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L. HORVÁTH1, K.A. KHAN2, J. PEČARIĆ3,4,∗
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Abstract. In this paper, we give a refinement of discrete Jensen’s inequality for the operator convex functions. We

launch the corresponding mixed symmetric means for positive self-adjoint operators defined on Hilbert space and

also establish the refinement of inequality between power means of strictly positive operators.
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1. INTRODUCTION-PRELIMINARIES

H will from now on denote a complex Hilbert space. S(I) means the class of all self-adjoint

bounded operators on H whose spectra are contained in an interval I ⊂ R. The spectrum of a

bounded operator A on H is denoted by Sp(A).
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Let f : D f (⊂ R)→ R be a function and let I ⊂ D f be an interval. f is said to be operator

monotone on I if f is continuous on I and A, B ∈ S(I), A≤ B (i.e. B−A is a positive operator)

imply f (A) ≤ f (B). The function f is said to be operator convex on I if f is continuous on I

and

f (sA+ tB)≤ s f (A)+ t f (B)

for all A, B ∈ S(I) and for all positive numbers s and t such that s+ t = 1. The function f is

called operator concave on J if − f is operator convex on J.

Theorem 1.1. Jensen’s operator inequality: Let I ⊂ R be an interval, and let f : I→ R be an

operator convex function on I. If Ci ∈ S(I) (i = 1, . . . ,n), and wi > 0 (i = 1, ...,n) such that

∑
n
i=1 wi = 1, then

(1) f

(
n

∑
i=1

wiCi

)
≤

n

∑
i=1

wi f (Ci).

If f is an operator concave function on I, then the inequality in (1) is reversed.

Some interpolations of (1) are given in [3] as follows.

Theorem 1.2. Under the conditions of the Jensen’s operator inequality

(2) f (
n

∑
i=1

wiCi) = fn,n ≤ ...≤ fk,n ≤ ...≤ f1,n =
n

∑
i=1

wi f (Ci),

where for 1≤ k ≤ n

(3) fk,n :=
1(n−1

k−1

) ∑
1≤i1<...<ik≤n

(
k

∑
j=1

wi j

)
f


k
∑
j=1

wi jCi j

k
∑
j=1

wi j

.

Theorem 1.3. If the conditions of the Jensen’s operator inequality are satisfied, then

(4) f (
n

∑
i=1

wiCi)≤ ...≤ f k+1,n ≤ f k,n ≤ ...≤ f 1,n =
n

∑
i=1

wi f (Ci),

where for k ≥ 1
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(5) f k,n =
1(n+k−1

k−1

) ∑
1≤i1≤...≤ik≤n

(
k

∑
j=1

wi j

)
f


k
∑
j=1

wi jCi j

k
∑
j=1

wi j

.

A self-adjoint bounded operator A on H is called strictly positive if it is positive and invertible,

or equivalently, Sp(A)⊂ [m,M] for some 0 < m < M.

The power means for strictly positive operators C := (C1, ...,Cn) with positive weights w :=

(w1, ...,wn) are defined in [3] as follows:

(6) Mr(C,w) = Mr (C1, ...,Cn;w1, ...,wn) :=

(
1

Wn

n

∑
i=1

wiCr
i

) 1
r

,

where r ∈ R \ {0} and Wn : =
n
∑

i=1
wi. The following result about the monotonicity of power

means is also given in [3]:

(7) Ms(C,w)≤Mr(C,w)

holds if either s≤ r, s /∈ (−1,1), r /∈ (−1,1) or 1/2≤ s≤ 1≤ r or s≤−1≤ r ≤−1/2.

Some symmetric mixed means, corresponding to the expressions (3) and (5) are introduced

in [3]: for r,s ∈ R\{0} and for Wn = 1, define

(8)

Mn(s,r;k) :=(
1

(n−1
k−1)

∑
1≤i1<...<ik≤n

(
k
∑
j=1

wi j

)
Ms

r(Ci1 , ...,Cik ;wi1, ...,wik)

) 1
s

,

where 1≤ k ≤ n, and

(9)

Mn(s,r;k) :=(
1

(n+k−1
k−1 )

∑
1≤i1≤...≤ik≤n

(
k
∑
j=1

wi j

)
Ms

r(Ci1, ...,Cik ;wi1 , ...,wik)

) 1
s

,

where k ≥ 1.

The following result from [3] gives some refinements of (7).
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Theorem 1.4. Let C be an n-tuple of strictly positive operators, and let wi > 0 (i = 1, ...,n)

such that Wn = 1. Then the following inequalities are valid

(10) Ms(C,w) = Mn(s,r;1)≤ ...≤Mn(s,r;k)≤ ...≤Mn(s,r;n) = Mr(C,w),

and

(11) Ms(C,w) = Mn(s,r;1)≤ ...≤Mn(s,r;k)≤ ...≤Mr(C,w),

if either

(i) 1≤ s≤ r or

(ii) −r ≤ s≤−1 or

(iii) s≤−1, r ≥ s≥ 2r;

while the reverse inequalities are valid if either

(iv) r ≤ s≤−1 or

(v) 1≤ s≤−r or

(vi) s≥ 1, r ≤ s≤ 2r.

In this paper, we generalize the above results by using a new refinement of the Jensen’s

inequality from [2]. First, we give the notations introduced in [2]:

Let X be a set. The power set of X is denoted by P(X). |X | means the number of elements in X .

The usual symbol N is used for the set of natural numbers (including 0).

Let u≥ 1 and v≥ 2 be fixed integers. Define the functions

Sv,w : {1, . . . ,u}v→{1, . . . ,u}v−1 , 1≤ w≤ v,

Sv : {1, . . . ,u}v→ P
(
{1, . . . ,u}v−1

)
,

and

Tv : P({1, . . . ,u}v)→ P
(
{1, . . . ,u}v−1

)
by

Sv,w (i1, . . . , iv) := (i1, i2, . . . , iw−1, iw+1, . . . , iv) , 1≤ w≤ v,
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Sv (i1, . . . , iv) :=
v⋃

w=1

{Sv,w (i1, . . . , iv)} ,

and

Tv(I) :=


∅, if I =∅⋃

(i1,...,iv)∈I

Sv (i1, . . . , iv) , if I 6=∅ .

Next, let the function

αv,i : {1, . . . ,u}v→ N, 1≤ i≤ u,

be given by: αv,i (i1, . . . , iv) means the number of occurrences of i in the sequence (i1, . . . , iv).

For each I ∈ P({1, . . . ,u}v) let

αI,i := ∑
(i1,...,iv)∈I

αv,i (i1, . . . , iv) , 1≤ i≤ u.

It is easy to see that the dependence of the functions Sv,w, Sv, Tv and αv,i on u does not play

an important role, so we can use simplified notations.

The following hypotheses will give the basic context of our results.

(H1) Let n≥ 1 and k ≥ 2 be fixed integers, and let Ik be a subset of {1, . . . ,n}k such that

(12) αIk,i ≥ 1, 1≤ i≤ n.

(H2) Let I ⊂ R be an interval, and let Ci ∈ S(I) (1≤ i≤ n).

(H3) Let w1, . . . ,wn be positive numbers such that
n

∑
j=1

w j = 1.

(H4) Let the function f : I→ R be operator convex.

(H5) Let h, g : I→ R be continuous and strictly operator monotone functions.

We need some further preparations.

Starting from Ik, we introduce the sets Il ⊂ {1, . . . ,n}l (k−1≥ l ≥ 1) inductively by

Il−1 := Tl(Il), k ≥ l ≥ 2.

Obviously, I1 = {1, . . . ,n}, by (12), and this insures that αI1,i = 1 (1≤ i≤ n). From (12) again,

we have that αIl ,i ≥ 1 (k−1≥ l ≥ 1,1≤ i≤ n).
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For any k ≥ l ≥ 2 and for any ( j1, . . . , jl−1) ∈ Il−1, let

HIl ( j1, . . . , jl−1)

:=
{
((i1, . . . , il),m) ∈ Il×{1, . . . , l} | Sl,m(i1, . . . , il) = ( j1, . . . , jl−1)

}
.

Using these sets we define the functions tIk,l : Il → N (k ≥ l ≥ 1) inductively by

tIk,k (i1, . . . , ik) := 1, (i1, . . . , ik) ∈ Ik;(13)

tIk,l−1( j1, . . . , jl−1) := ∑
((i1,...,il),m)∈HIl ( j1,..., jl−1)

tIk,l (i1, . . . , il) .(14)

2. MAIN RESULTS

The main results of this paper involve some special expressions, which we now describe.

Suppose (H1)-(H4). For any k ≥ l ≥ 1 let

Al,l = Al,l (Ik,C1, . . . ,Cn,w1, . . . ,wn)(15)

:= ∑
(i1,...,il)∈Il

(
l

∑
s=1

wis
αIl ,is

)
f


l

∑
s=1

wis
αIl ,is

Cis

l

∑
s=1

wis
αIl ,is

 ,

and associate to each k−1≥ l ≥ 1 the operator

Ak,l = Ak,l (Ik,C1, . . . ,Cn,w1, . . . ,wn)(16)

:=
1

(k−1) . . . l ∑
(i1,...,il)∈Il

tIk,l (i1, . . . , il)

(
l

∑
s=1

wis
αIk,is

)
f


l

∑
s=1

wis
αIk ,is

Cis

l

∑
s=1

wis
αIk ,is

 .

With these preparations out of the way we come to

Theorem 2.1. Assume (H1)-(H4). Then

(a)

(17) f

(
n

∑
r=1

wrCr

)
≤ Ak,k ≤ Ak,k−1 ≤ . . .≤ Ak,2 ≤ Ak,1 =

n

∑
r=1

wr f (Cr).
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(b) Suppose |HIl ( j1, . . . , jl−1)|= βl−1 for any ( j1, . . . , jl−1) ∈ Il−1 (k ≥ l ≥ 2). Then

(18) Ak,l = Al,l =
n

l |Il| ∑
(i1,...,il)∈Il

(
l

∑
s=1

wis

)
f


l

∑
s=1

wisCis

l

∑
s=1

wis

 , (k ≥ l ≥ 1) ,

and thus

f

(
n

∑
r=1

wrCr

)
≤ Ak,k ≤ Ak−1,k−1 ≤ . . .≤ A2,2 ≤ A1,1 =

n

∑
r=1

wr f (Cr).

To prove these results we can use the same method as in the proof of the main result (Theorem

1) in [2], so we omit the proofs.

3. DISCUSSION, AND APPLICATIONS

Throughout Examples (3.1-3.6) (based on the examples in [2]) the conditions (H2)-(H4) will

be assumed.

Theorem 2.1 contains Theorem 1.2, as the first example shows.

Example 3.1. Let

Ik :=
{
(i1, . . . , ik) ∈ {1, . . . ,n}k | i1 < .. . < ik

}
, 1≤ k ≤ n.

Then αIn,i = 1 (i = 1, . . . ,n) ensuring (H1) with k = n. It is easy to check that Tk(Ik) = Ik−1

(k = 2, . . . ,n), |Ik|=
(n

k

)
(k = 1, . . . ,n), and for every k = 2, . . . ,n

|HIk( j1, . . . , jk−1)|= n− (k−1), ( j1, . . . , jk−1) ∈ Ik−1,

and therefore, thanks to Theorem 2.1 (b),

Ak,k =
1(n−1

k−1

) ∑
1≤i1<...<ik≤n

(
k

∑
s=1

wis

)
f


k

∑
s=1

wisCis

k

∑
s=1

wis

 , k = 1, . . . ,n.

and

(19) f

(
n

∑
r=1

wrCr

)
≤ Ak,k ≤ Ak−1,k−1 ≤ . . .≤ A2,2 ≤ A1,1 =

n

∑
r=1

wr f (Cr).
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If w1 = . . .= wn =
1
n , then

Ak,k =
1(n
k

) ∑
1≤i1<...<ik≤n

f
(

Ci1 + . . .+Cik
k

)
, k = 1, . . . ,n,

and thus (19) gives Theorem 1.2.

The next example illustrates that Theorem 1.3 is a also special case of Theorem 2.1.

Example 3.2. Let

Ik :=
{
(i1, . . . , ik) ∈ {1, . . . ,n}k | i1 ≤ . . .≤ ik

}
, k ≥ 1.

Obviously, αIk,i ≥ 1 (i = 1, . . . ,n), and therefore (H1) is satisfied. It is not hard to see that

Tk(Ik) = Ik−1 (k = 2, . . .), |Ik|=
(n+k−1

k

)
(k = 1, . . .), and for each l = 2, . . . ,k

|HIl( j1, . . . , jl−1)|= n, ( j1, . . . , jl−1) ∈ Il−1.

Consequently, by applying Theorem 2.1 (b), we deduce that

Ak,k =
1(n+k−1

k−1

) ∑
1≤i1≤...≤ik≤n

(
k

∑
s=1

wis

)
f


k

∑
s=1

wisCis

k

∑
s=1

wis

 , k ≥ 1,

and

(20) f

(
n

∑
r=1

wrCr

)
≤ . . .≤ Ak,k ≤ . . .≤ Ak,1 =

n

∑
r=1

wr f (Cr).

By taking w1 = . . .= wn =
1
n , we obtain that

Ak,k =
1(n+k−1
k

) ∑
1≤i1≤...≤ik≤n

f
(

Ci1 + . . .+Cik
k

)
, k ≥ 1,

and thus (20) gives Theorem 1.3.

The following two examples are particular cases of Theorem 2.1 (b).

Example 3.3. Let

Ik := {1, . . . ,n}k , k ≥ 1.
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Trivially, αIk,i ≥ 1 (i = 1, . . . ,n), hence (H1) holds. It is evident that Tk(Ik) = Ik−1 (k = 2, . . .),

|Ik|= nk (k = 1, . . .), and for every l = 2, . . . ,k

|HIl( j1, . . . , jl−1)|= nl, ( j1, . . . , jl−1) ∈ Il−1,

and therefore Theorem 2.1 (b) leads to

Ak,k =
1

knk−1 ∑
(i1,...,ik)∈Ik

(
k

∑
s=1

wis

)
f


k

∑
s=1

wisCis

k

∑
s=1

wis

 , k ≥ 1,

and

f

(
n

∑
r=1

wrCr

)
≤ . . .≤ Ak,k ≤ . . .≤ A1,1 =

n

∑
r=1

wr f (Cr), k ≥ 1.

Especially, for w1 = . . .wn =
1
n we find that

Ak,k =
1
nk ∑

(i1,...,ik)∈Ik

f
(

Ci1 + . . .+Cik
k

)
, k = 1, . . . ,n.

Example 3.4. For 1≤ k≤ n let Ik consist of all sequences (i1, . . . , ik) of k distinct numbers from

{1, . . . ,n}. Then αIn,i ≥ 1 (i = 1, . . . ,n), hence (H1) is valid. It is immediate that Tk(Ik) = Ik−1

(k = 2, . . . ,n), |Ik|= n(n−1) . . .(n− k+1) (k = 1, . . . ,n), and for each k = 2, . . . ,n

|HIk( j1, . . . , jk−1)|= (n− (k−1))k, ( j1, . . . , jk−1) ∈ Ik−1.

and from them, on account of Theorem 2.1 (b), follows

Ak,k =
n

kn(n−1) . . .(n− k+1)

· ∑
(i1,...,ik)∈Ik

(
k

∑
s=1

wis

)
f


k

∑
s=1

wisCis

k

∑
s=1

wis

 , k = 1, . . . ,n

and

f

(
n

∑
r=1

wrCr

)
≤ An,n ≤ . . .≤ Ak,k ≤ . . .≤ A1,1 =

n

∑
r=1

wr f (Cr).

If we set w1 = . . .= wn =
1
n , then

Ak,k =
1

n(n−1) . . .(n− k+1) ∑
(i1,...,ik)∈Ik

f
(

Ci1 + . . .+Cik
k

)
, k = 1, . . . ,n.
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In the sequel two interesting consequences of Theorem 2.1 (a) are given.

Example 3.5. Let ci≥ 1 be an integer (i= 1, . . . ,n), let k :=
n

∑
i=1

ci, and let Ik =Pc1,...,cn consist of

all sequences (i1, . . . , ik) in which the number of occurrences of i∈ {1, . . . ,n} is ci (i = 1, . . . ,n).

Evidently, (H1) is satisfied. A simple calculation shows that

Ik−1 =
n⋃

i=1

Pc1,...,ci−1,ci−1,ci+1,...,cn, αIk,i =
k!

c1! . . .cn!
ci, i = 1, . . . ,n,

and

tIk,k−1 (i1, . . . , ik−1) = k,

if (i1, . . . , ik−1) ∈ Pc1,...,ci−1,ci−1,ci+1,...,cn, i = 1, . . . ,n,

and

f

(
n

∑
r=1

wrCr

)
= Ak,k

=
c1! . . .cn!

k! ∑
(i1,...,ik)∈Ik

(
k

∑
s=1

wis
cis

)
f


k

∑
s=1

wis
cis

Cis

k

∑
s=1

wis
cis

 .

According to Theorem 2.1 (a)

f

(
n

∑
r=1

wrCr

)
≤ Ak,k−1 ≤

n

∑
r=1

wr f (Cr),

where

Ak,k−1 =
1

k−1

n

∑
i=1

(ci−wi) f


n

∑
r=1

wrCr− wi
ci

Ci

1− wi
ci

 .

Example 3.6. Let

I2 :=
{
(i1, i2) ∈ {1, . . . ,n}2 | i1|i2

}
.

The notation i1|i2 means that i1 divides i2. Since i|i (i = 1, . . . ,n), (H1) holds. In this case

αI2,i =
[n

i

]
+d(i), i = 1, . . . ,n,
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where
[n

i

]
is the largest natural number that does not exceed n

i , and d(i) denotes the number of

positive divisors of i. By Theorem 2.1 (a), we have

f

(
n

∑
r=1

wrCr

)
≤ ∑

(i1,i2)∈I2

 wi1[
n
i1

]
+d(i1)

+
wi2[

n
i2

]
+d(i2)



· f


wi1[

n
i1

]
+d(i1)

Ci1 +
wi2[

n
i2

]
+d(i2)

Ci2

wi1[
n
i1

]
+d(i1)

+
wi2[

n
i2

]
+d(i2)

≤ n

∑
r=1

wr f (Cr).

4. SYMMETRIC MEANS

Assume (H1)-(H3). The power means corresponding to il := (i1, . . . , il) ∈ Il (l = 1, . . . ,k) are

given as:

(21) Mr(Ik, il) :=


l
∑

s=1

wis
αIk ,is

Cr
is

l
∑

s=1

wis
αIk ,is


1
r

, r 6= 0.

Next, we introduce the mixed symmetric means corresponding to the expressions (15) and (16)

as follows:

(22) M1
s,r(Ik,k) :=

 ∑
ik=(i1,...,ik)∈Ik

(
k

∑
j=1

wi j

αIk,i j

)(
Mr(Ik, i

k)
)s


1
s

, s 6= 0,

and for k−1≥ l ≥ 1

(23)

M1
s,r(Ik, l) :=(

1
(k−1)...l ∑

il=(i1,...,il )∈Il

tIk,l(i
l)

(
l
∑
j=1

wi j
αIk ,i j

)(
Mr(Ik, il)

)s

) 1
s

, s 6= 0.

The following result is a comprehensive generalization of Theorem 1.4.

Theorem 4.1. Assume (H1)-(H3) for an n-tuple C of strictly positive operators. Then

(24) Ms(C,w) = M1
s,r(Ik,1)≤ ....≤M1

s,r(Ik,k)≤Mr(C,w).

holds if either
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(i) 1≤ s≤ r or

(ii) −r ≤ s≤−1 or

(iii) s≤−1, r ≥ s≥ 2r;

while the reverse inequalities hold in (24) if either

(iv) r ≤ s≤−1 or

(v) 1≤ s≤−r or

(vi) s≥ 1, r ≤ s≤ 2r.

Proof. It is well known (see [1]) that the function f : D f (⊂ R)→ R, f (x) = xp is operator

convex on (0,∞) if either 1≤ p≤ 2 or−1≤ p≤ 0, and operator concave on (0,∞) if 0≤ p≤ 1,

while f is operator monotone on (0,∞) if 0≤ p≤ 1. It is also true that− f is operator monotone

on (0,∞) if −1 ≤ p ≤ 0. By using these facts, we can apply Theorem 2.1 (a) to the function

f (x) = x
s
r , and the operators Cr

i (i = 1, . . . ,n).

�

Assume (H1)-(H3) and (H5). Then we define the quasi-arithmetic means with respect to (15)

and (16) as follows:

(25) M1
h,g(Ik,k) := h−1

 ∑
(i1,...,ik)∈Ik

(
k

∑
s=1

wis
αIk,is

)
h◦g−1


k
∑

s=1

wis
αIk ,is

g(Cis)

k
∑

s=1

wis
αIk ,is


 ,

and for k−1≥ l ≥ 1

(26)

M1
h,g(Ik, l) :=

h−1

 1
(k−1)...l ∑

il=(i1,...,il)∈Il

tIk,l(i
l)

(
l
∑

s=1

wis
αIk ,is

)
h◦g−1

 l
∑

s=1

wis
αIk ,is

g(Cis)

l
∑

s=1

wis
αIk ,is

 .

The monotonicity of these generalized means is obtained in the next corollary.

Corollary 4.2. Assume (H1)-(H3) and (H5). For a continuous and strictly operator monotone

function q : I→ R we define

Mq := q−1

(
n

∑
i=1

wiq(Ci)

)
.
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Then

(27) Mh = M1
h,g(Ik,1)≥ ...≥M1

h,g(Ik,k)≥Mg,

if either h◦g−1 is operator convex and h−1 is operator monotone or h◦g−1 is operator concave

and −h−1 is operator monotone;

(28) Mg = M1
g,h(Ik,1)≤ ...≤M1

g,h(Ik,k)≤Mh,

if either g◦h−1 is operator convex and −g−1 is operator monotone or g◦h−1 is operator con-

cave and g−1 is operator monotone.

Proof. First, we apply Theorem 2.1 (a) to the function h◦g−1 and replace Ci to g(Ci), then we

apply h−1 to the inequality coming from (17). This gives (27). A similar argument gives (28):

g◦h−1, Ci = h(Ci) and g−1can be used. �

Assume (H1)-(H3), and suppose |HII( j1, ..., jl−1)|= βl−1 for any ( j1, ..., jl−1)∈ Il−1 (k≥ l ≥

2). In this case the power means corresponding to il := (i1, . . . , il) ∈ Il (l = 1, . . . ,k) has the

form

Mr(Il, il) = Mr(Ik, il) =


l

∑
s=1

wi jC
r
i j

l

∑
s=1

wi j


1
r

, r 6= 0.

Now, for k ≥ l ≥ 1 we introduce the mixed symmetric means related to (18) as follows:

(29) M2
s,r(Il) :=

 n
l |Il| ∑

il=(i1,...,il)∈Il

(
l

∑
j=1

wi j

)(
Mr

(
Il, il
))

s

 1
s

, s 6= 0.

Corollary 4.3. Assume (H1)-(H3), and suppose |HII( j1, ..., jl−1)|= βl−1 for any ( j1, ..., jl−1) ∈

Il−1 (k ≥ l ≥ 2). Then

(30) Ms(C,w) = M2
s,r(I1)≤ . . .≤M2

s,r(Ik)≤Mr(C,w).

holds if either

(i) 1≤ s≤ r or

(ii) −r ≤ s≤−1 or
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(iii) s≤−1, r ≥ s≥ 2r;

while the reverse inequalities hold in (30) if either

(iv) r ≤ s≤−1 or

(v) 1≤ s≤−r or

(vi) s≥ 1, r ≤ s≤ 2r.

Proof. It comes from Theorem 4.1. �

Assume (H1)-(H3) and (H5), and suppose |HII( j1, ..., jl−1)|= βl−1 for any ( j1, ..., jl−1)∈ Il−1

(k≥ l ≥ 2). We define for k≥ l ≥ 1 the quasi-arithmetic means with respect to (18) as follows:

(31) M2
h,g(Il) := h−1

 n
l|Il | ∑

(i1,...,il)∈Il

(
l
∑

s=1
wis

)
h◦g−1

 l
∑

s=1
wisg(Cis)

l
∑

s=1
wis

 .

Corollary 4.4. Assume (H1)-(H3) and (H5), and suppose |HII( j1, ..., jl−1)| = βl−1 for any

( j1, ..., jl−1) ∈ Il−1 (k ≥ l ≥ 2). Then

(32) Mh = M2
h,g(I1)≥ . . .≥M2

h,g(Ik)≥Mg,

where either h◦g−1 is operator convex and h−1 is operator monotone or h◦g−1 is operator

concave and −h−1 is operator monotone;

(33) Mg = M2
g,h(I1)≤ . . .≤M2

g,h(Ik)≤Mh,

where either g◦h−1 is operator convex and −g−1 is operator monotone or g◦h−1 is operator

concave and g−1 is operator monotone.

Proof. Similar to the proof of Corollary 4.2. �

Finally, we apply the results of this section in some special cases. Throughout Remarks 4.5-

4.8 and 4.10-4.9, which are based on examples in [2], the conditions (H2)-(H3) (in the mixed

symmetric means) and (H5) (in the quasi-arithmetic means) will be assumed.

Remark 4.5. In the case of Example 3.1, for n≥ k ≥ 1 (29) becomes

(34) M2
s,r(Ik) =

(
1(n−1

k−1

) ∑
1≤i1<...<ik≤n

(
k

∑
j=1

wi j

)(
Mr(Ik, i

k)
)s
) 1

s

, s 6= 0.
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and (31) has the form

(35) M2
h,g(Ik) = h−1

 1(n−1
k−1

) ∑
1≤i1<...<ik≤n

(
k

∑
s=1

wis

)
h◦g−1


k
∑

s=1
wisg(Cis)

k
∑

s=1
wis


.

Remark 4.6. Under the setting of Example 3.2, for k ≥ 1 (29) becomes

(36) M2
s,r(Ik) =

(
1(n+k−1

k−1

) ∑
1≤i1≤...≤ik≤n

(
k

∑
j=1

wi j

)(
Mr(Ik, i

k)
)s
) 1

s

, s 6= 0.

and (31) has the form

(37) M2
h,g(Ik) = h−1

 1(n+k−1
k−1

) ∑
1≤i1≤...≤ik≤n

(
k

∑
s=1

wis

)
h◦g−1


k
∑

s=1
wisg(Cis)

k
∑

s=1
wis


.

(34) and (36) represents mixed symmetric means as given in [3]. Therefore Corollary 4.3 is a

generalization of results given in [3].

Remark 4.7. Under the setting of Example 3.3, for k ≥ 1, (29) leads to

(38) M2
s,r(Ik) =

 1
knk−1 ∑

ik=(i1,...,ik)∈Ik

(
k

∑
j=1

wi j

)(
Mr(Ik,i

k)
)s

 1
s

, s 6= 0.

and (31) gives

(39) M2
h,g(Ik) = h−1

 1
knk−1 ∑

ik=(i1,...,ik)∈Ik

(
k

∑
s=1

wis

)
h◦g−1


k
∑

s=1
wisg(Cis)

k
∑

s=1
wis


,

respectively.

Remark 4.8. Under the setting of Example 3.4, for k = 1, ...,n, (29) gives

(40) M2
s,r(Ik) =

 n
kn(n−1)...(n− k+1) ∑

ik=(i1,...,ik)∈Ik

(
k

∑
j=1

wi j

)(
Mr(Ik, i

k)
)s

 1
s

, s 6= 0.

and (31) has the form

(41) M2
h,g(Ik) = h−1

 n
kn(n−1)...(n−k+1) ∑

ik=(i1 ,...,ik)∈Ik

(
k
∑

s=1
wis

)
h◦g−1

 k
∑

s=1
wis g(Cis )

k
∑

s=1
wis

 ,

respectively.
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Remark 4.9. Under the construction of Example 3.5, (23) is written as

(42) M1
s,r(Ik,k−1) =

 1
k−1

n

∑
i=1

(ci−wi)


n
∑
j=1

w jCr
j−

wi
ci

Cr
i

1− wi
ci


s
r


1
s

, s 6= 0, r 6= 0,

while (26) becomes

(43) M1
h,g(Ik,k−1) = h−1

 1
k−1

n

∑
i=1

(ci−wi)h◦g−1


n
∑

r=1
wrg(Cr)− wi

ci
g(Ci)

1− wi
ci


.

Remark 4.10. Under the construction of Example 3.6, (22) gives

(44) M1
s,r(I2,2) =

 ∑
i2=(i1,i2)∈I2

 2

∑
j=1

wi j[
n
i j

]
+d(i j)

(Mr(I2, i
2)
)s

 1
s

, s 6= 0,

while (25) gives

(45)

M1
h,g(I2,2)

= h−1

 ∑
(i1,i2)∈I2

(
2
∑

s=1

wis

[ n
is ]+d(is)

)
h◦g−1


2
∑

s=1

wis
[ n

is ]+d(is)
g(Cis)

2
∑

s=1

wis
[ n

is ]+d(is)


 .
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[2] L. Horváth, J. Pečarić, A refinement of the discrete Jensen’s inequality, Math. Ineq. Appl. 14 (2011), 777-791.



REFINEMENT OF JENSEN’S INEQUALITY FOR OPERATOR CONVEX FUNCTIONS 17
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