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Abstract. In this paper, some basic fractional differential inequalities for a finite system of an initial value problem

of hybrid fractional differential equations involving derivatives are proved with a linear perturbation of second type.

An existence and a comparison theorem for the considered hybrid fractional differential have also been established.
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1. Introduction

Given a closed and bounded interval J = [t0, t0 +a] in R, R being the real line, let

t0D−n
t f (t) =

1
Γ(n)

∫ t

t0
(t− tn)

n−1 f (tn)dtn, t ∈ J,

for any real number n which is called the Riemann-Livoulle fractional integral of order n for the

integrable function f : J→ R.

∗Corresponding author

Received June 25, 2014

1



2 ANURUDRA Y. SHETE, BAPURAO C. DHAGE, NAMDEV S. JADHAV

Let m− p = q, where m is the least integer greater than q and 0 < p ≤ 1. Then the Caputo

fractional derivative of an arbitrary order q denoted by cDq, we have

cDqx(t) =c Dm−px(t) =
1

Γ(p)

∫ t

t0
(t− s)p−1x(m)(s)ds,

where we take advantage of the fact cDm is the ordinary mth derivative dm

dtm . We have that

Dm−p = DmD−p. From now on we delete t0, t in the notation t0Dq
t . So, if 0 < q < 1, then the

above equation reduces to

cDqx(t) =
1

Γ(p)

∫ t

t0
(t− s)p−1x′(s)ds,

which is the Caputo fractional derivative of order 0 < q < 1.

Now, given the Euclidean space Rn, consider the finite system of perturbed fractional differ-

ential equations (in short FDE)

cDq[x(t)− f (t,x(t))] = g(t,x(t)), t ∈ J,

x(t0) = x0 ∈ Rn,

 (1.1)

where cDq is the Caputo fractional derivative of non-integer order q, 0 < q < 1 and f ,g : J×

Rn→ Rn are continuous.

Let 0 < q < 1 and p = 1−q. Denote by Cp(J,Rn), the function space

Cp(J,Rn) =
{

u ∈C(J,Rn) | (t− t0)pu(t) ∈C(J,Rn)
}
.

By a solution of the FDE (1.1) we mean a function x ∈Cp(J,Rn) satisfying

(i) the map t 7→ x− f (t,x) is continuous for each x ∈ Rn, and

(ii) cDq[x(t)− f (t,x(t))] exists and satisfies (1.1) on J.

The FDE (1.1) is a hybrid non-integer order Caputo fractional differential equation with a

linear perturbation of second type and include the following system of FDE,

cDqx(t) = g(t,x(t)), t ∈ J,

x(t0) = x0 ∈ Rn,

 (1.2)

as a special case. A systematic account of different types of perturbed differential equations

is given in Dhage [2]. The FDE (1.2) has been studied for different aspects of the solution

by several authors in the literature. The details of fractional differential equations and their
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applications are given in Kilbas et al. [6] and Podlubny [7]. In this paper, we discuss some of

the basic differential inequalities for the hybrid FDE (1.1) on J under suitable conditions.

2. Strict and nonstrict inequalities

We need the following definitions in what follows.

Definition 2.1 A function f (t,x) is said to be quasi-monotone increasing in x ∈ Rn if x,y ∈ Rn

with x < y, then fi(t,x) < fi(t,y) for each i = 1,2, . . . ,n and for each t ∈ J, where x < y if and

only if xi < yi for each i = 1,2, . . . ,n.

Definition 2.2 A function f (t,x) is said to be quasi-monotone nondecreasing in x ∈ Rn if

x,y ∈ Rn with x ≤ y, then fi(t,x) ≤ fi(t,y) for each i = 1,2, . . . ,n and for each t ∈ J, where

x≤ y ⇐⇒ xi ≤ yi for each i = 1,2, . . . ,n.

We consider the following hypotheses in the sequel.

(A0) The mapping x 7→ x− f (t,x) is quasi-monotone increasing for each t ∈ J, and

(B0) The mapping x 7→ g(t,x) is quasi-monotone nondecreasing for each t ∈ J.

Theorem 2.1 Let x,y ∈Cp(J,Rn) be two locally Hölder continuous with an exponent λq, 0 <

λ < 1 and let hypotheses (A0) and (B0) hold. Suppose that

cDq[x(t)− f (t,x(t))≤ g(t,x(t)), t ∈ J,

x(t0)≤ x0,

 (2.1)

and
cDq[y(t)− f (t,y(t))]≥ g(t,y(t)), t ∈ J,

y(t0)≥ y0.

 (2.2)

If one of the inequalities (2.1) and (2.2) is strict and

x0 < y0 (2.3)

then

x(t)< y(t), t ∈ J. (2.4)
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Proof. Suppose that inequality (2.4) is not true. Define

X(t) = x(t)− f (t,x(t))

and

Y (t) = y(t)− f (t,y(t))

for each t ∈ J. Then from the continuity of the functions X and Y it follows that there exists an

index j, 1≤ j ≤ n and t0 ≤ t1 ≤ t0 +a such that

X j(t1) = Y j(t1), X j(t)≤ Yj(t), t0 ≤ t1 < tt0 +a

and

Xi(t)≤ Yi(t), i 6= j.

Setting

M j(t1) = 0, M j(t)≤ 0, t0 ≤ t ≤ t1,

and

Mi(t)(t1)≤ 0, i 6= j.

Applying a standard result, we obtain

cDqM j(t1)≥ 0. 2.5

Now, assuming the strict inequality (2.2), we obtain from hypotheses (A0) and (B0) that

g j(t,x1(t1), · · · ,xn(t1))≥c Dq[x j(t1)− f j(t1,x1(t1), · · · ,xn(t1)))
]

≥c Dq[y j(t1)− f j(t1,y1(t1), · · · ,yn(t1)))
]

> g j(t,y1(t1), · · · ,yn(t1)).

(2.6)

The above relation (2.6) is a contradiction and hence the relation (2.4) holds on J. This com-

pletes the proof.

The next result is a nonstrict inequality for the hybrid FDE (1.1) on J. This result is proved

under a one-sided Lipschitz condition.
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Theorem 2.2 Assume that the inequalities (2.1) and (2.2) with nonstrict inequalities and that

the hypotheses (A0) and (B0) hold. Further suppose that there exists a constant L > 0 such that

gi(t,x)−gi(t,y)≤ L(xi− yi), (2.7)

for each i, 1≤ i≤ n, where x,y ∈C(J,R) with x≥ y.

Then,

x0 ≤ y0, (2.8)

implies

x(t)≤ y(t), t ∈ J. (2.9)

Proof. We set

Yε(t) = Y (t)+ ελ (t) (2.10)

for each ε > 0, ε ∈ Rn, where λ (t) = (t− t0)1−qEq,q2L(t− t0)q. This shows that

Y o
ε > Y o > Xo

which yields that

Yε(t)> Y (t).

Now employing the Lipschitz condition, we find that

cDq[y(t)− f (t,y(t))
]
=c DqY (t)+ εDq

λ (t)

≥ g(t,y(t))+2εLλ (t)

≥ g(t,yε(t))−Lελ (t)+2Lελ (t)

> g(t,yε(t)).

Here, we have employed the fact that λ (t) is a solution of the IVP

cDq
λ (t) = 2Lλ (t), λ (t0) = λ0

with λ0 = 1. Now we apply Theorem 2.1 to Yε(t) and X(t) to get

Yε(t)> X(t), t ∈ J.
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When ε → 0, we obtain

Y (t)≥ X(t) or y(t)− f (t,y(t))≥ x(t)− f (t,x(t))

for each t ∈ J. Finally, from hypothesis (A0) we get the desired conclusion (2.9).

3. Existence and comparison theorems

The importance of the mathematical inequalities lies in their applications to allied areas of

mathematics. Similarly, differential inequalities proved in Theorem 2.1 and 2.2 are very much

useful for proving the other aspects for the hybrid FDE (1.1) on J. Next, we prove the compar-

ison theorems for FDE (1.1), since comparison theorems are powerful tools for proving global

existence and uniqueness results for differential and integral equations. Hence, differential and

integral inequalities have importance place in the theory of differential and integral equations.

Before stating our comparison result, we list some basic hypotheses concerning the functions

involved in the FDE (1.1). These hypotheses are needed for proving the existence theorem for

the FDE (1.1). We only sketch the main steps involved in the proof of existence result, because

its proof is similar to that of a scalar case treated in Dhage and Mugale [3].

(A1) There exist constants L > 0 and M > 0 such that

| f (t,x)− f (t,y)| ≤ L|x− y|n
M+ |x− y|n

for all t ∈ J, where | · |n is a norm in Rn. Moreover, we assume that L≤M.

(B1) The function g is bounded on J×Rn.

Theorem 3.1 (Existence Theorem) Assume that hypotheses (A0)-(A1) and (B0)-(B1) hold. Then

the hybrid FDE (1.1) admits a solution.

Proof. The hybrid FDE (1.1) is equivalent to the fractional integral equation (FIE)

x(t) = X0 + f (t,x(t))+
1

Γ(q)

∫ t

t0
(t− s)q−1g(s,x(s))ds, t ∈ J, (3.1)

where, X0 = x0− f (t0,x0) ∈ Rn.

We place the FIE in the space X =C(J,Rn) and define a subset S of X by

S =
{

x ∈C(J,Rn) | ‖x‖ ≤M
}
, (3.2)
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where sup
t∈J
| f (t,0)|n = F0 and M = |X0|n +

Mga
q +L+F0.

Define two operators A : C(J,Rn)→C(J,Rn) and B : S→C(J,Rn) by

Ax(t) = f (t,x(t)), t ∈ J, (3.3)

and

Bx(t) = X0 +
1

Γ(q)

∫ t

t0
(t− s)q−1g(s,x(s))ds, t ∈ J. (3.4)

Then the FIE (3.1) is transformed into the following equivalent operator equation

Ax(t)+Bx(t) = x(t), t ∈ J. (3.5)

The rest of the proof is similar to Theorem 3.2 given in Dhage and Mugale [3] and can be

obtained by an application of a hybrid fixed point theorem of Dhage [1] in a Banach space

C(J,Rn) with appropriate modifications.

Theorem 2.4 (Comparison theorem) Assume that hypotheses m ∈ Cp(J,Rn) is locally Hölder

continuous and

cDq[m(t)− f (t,m(t))]≤ g(t,m(t)) (3.6)

for all t ∈ J. Let r(t) be the maximal solution of the IVP

cDq[u(t)− f (t,u(t))] = g(t,u(t)), t ∈ J,

u(t0) = u0,

 (3.7)

existing on J such that

M0 ≤ u0. (3.8)

Then, we have

m(t)≤ r(t), t ∈ J. (3.9)

Proof. From the notion of a maximal solution r(t), it is enough to prove that

m(t)≤ r(t,ε), t ∈ J, (3.10)
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where r(t,ε) is any solution of the hybrid FDE

cDq[u(t)− f (t,u(t))] = g(t,u(t))+ ε,

u(t0) = u0 + ε,

 (3.11)

for all t ∈ J, where ε > 0 is small number in Rn.

Now the expression in (3.11) yields

cDq[u(t)− f (t,u(t))] = g(t,u(t))+ ε

> g(t,u(t))

Applying strict inequality formulated in Theorem 2.1, we obtain m(t)< r(t,ε), t ∈ J. Note that

lim
ε→0

r(t,ε) = r(t) (3.12)

uniformly on J. Taking the limit as ε → 0 in (3.12) yields (3.9). This completes the proof.
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