
3 3
√

1− t
.

In Figure 1 we plot the graph of estimated bound of u(t) for 0≤ t ≤ 1
2 .

FIGURE 1

Example 3.2. We calculate the explicate bound on the solution of the nonlinear integral equation of the

form:

u3(t) = 5+
∫ t

0
(t− s)u(s)ds+

∫ 1

0

t−1
t +1

u3(s)ds(3.39)

where u(t) are defined as in Theorem 2.3 and we assume that every solution u(t) of (3.39) exists on R+.

By Theorem 2.4, we have

p = 3, m1 =
1
p

k
1−p

p =
1
3

k
−2
3 ,m2 =

p−1
p

k
1
p =

2
3

k
1
3 ,α = 0,β =

1
2
,k > 0, f (s) = (t− s),g(s) =

t−1
t +1
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and

R3 =
∫

β

α

g(α,s)exp
(∫ s

α

m1A(σ)dσ

)
ds =

√
3π

2

(
− 3
√

k
)

erfi
(

1√
6 3
√

k

)
< 1, for any k > 0

Thus all the conditions of the Theorem 2.4 are satisfied, hence we obtain, for all k > 0

u(t)≤


(

5− k
(√

6π
3
√

kerfi
(

1√
6 3√k

)
−2
))

e
t2

6k2/3√
3π

2
3
√

kerfi
(

1√
6 3√k

)
+1

+2k
(

e
t2

6k2/3 −1
)

1
3

.
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