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Abstract. The main objective of this paper is to present the k-analogue of inequalities for the Euler gamma function

and psi function in terms of a new symbol k > 0.
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1. Introduction

Recently, Diaz and Pariguan [2] introduced the generalized gamma k-function as

(1) Γk(x) = lim
n→∞

n!kn(nk)
x
k−1

(x)n,k
, k > 0,x ∈ C\ kZ−,

where (x)n,k, is called the Pochhammer k-symbol and is defined as

(x)n,k = x(x+ k)(x+2k) · · ·(x+(n−1)k)
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for n ≥ 1. They have also introduced and proved some identities of the said functions and

deduced an integral representation of gamma k-function as,

Γk(x) = k
x
k−1

Γ(
x
k
) =

∞∫
0

tx−1e−
tk
k dt, Re(x)> 0,k > 0.(2)

Mubeen et al. [9] have defined k-hypergeometric differential equation and gave twenty four

solutions of said k-hypergeometric differential equation. Many researchers [4]-[8] have worked

on the generalized gamma k-function and discussed the following properties for k > 0 and

n ∈ N:

Γk(x+ k) = xΓk(x),

(x)n,k =
Γk(x+nk)

Γk(x)
,

Γk(k) = 1,

Γk(αk) = kα−1
Γ(α), α ∈ R+,

Γk(nk) = kn−1(n−1)!,

Γk((2n+1)
k
2
) = k

2n−1
2

(2n)!
√

π

2nn!
,

Γk(x) = x−1k
x
k e−

x
k γ

∞

∏
n=1

(
nk

x+nk
)e

x
nk ,

where γ is Euler’s or Mascheroni’s constant and its value is given by

γ = lim
n→∞

∑
1
n
− ln(n) = 0.5772156649....

Kokologiannaki [3] gave some properties and inequalities for the above gamma k-function. In

[12], the same auther gave some power product bounds for the gamma k-function and beta k-

function. Brahim et al. [13] established some new inequalities for the gamma, beta and psi q-k

functions by using q-integral inequalities. Zhang et.al. [14] extended a double inequality for the

gamma function to the gamma k-function and the Riemann zeta k-function by using methods in

the theory of majorization. Rehman et al. [10, 11] presented some inequalities involving gamma

k-function and beta k-functions via some classical inequalities like the Chebychev inequality

for synchronous (asynchronous) mappings, and the Grüss and the Ostrowski’s inequality. They

also gave proof of the log-convexity of these k-functions by using the Hölder inequality. Beside
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these, the researchers [15]-[18] have proved bounds, inequalities and monotonicity properties

for the functions Γk(x) and βk(x,y) and for functions involving them.

2. Main results

The logarithmic derivative of Γk(x) is called digamma k-function or psi k-function. It is

denoted by ψk(x) and is given by (See [8])

(3) ψk(x) =
∂

∂x
logΓk(x),

where x,k > 0. The series representation of ψk(x) [8] is given by the relation

(4) ψk(x) =
lnk− γ

k
− 1

x
+

∞

∑
n=1

x
nk(x+nk)

.

It can also be written as

(5) ψk(x) =
lnk− γ

k
+

∞

∑
n=0

(x− k)
(nk+ k)(x+nk)

.

In this present paper, we are going to deduce the k-analogue of inequalities involving the gamma

and digamma functions with the same conditions on parameters which have been proved in [1].

In order to prove our main results, we need the following lemmas.

Lemma 2.1. Let x ∈ (0,1) and p, q be two positive real numbers such that p > q. Then

(6) ψk(p+qx)> ψk(q+ px).

Proof. It is easy to verify that p+ qx > 0, q+ px > 0. Then by equation (5) we obtain the

following inequality:

ψk(p+qx)−ψk(q+ px) =
∞

∑
n=0

(p+qx−k)
(nk+k)(p+qx+nk) −

∞

∑
n=0

(q+px−k)
(nk+k)(q+px+nk)

=
∞

∑
n=0

(p−q)(1−x)
(p+qx+nk)(q+px+nk)

> 0,

because x ∈ (0,1) and p > q. �
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Lemma 2.2. Let x ∈ (0,1) and p > q be two positive real numbers such that ψk(q+ px) > 0.

Also let r, s be two positive real numbers such that qr > ps > 0. Then

qrψk(p+qx)− psψk(q+ px)> 0.(7)

Proof. Since ψk(q+ px) > 0, therefore by inequality (6), ψk(p+ qx) > 0. As qr > ps and by

using lemma 2.1 , we have

qrψk(p+qx)> psψk(p+qx)> psψk(q+ px)

⇒ qrψk(p+qx)− psψk(q+ px)> 0.

�

Theorem 2.3. Let fk be a function defined by

fk(x) =
Γk(p+qx)

r
k

Γk(q+ px)
s
k
,(8)

where x ∈ (0,1), p > q > 0, r, s are positive real numbers such that qr > ps > 0 and ψk(q+

px)> 0. Then fk is an increasing function on (0,1), and the following double inequality holds:

Γk(p)
r
k

Γk(q)
s
k
<

Γk(p+qx)
r
k

Γk(q+ px)
s
k
<

Γk(p+q)
r
k

Γk(p+q)
s
k
.(9)

Proof. Consider a function gk(x) defined by

gk(x) = log fk(x)

= 1
k [r logΓk(p+qx)− s logΓk(q+ px)].

Differentiating it with respect to x, we get

g′k(x) =
1
k
[qrψk(p+qx)− psψk(q+ px)].(10)

Since k > 0 and by inequality (7)

g′k(x)> 0.
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This implies that gk(x) is increasing on (0,1). Hence, fk(x) is increasing on (0,1). Now since

x ∈ (0,1),

fk(0)< fk(x)< fk(1)

⇒ Γk(p)
r
k

Γk(q)
s
k
<

Γk(p+qx)
r
k

Γk(q+ px)
s
k
<

Γk(p+q)
r
k

Γk(p+q)
s
k
.

�

Lemma 2.4. Let x > 1 and p, q be two positive real numbers such that q > p. Then

(11) ψk(p+qx)> ψk(q+ px).

Proof. As

ψk(p+qx)−ψk(q+ px) =
∞

∑
n=0

(p−q)(1−x)
(p+qx+nk)(q+px+nk)

> 0,

because x > 1and q > p. �

Lemma 2.5. Let x > 1 and p, q (q > p) be two positive real numbers such that ψk(q+ px)> 0.

Also let r, s be two positive real numbers such that qr > ps > 0. Then

qrψk(p+qx)− psψk(q+ px)> 0.(12)

Proof. Since ψk(q+ px)> 0, therefore by inequality (11), ψk(p+qx)> 0. As qr > ps and by

using lemma 2.4 , we have

qrψk(p+qx)> psψk(p+qx)> psψk(q+ px)

⇒ qrψk(p+qx)− psψk(q+ px)> 0.

�
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Theorem 2.6. Let fk be a function defined by

fk(x) =
Γk(p+qx)

r
k

Γk(q+ px)
s
k
,(13)

where x > 1, q> p> 0, r, s are positive real numbers such that qr > ps> 0 and ψk(q+ px)> 0.

Then fk is an increasing function on (0,1).

Proof. Consider a function gk(x) defined by

gk(x) = log fk(x).

By following the steps of theorem , we arrive at

g′k(x) =
1
k
[qrψk(p+qx)− psψk(q+ px)].(14)

Since k > 0, so by inequality (12) for x > 1

g′k(x)> 0.

This implies that gk(x) is increasing for x > 1. Hence, fk(x) is increasing for x > 1. �

Lemma 2.7. Let x∈ (0,1) and p, q (p> q) be two positive real numbers such that ψk(p+qx)<

0. Also let r, s be two positive real numbers such that ps > qr > 0. Then

qrψk(p+qx)− psψk(q+ px)> 0.(15)

Proof. Since ψk(p+qx)< 0 and qr > 0, imply qrψk(p+qx)< 0. Therefore by lemma 2.1, we

have the following inequality

0 > qrψk(p+qx)> psψk(p+qx)> psψk(q+ px)

⇒ qrψk(p+qx)− psψk(q+ px)> 0.

�
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Theorem 2.8. Let fk be a function defined by

fk(x) =
Γk(p+qx)

r
k

Γk(q+ px)
s
k
,(16)

where x ∈ (0,1), p, q (q > p) are positive real numbers such that ψk(p+ qx) < 0 and r,s are

positive real numbers such that ps > qr > 0 . Then fk is an increasing function on (0,1).

Proof. Consider a function gk(x) defined by

gk(x) = log fk(x).

By following the steps of theorem , we arrive at

g′k(x) =
1
k
[qrψk(p+qx)− psψk(q+ px)].(17)

Since k > 0, so by inequality (15) for x ∈ (0,1)

g′k(x)> 0.

This implies that gk(x) is increasing for x ∈ (0,1). Hence, fk(x) is increasing for x ∈ (0,1). �

Similarly, by following the steps and methods used in lemma 2.7 and theorem 2.8, the fol-

lowing lemma and theorem can be proved.

Lemma 2.9 Let x > 1 and p, q (q > p) be two positive real numbers such that ψk(p+qx)< 0.

Also let r, s be two positive real numbers such that ps > qr > 0. Then

qrψk(p+qx)− psψk(q+ px)> 0.(18)

Theorem 2.10. Let fk be a function defined by

fk(x) =
Γk(p+qx)

r
k

Γk(q+ px)
s
k
,(19)

where x > 1, q > p and r, s are positive real numbers such that ps > qr > 0 and ψk(p+qx)< 0.

Then fk is an increasing function on (1,+∞).

Remarks 2.11. If we use k = 1 in all the lemmas and theorems, then we get the corresponding

lemmas and theorems which were proved in [1].
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