

Available online at http://scik.org
Advances in Inequalities and Applications, 1 (2012), No. 1, 43-48

BERNARDI'S INTEGRAL OPERATORS OF JANOWSKI CLASS OF FUNCTIONS

S. LATHA*

Department of Mathematics, Yuvaraja's College, University of Mysore, Mysore - 570 005, INDIA
Abstract. Let $\mathcal{P}(A, B)$ denote the Janowski class of analytic functions subordinate to $\frac{1+A z}{1+B z},-1 \leq$ $B<A \leq 1$. We determine C so that whenever $\frac{z f^{\prime}(z)}{f(z)}$ is subordinate to $\frac{1+C z}{1-C z}, \frac{z F^{\prime}(z)}{F(z)}$ is subordinate to $\frac{1+A z}{1+B z}$ where F is the Bernardi's integral operator defined by $F(z)=I_{\gamma}(f)(z)=\frac{\gamma+1}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} f(t) d t$. A similar result for $f^{\prime}(z)$ is also dealt.

Keywords: Bernardi‘s integral operator, Janowski class.
2000 AMS Subject Classification: 30C45

1. INTRODUCTION

Let \mathcal{A} denote the class of functions analytic in the open unit disc $\mathcal{U}=\{z:|z|<1\}$ and $\mathcal{N}=\left\{f \in A: f(0)=f^{\prime}(0)-1=0\right\}$. Let \mathcal{P} denote the class of analytic functions defined on \mathcal{U} satisfying $p(0)=1, \Re\{p(z)\}>0$. Let Ω designate the class of analytic functions ω in \mathcal{U} such that $\omega(0)=0$ and $|\omega(z)|<1$. A function $p \in \mathcal{P}$ has the representation $p(z)=\frac{1+\omega(z)}{1-\omega(z)}$ where $\omega \in \Omega$. This representation for functions with positive real part in terms of analytic functions on \mathcal{U} satisfying the conditions of Schwarz's lemma [6] motivated Janowski [2] to define the class $\mathcal{P}(A, B)$. Let $\mathcal{P}(A, B)$, where $-1 \leq B<A \leq 1$ denote the class of analytic functions p defined on \mathcal{U} with the representation $p(z)=\frac{1+A \omega(z)}{1+B \omega(z)}, z \in \mathcal{U}$

[^0]Received March 15, 2012
and $\omega \in \Omega$. Special choices for the parameters A and B yield the following:

$$
\begin{aligned}
\mathcal{P}(1-2 \beta,-1) & =\{p: \Re\{p(z)\}>\beta, z \in \mathcal{U}, 0 \leq \beta<1\} \\
\mathcal{P}(1,-1+1 / M) & =\{p:|p(z)-M|<M, z \in \mathcal{U}, M>1 / 2\} \\
\mathcal{P}(\beta, 0) & =\{p:|p(z)-1|<\beta, z \in \mathcal{U}, 0<\beta \leq 1\} \\
\mathcal{P}(\beta,-\beta) & =\left\{p:\left|\frac{p(z)-1}{p(z)+1}\right|<\beta, z \in \mathcal{U}, 0<\beta \leq 1\right\}
\end{aligned}
$$

Several results concerning these classes may be found in Janowski [2], McCarty ([3], [4]) and Schaffer [8]. In recent years there have been several papers in literature on $\mathcal{P}(A, B)$ or on classes with different parametrization. Let $S^{*}(A, B)=\left\{f \in \mathcal{N}: \frac{z f^{\prime}(z)}{f(z)} \in \mathcal{P}(A, B)\right\}$. Since $\mathcal{P}(A, B) \subset \mathcal{P}$, it follows that $S^{*}(A, B) \subset S^{*}$ where S^{*} is the class of starlike functions. Bernardi's integral operator [1] is defined as

$$
\begin{equation*}
F(z)=I_{\gamma}(f)(z)=\frac{\gamma+1}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} f(t) d t \tag{1.1}
\end{equation*}
$$

with $\gamma \geq 0$ and $f \in \mathcal{N}$. Under the above transform the class of convex functions, the class of starlike functions and the class of close-to-convex functions are closed. In this paper we determine C so that if $\frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+C z}{1-C z}$ then $\frac{z F^{\prime}(z)}{F(z)} \prec \frac{1+A z}{1+B z}$. We also discuss a similar problem for f^{\prime}. We need the following lemma due to Miller and Mocanu [5] to prove our main results .

Lemma 1.1 Suppose that the function ω is regular in \mathcal{U} with $\omega(0)=0$. Then if $|\omega(z)|$ attains its maximum value on the circle $|z|=r<1$ at a point $z_{0} \in \mathcal{U}$, we have
(1) $z_{0} \omega^{\prime}\left(z_{0}\right)=k \omega\left(z_{0}\right)$ and
(2) $\Re\left\{1+\frac{z_{0} \omega^{\prime \prime}\left(z_{0}\right)}{\omega^{\prime}\left(z_{0}\right)}\right\} \geq k$ where k real and $k \geq 1$.

2. Main results

Theorem 1.1. Let $C=(A-B)\left\{\frac{(\gamma+2)+(A+B \gamma)}{(2+A+B)(\gamma+1+A+B \gamma)+(A-B)}\right\}$ and $F(z)=$ $\frac{\gamma+1}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} f(t) d t$. If $\frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+C z}{1-C z}$, then $\frac{z F^{\prime}(z)}{F(z)} \prec \frac{1+A z}{1+B z}$ for all $\gamma \geq 0,-1 \leq B<$ $A \leq 1$.

Proof. Let a function ω be defined by

$$
\begin{equation*}
\omega(z)=\frac{\frac{z F^{\prime}(z)}{F(z)}-1}{A-B \frac{z F^{\prime}(z)}{F(z)}} \tag{1.2}
\end{equation*}
$$

for $-1 \leq B<A \leq 1$ and $\omega(z) \neq 1$ for $z \in \mathcal{U}$.
Now $w(z)$ is analytic in \mathcal{U} and $w(0)=0$ we need only to show that $|w(z)|<1$ in \mathcal{U}.
From (2.1) we have $\frac{z F^{\prime}(z)}{F(z)}=\frac{1+A w(z)}{1+B w(z)}$
Logarithmic differentiation yields

$$
1+\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}-\frac{z F^{\prime}(z)}{F(z)}=\frac{(A-B) z \omega^{\prime}(z)}{\{1+A w(z)\}\{1+B w(z)\}}
$$

Using the definition of Bernardi integral operator $(\gamma+1) f(z)=z F^{\prime}(z)+\gamma F(z)$. By taking logarithmic derivative we get

$$
\begin{aligned}
\frac{z f^{\prime}(z)}{f(z)} & =\frac{z F^{\prime}(z)}{F(z)}\left\{\frac{1+\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}-\frac{z F^{\prime}(z)}{F(z)}}{\frac{z F^{\prime}(z)}{F(z)}+\gamma}+1\right\} \\
& =\frac{(A-B) z \omega^{\prime}(z)}{\{1+B \omega(z)\}\{(\gamma+1)+(A+B \gamma) \omega(z)\}}+\frac{1+A \omega(z)}{1+B \omega(z)}
\end{aligned}
$$

Assume that there exists a point $z_{0} \in \mathcal{U}$ such that $\max _{|z| \leq\left|z_{0}\right|}|\omega(z)|=\left|\omega\left(z_{0}\right)\right|=1$, then by Miller Mocanu's lemma we have $z_{0} \omega^{\prime}\left(z_{0}\right)=k \omega\left(z_{0}\right), k \geq 1$. Thus we have

$$
\left\{\frac{\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}-1}{\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}+1}\right\}=\frac{(A-B) z \omega\left(z_{0}\right)\left\{k+1+\gamma+(A+B \gamma) \omega\left(z_{0}\right)\right\}}{\left\{2+(A+B \gamma) \omega\left(z_{0}\right)\right\}\left\{\gamma+1+\omega\left(z_{0}\right)(A+B \gamma)\right\}+(A-B) k \omega\left(z_{0}\right)}
$$

and

$$
\begin{aligned}
& \left|\begin{array}{rl}
\left\lvert\, \frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}-1\right. \\
\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}+1
\end{array}\right|=\frac{(A-B)\left|k+1+\gamma+(A+B \gamma) e^{i \theta}\right|}{\mid\left\{2+\left(A+B e^{i \theta}\right\}\left\{\gamma+1+e^{i \theta}(A+B \gamma)\right\}+(A-B) k e^{i \theta} \mid\right.} \\
& \quad= \\
& \varphi(\cos \theta) .
\end{aligned}
$$

Now $\varphi(t)$ is a decreasing function of $t=\cos \theta$ in $[-1,1]$ for $\gamma \geq 0$. Hence we get

$$
\begin{gathered}
\left|\frac{\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}-1}{\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}+1}\right| \geq(A-B)\left\{\frac{(\gamma+2)+A+B \gamma}{(2+A+B)+(\gamma+1+A+B \gamma)+(A-B)}\right\} \\
=C
\end{gathered}
$$

a contradiction to the hypothesis that $\frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+C z}{1-C z}$.
Hence we have

$$
|\omega(z)|=\left|\frac{\frac{z F^{\prime}(z)}{F(z)}-1}{A-B \frac{z F^{\prime}(z)}{F(z)}}\right|<1
$$

Equivalently $\frac{z F^{\prime}(z)}{F(z)} \prec \frac{1+A z}{1+B z}$ which completes the proof.
Corollary 1.2. For the parametric values $A=\alpha, B=-\alpha$ we get Theorem 1 in [7] which reads:

$$
\text { Let } \beta=\alpha\left\{\frac{2+\alpha+\gamma(1-\alpha)}{1+2 \alpha+\gamma(1-\alpha)}\right\} \text { and } F(z)=\frac{\gamma+1}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} f(t) d t \text {. }
$$

If $f \in S^{*}(\beta)$ then $F \in S^{*}(\alpha)$ for all $\gamma \geq 0,0<\alpha \leq 1$.

Now we define the class $R(A, B)$ to be the class of all $f^{\prime} \in \mathcal{P}(A, B)$ and derive a similar result.

Theorem 1.3. Let $C=\frac{(A-B)\{(\gamma+1)(1+B)+1\}}{(\gamma+1)(1+B)\{2+A+B\}+A-B}$ and $F(z)=\frac{\gamma+1}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} f(t) d t$.
If $f^{\prime}(z) \prec \frac{1+C z}{1-C z}$ then $F^{\prime}(z) \prec \frac{1+A z}{1+B z}$ for all $\gamma \geq 0,-1 \leq B<A \leq 1$.
Proof. Let us define a function

$$
\begin{gathered}
\omega(z)=\frac{F^{\prime}(z)-1}{A-B F^{\prime}(z)}, \quad-1 \leq B<A \leq 1 \\
F^{\prime}(z)=\frac{1+A \omega(z)}{1+B \omega(z)}
\end{gathered}
$$

Differentiating (1.1) we get,

$$
f^{\prime}(z)=F^{\prime}(z)+\frac{z F^{\prime}(z)}{\gamma+1}
$$

$$
\begin{aligned}
\frac{f^{\prime}(z)-1}{f^{\prime}(z)+1} & =\frac{F^{\prime}(z)-1+\frac{z F^{\prime \prime}(z)}{\gamma+1}}{F^{\prime}(z)+1+\frac{z F^{\prime \prime}(z)}{\gamma+1}} \\
& =\frac{\frac{1+A \omega(z)}{1+B \omega(z)}-1+\frac{(A-B) z \omega^{\prime}(z)}{(\gamma+1)\{1+B \omega(z)\}^{2}}}{\frac{1+A \omega(z)}{1+B \omega(z)}+1+\frac{(A-B) z \omega^{\prime}(z)}{(\gamma+1)\{1+B \omega(z)\}^{2}}} \\
& =\frac{(\gamma+1)(1+B \omega(z))\{(A-B) \omega(z)\}+(A-B) z \omega^{\prime}(z)}{(\gamma+1)(1+B \omega(z))\{2+(A+B) \omega(z)\}+(A-B) z \omega^{\prime}(z)}
\end{aligned}
$$

Assume that there exists a point $z_{0} \in \mathcal{U}$ such that $\max _{|z| \leq\left|z_{0}\right|}|\omega(z)|=\left|\omega\left(z_{0}\right)\right|=1$.
Hence by lemma 1.1 we have $z_{0} \omega^{\prime}\left(z_{0}\right)=k \omega^{\prime}(z), k \geq 1$. Thus we obtain

$$
\begin{aligned}
& \frac{f^{\prime}\left(z_{0}\right)-1}{f^{\prime}\left(z_{0}\right)+1}=\frac{(\gamma+1)\left(1+B \omega\left(z_{0}\right)\right)\left\{(A-B) \omega\left(z_{0}\right)\right\}+(A-B) k \omega\left(z_{0}\right)}{(\gamma+1)\left(1+B \omega\left(z_{0}\right)\right)\left\{2+(A+B) \omega\left(z_{0}\right)\right\}+(A-B) k \omega\left(z_{0}\right)} \\
& \left|\frac{f^{\prime}\left(z_{0}\right)-1}{f^{\prime}\left(z_{0}\right)+1}\right|=\frac{(A-B)\left|(\gamma+1)\left(1+B e^{i \theta}+k\right)\right|}{\mid(\gamma+1)\left(1+\left(1+B e^{i \theta}\right)\left\{2+(A+B) e^{i \theta}\right\}+(A-B) k e^{i \theta} \mid\right.} \\
& \quad=\varphi(\cos \theta) .
\end{aligned}
$$

Now $\varphi(t)$ is a decreasing function of $t=\cos \theta$ in $[-1,1]$ for $\gamma \geq 0$. Hence we get

$$
\begin{gathered}
\left|\frac{f^{\prime}\left(z_{0}\right)-1}{f^{\prime}\left(z_{0}\right)+1}\right| \geq \frac{(A-B)\{1+(\gamma+1)(B+1)\}}{(\gamma+1)(1+B)(2+A+B)+(A-B)} \\
=C
\end{gathered}
$$

a contradiction to the hypothesis that

$$
f^{\prime}(z) \prec \frac{1+C z}{1-C z}
$$

Hence we must have

$$
|\omega(z)|<\left|\frac{F^{\prime}(z)-1}{A-B F^{\prime}(z)}\right|<1 \text { or } F^{\prime}(z) \prec \frac{1+A z}{1+B z}
$$

which proves the theorem.

Corollary 1.4. For $A=\alpha, B=-\alpha$ we get Theorem 2 in [7] which reads:
Let $\beta=\frac{2-\alpha+\gamma(1-\alpha)}{1+\gamma(1-\alpha)}$ and $F(z)=\frac{\gamma+1}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} f(t) d t$.
If $f \in R(\beta)$ then $F(z) \in R(\alpha)$ for all $C \geq 0,0<\alpha \leq 1$.

Acknowledgements: The work presented here was supported by a grant from UGC Major Research Fund (Ref: F.No. 38-268/2009(SR)) of INDIA.

References

[1] S.D.Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.
[2] W.Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math 23 (1970) 159-177.
[3] C.P.McCarty, Functions with real part greater than α, Proc. Amer Math. Soc. 35 (1972), p211-216.
[4] C.P. McCarty, Starlike functions, Proc. Amer Math. Soc. 43 (1974), p361-366.
[5] S.S.Miller and P.T.Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), p289-305.
[6] Z.Nehari, Conformal mapping, Dover publications, New York.
[7] Parvatham, On Bernardi's integral operators of certain classes of functions, Mathematical Journal Vol. 42 No.2(2002), p437-441.
[8] D.S.Shaffer, Distortion theorems for a special class of analytic functions, Proc. Amer Math. Soc. 39 (1973), 281-287.

[^0]: *Corresponding author

