Available online at http://scik.org Advances in Inequalities and Applications, 1 (2012), No. 1, 43-48

BERNARDI'S INTEGRAL OPERATORS OF JANOWSKI CLASS OF FUNCTIONS

S. LATHA*

Department of Mathematics, Yuvaraja's College, University of Mysore, Mysore - 570 005, INDIA

Abstract. Let $\mathcal{P}(A, B)$ denote the Janowski class of analytic functions subordinate to $\frac{1+Az}{1+Bz}$, $-1 \leq B < A \leq 1$. We determine C so that whenever $\frac{zf'(z)}{f(z)}$ is subordinate to $\frac{1+Cz}{1-Cz}$, $\frac{zF'(z)}{F(z)}$ is subordinate to $\frac{1+Az}{1+Bz}$ where F is the Bernardi's integral operator defined by $F(z) = I_{\gamma}(f)(z) = \frac{\gamma+1}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1}f(t)dt$. A similar result for f'(z) is also dealt.

Keywords: Bernardi's integral operator, Janowski class.

2000 AMS Subject Classification: 30C45

1. INTRODUCTION

Let \mathcal{A} denote the class of functions analytic in the open unit disc $\mathcal{U} = \{z : |z| < 1\}$ and $\mathcal{N} = \{f \in A : f(0) = f'(0) - 1 = 0\}$. Let \mathcal{P} denote the class of analytic functions defined on \mathcal{U} satisfying p(0) = 1, $\Re\{p(z)\} > 0$. Let Ω designate the class of analytic functions ω in \mathcal{U} such that $\omega(0) = 0$ and $|\omega(z)| < 1$. A function $p \in \mathcal{P}$ has the representation $p(z) = \frac{1 + \omega(z)}{1 - \omega(z)}$ where $\omega \in \Omega$. This representation for functions with positive real part in terms of analytic functions on \mathcal{U} satisfying the conditions of Schwarz's lemma [6] motivated Janowski [2] to define the class $\mathcal{P}(A, B)$. Let $\mathcal{P}(A, B)$, where $-1 \leq B < A \leq 1$ denote the class of analytic functions p defined on \mathcal{U} with the representation $p(z) = \frac{1 + A\omega(z)}{1 + B\omega(z)}, z \in \mathcal{U}$

^{*}Corresponding author

Received March 15, 2012

and $\omega \in \Omega$. Special choices for the parameters A and B yield the following:

$$\mathcal{P}(1-2\beta,-1) = \{p: \Re\{p(z)\} > \beta, z \in \mathcal{U}, 0 \le \beta < 1\}$$

$$\mathcal{P}(1,-1+1/M) = \{p: |p(z) - M| < M, z \in \mathcal{U}, M > 1/2\}$$

$$\mathcal{P}(\beta,0) = \{p: |p(z) - 1| < \beta, z \in \mathcal{U}, 0 < \beta \le 1\}$$

$$\mathcal{P}(\beta,-\beta) = \left\{p: \left|\frac{p(z)-1}{p(z)+1}\right| < \beta, z \in \mathcal{U}, 0 < \beta \le 1\right\}$$

Several results concerning these classes may be found in Janowski [2], McCarty ([3], [4]) and Schaffer [8]. In recent years there have been several papers in literature on $\mathcal{P}(A, B)$ or on classes with different parametrization. Let $S^*(A, B) = \left\{ f \in \mathcal{N} : \frac{zf'(z)}{f(z)} \in \mathcal{P}(A, B) \right\}$. Since $\mathcal{P}(A, B) \subset \mathcal{P}$, it follows that $S^*(A, B) \subset S^*$ where S^* is the class of starlike functions. Bernardi's integral operator [1] is defined as

(1.1)
$$F(z) = I_{\gamma}(f)(z) = \frac{\gamma + 1}{z^{\gamma}} \int_{0}^{z} t^{\gamma - 1} f(t) dt$$

with $\gamma \geq 0$ and $f \in \mathcal{N}$. Under the above transform the class of convex functions, the class of starlike functions and the class of close-to-convex functions are closed. In this paper we determine C so that if $\frac{zf'(z)}{f(z)} \prec \frac{1+Cz}{1-Cz}$ then $\frac{zF'(z)}{F(z)} \prec \frac{1+Az}{1+Bz}$. We also discuss a similar problem for f'. We need the following lemma due to Miller and Mocanu [5] to prove our main results.

Lemma 1.1 Suppose that the function ω is regular in \mathcal{U} with $\omega(0) = 0$. Then if $|\omega(z)|$ attains its maximum value on the circle |z| = r < 1 at a point $z_0 \in \mathcal{U}$, we have

(1)
$$z_0 \omega'(z_0) = k \omega(z_0)$$
 and
(2) $\Re \left\{ 1 + \frac{z_0 \omega''(z_0)}{\omega'(z_0)} \right\} \ge k$ where k real and $k \ge 1$.

2. Main results

$$\begin{aligned} & \text{Theorem 1.1. Let } C = (A-B) \left\{ \frac{(\gamma+2) + (A+B\gamma)}{(2+A+B)(\gamma+1+A+B\gamma) + (A-B)} \right\} \text{ and } F(z) = \\ & \frac{\gamma+1}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} f(t) dt. \text{ If } \frac{zf'(z)}{f(z)} \prec \frac{1+Cz}{1-Cz} \text{ , then } \frac{zF'(z)}{F(z)} \prec \frac{1+Az}{1+Bz} \text{ for all } \gamma \geq 0, -1 \leq B < \\ & A \leq 1. \end{aligned}$$

Proof. Let a function ω be defined by

(1.2)
$$\omega(z) = \frac{\frac{zF'(z)}{F(z)} - 1}{A - B\frac{zF'(z)}{F(z)}}$$

for $-1 \leq B < A \leq 1$ and $\omega(z) \neq 1$ for $z \in \mathcal{U}$. Now w(z) is analytic in \mathcal{U} and w(0) = 0 we need only to show that |w(z)| < 1 in \mathcal{U} . From (2.1) we have $\frac{zF'(z)}{F(z)} = \frac{1+Aw(z)}{1+Bw(z)}$

Logarithmic differentiation yields

$$1 + \frac{zF''(z)}{F'(z)} - \frac{zF'(z)}{F(z)} = \frac{(A-B)z\omega'(z)}{\{1 + Aw(z)\}\{1 + Bw(z)\}}$$

Using the definition of Bernardi integral operator $(\gamma + 1)f(z) = zF'(z) + \gamma F(z)$. By taking logarithmic derivative we get

$$\frac{zf'(z)}{f(z)} = \frac{zF'(z)}{F(z)} \left\{ \frac{1 + \frac{zF''(z)}{F'(z)} - \frac{zF'(z)}{F(z)}}{\frac{zF'(z)}{F(z)} + \gamma} + 1 \right\}$$

$$= \frac{(A-B)z\omega'(z)}{\{1+B\omega(z)\}\{(\gamma+1)+(A+B\gamma)\omega(z)\}} + \frac{1+A\omega(z)}{1+B\omega(z)}$$

Assume that there exists a point $z_0 \in \mathcal{U}$ such that $\max_{|z| \le |z_0|} |\omega(z)| = |\omega(z_0)| = 1$, then by Miller Mocanu's lemma we have $z_0\omega'(z_0) = k\omega(z_0), k \ge 1$. Thus we have

$$\left\{\frac{\frac{z_0 f'(z_0)}{f(z_0)} - 1}{\frac{z_0 f'(z_0)}{f(z_0)} + 1}\right\} = \frac{(A - B)z\omega(z_0)\left\{k + 1 + \gamma + (A + B\gamma)\omega(z_0)\right\}}{\left\{2 + (A + B\gamma)\omega(z_0)\right\}\left\{\gamma + 1 + \omega(z_0)(A + B\gamma)\right\} + (A - B)k\omega(z_0)}$$

and

$$\left|\frac{\frac{z_0 f'(z_0)}{f(z_0)} - 1}{\frac{z_0 f'(z_0)}{f(z_0)} + 1}\right| = \frac{(A - B)\left|k + 1 + \gamma + (A + B\gamma)e^{i\theta}\right|}{\left|\{2 + (A + Be^{i\theta})\}\left\{\gamma + 1 + e^{i\theta}(A + B\gamma)\right\} + (A - B)ke^{i\theta}\right|}$$
$$= \varphi(\cos\theta).$$

Now $\varphi(t)$ is a decreasing function of $t = \cos \theta$ in [-1, 1] for $\gamma \ge 0$. Hence we get

$$\left|\frac{\frac{z_0 f'(z_0)}{f(z_0)} - 1}{\frac{z_0 f'(z_0)}{f(z_0)} + 1}\right| \ge (A - B) \left\{\frac{(\gamma + 2) + A + B\gamma}{(2 + A + B) + (\gamma + 1 + A + B\gamma) + (A - B)}\right\}$$
$$= C$$

a contradiction to the hypothesis that $\frac{zf'(z)}{f(z)} \prec \frac{1+Cz}{1-Cz}$.

Hence we have

$$\omega(z)| = \left| \frac{\frac{zF'(z)}{F(z)} - 1}{A - B\frac{zF'(z)}{F(z)}} \right| < 1$$

Equivalently $\frac{zF'(z)}{F(z)} \prec \frac{1+Az}{1+Bz}$ which completes the proof.

Corollary 1.2. For the parametric values $A = \alpha$, $B = -\alpha$ we get Theorem 1 in [7] which reads:

Let
$$\beta = \alpha \left\{ \frac{2+\alpha+\gamma(1-\alpha)}{1+2\alpha+\gamma(1-\alpha)} \right\}$$
 and $F(z) = \frac{\gamma+1}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} f(t) dt$.
If $f \in S^{*}(\beta)$ then $F \in S^{*}(\alpha)$ for all $\gamma \ge 0, \ 0 < \alpha \le 1$.

Now we define the class R(A, B) to be the class of all $f' \in \mathcal{P}(A, B)$ and derive a similar result.

Theorem 1.3. Let $C = \frac{(A-B)\{(\gamma+1)(1+B)+1\}}{(\gamma+1)(1+B)\{2+A+B\}+A-B}$ and $F(z) = \frac{\gamma+1}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1}f(t)dt$. If $f'(z) \prec \frac{1+Cz}{1-Cz}$ then $F'(z) \prec \frac{1+Az}{1+Bz}$ for all $\gamma \ge 0, -1 \le B < A \le 1$.

Proof. Let us define a function

$$\omega(z) = \frac{F'(z) - 1}{A - BF'(z)}, \quad -1 \le B < A \le 1.$$
$$F'(z) = \frac{1 + A\omega(z)}{1 + B\omega(z)}$$

Differentiating (1.1) we get,

$$f'(z) = F'(z) + \frac{zF'(z)}{\gamma + 1}$$

46

$$\frac{f'(z) - 1}{f'(z) + 1} = \frac{F'(z) - 1 + \frac{zF''(z)}{\gamma + 1}}{F'(z) + 1 + \frac{zF''(z)}{\gamma + 1}}$$
$$= \frac{\frac{1 + A\omega(z)}{1 + B\omega(z)} - 1 + \frac{(A - B)z\omega'(z)}{(\gamma + 1)\left\{1 + B\omega(z)\right\}^2}}{\frac{1 + A\omega(z)}{1 + B\omega(z)} + 1 + \frac{(A - B)z\omega'(z)}{(\gamma + 1)\left\{1 + B\omega(z)\right\}^2}}$$
$$= \frac{(\gamma + 1)(1 + B\omega(z))\left\{(A - B)\omega(z)\right\} + (A - B)z\omega'(z)}{(\gamma + 1)(1 + B\omega(z))\left\{2 + (A + B)\omega(z)\right\} + (A - B)z\omega'(z)}$$

Assume that there exists a point $z_0 \in \mathcal{U}$ such that $\max_{|z| \leq |z_0|} |\omega(z)| = |\omega(z_0)| = 1$. Hence by lemma 1.1 we have $z_0 \omega'(z_0) = k \omega'(z), \ k \geq 1$. Thus we obtain

$$\frac{f'(z_0) - 1}{f'(z_0) + 1} = \frac{(\gamma + 1)(1 + B\omega(z_0)) \{(A - B)\omega(z_0)\} + (A - B)k\omega(z_0)}{(\gamma + 1)(1 + B\omega(z_0)) \{2 + (A + B)\omega(z_0)\} + (A - B)k\omega(z_0)} \\ \left| \frac{f'(z_0) - 1}{f'(z_0) + 1} \right| = \frac{(A - B)|(\gamma + 1)(1 + Be^{i\theta} + k)|}{|(\gamma + 1)(1 + (1 + Be^{i\theta}) \{2 + (A + B)e^{i\theta}\} + (A - B)ke^{i\theta}|} \\ = \varphi(\cos\theta).$$

Now $\varphi(t)$ is a decreasing function of $t = \cos \theta$ in [-1, 1] for $\gamma \ge 0$. Hence we get

$$\left|\frac{f'(z_0) - 1}{f'(z_0) + 1}\right| \ge \frac{(A - B)\left\{1 + (\gamma + 1)(B + 1)\right\}}{(\gamma + 1)(1 + B)(2 + A + B) + (A - B)}$$

=C

a contradiction to the hypothesis that

$$\begin{aligned} f'(z) &\prec \frac{1+Cz}{1-Cz} \\ \text{Hence we must have} \\ |\omega(z)| &< \left| \frac{F'(z)-1}{A-BF'(z)} \right| < 1 \text{ or } F'(z) \prec \frac{1+Az}{1+Bz} \\ \text{which proves the theorem.} \end{aligned}$$

Corollary 1.4. For $A = \alpha, B = -\alpha$ we get Theorem 2 in [7] which reads:

Let
$$\beta = \frac{2 - \alpha + \gamma(1 - \alpha)}{1 + \gamma(1 - \alpha)}$$
 and $F(z) = \frac{\gamma + 1}{z^{\gamma}} \int_{0}^{z} t^{\gamma - 1} f(t) dt$.
If $f \in R(\beta)$ then $F(z) \in R(\alpha)$ for all $C \ge 0, 0 < \alpha \le 1$.

Acknowledgements: The work presented here was supported by a grant from UGC Major Research Fund (Ref: F.No. 38-268/2009(SR)) of INDIA.

S. LATHA *

References

- [1] S.D.Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.
- [2] W.Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math 23 (1970) 159-177.
- [3] C.P.McCarty, Functions with real part greater than α , Proc. Amer Math. Soc. 35 (1972), p211-216.
- [4] C.P. McCarty, Starlike functions, Proc. Amer Math. Soc. 43 (1974), p361-366.
- [5] S.S.Miller and P.T.Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), p289-305.
- [6] Z.Nehari, Conformal mapping, Dover publications, New York.
- [7] Parvatham, On Bernardi's integral operators of certain classes of functions, Mathematical Journal Vol.42 No.2(2002), p437-441.
- [8] D.S.Shaffer, Distortion theorems for a special class of analytic functions, Proc. Amer Math. Soc.39 (1973), 281-287.