
_______________ 

*Corresponding author 

Received September 17, 2014 

1 

 

 

 

 

      

A SYSTEM OF NONLINEAR INTEGRAL EQUATIONS 

ZAREEN A. KHAN 

Department of Mathematics, 

Princess Noura Bint Abdurehman University, Riyadh-KSA 

Copyright © 2014 Zareen A. Khan. This is an open access article distributed under the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract: The purpose of this paper is to establish some new variations on a system of nonlinear integral equations 

of one independent variable. 

Keywords and phrases: Integral inequalities; Integral equations; one independent variable; partial differential 

equations; nondecreasing; nonincreasing. 

2010Mathematics Subject Classification: 26D15, 26D07, 26D10, 34A40. 

 

1. Introduction 

The Gronwall type integral inequalities provide a necessary tool for the study of the theory of 

differential equations,integral equations and inequalities of the various types (please, see 

Gronwall [7] and Guiliano [8]). 

Closely related to the foregoing first-order ordinary differential operators is the following result 

of Bellman [5]:  

Lemma1: If the functions )(tg and )(tu  are nonnegative for t ≥ 0, and if c ≥ 0, then the inequality 
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In analysing the dynamics of a physical system governed by certain differential and integral 

equations, one often needs some new kinds of inequalities[1-10].Green[6] proved the following 

interesting inequality, which can be used in the analysis of various problems in the theory of 

certain systems of simultaneous differential and integral equations. 

Let 21 , kk and  be nonnegative constants and let gf , and  4,3,2,1,ih be nonnegative continuous 

functions defined for Rt with 
ih bounded such that 
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For all Rt .Then there exists constants 21 ,cc and 21 , MM such that 
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2. Main Results: 

Theorem 2.1:Let pbagf ,,,, and  4,3,2,1,ih be nonnegative continuous functions defined for 

Rt with ih bounded such that 
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For all Rt .where  be nonnegative constant and 1p . Then  
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By substituting from (2) and (5) in (6),we have 
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Now an application of Lemma1 in (7) with suitable modifications, yields                    
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By comparing both sides of (10), we have 

                   )()(         and )()(               
 

tQtgtQetf
tp




 



4                                                                         ZAREEN A. KHAN 

Where )(tQ is defined as in (3). 

Theorem 2.2: Let 21 , kk and  be nonnegative constants and let gf , and  4,3,2,1,ih be 

nonnegative continuous functions defined for Rt with 
ih bounded such that                         
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Since )()( tZtV  , therefore from(15), (16) and  (17),we get 
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