APPROSSIMATING POSITIVE SOLUTIONS OF NONLINEAR FIRST ORDER ORDINARY QUADRATIC DIFFERENTIAL EQUATIONS WITH MAXIMA

DNYANESHWAR V. MULE1,2,*, BHIMRAO R. AHIRRAO3

1Department of Mathematics, North Maharashtra University, Jalgaon 425001, India
2Department of Mathematics, Mahatma Phule College, Kargaon, SRTMU, Nanded, Ahmedpur 413515, India
3Department of Mathematics, Z.B.Patil college, North Maharashtra University, Jalgaon, Dhule 424002, India

Copyright © 2016 Mule and Ahirrao This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we consider the initial value problem for first order nonlinear quadratic differential equations with maxima and we study the existence and approximation of the solutions. The main results are related to a recent hybrid fixed point theorem of Dhage (2014) in partially ordered normed linear spaces.

Keywords: Partially ordered normed linear spaces; Differential equations with maxima; Hybrid fixed point theorem; Approximation of solutions.

2010 AMS Subject Classification: 34A12, 34A45, 47H10.

1. Introduction

The study of fixed point theorems for the contraction mappings in partially ordered metric spaces is initiated by Ran and Reurings [13] which are further continued by Nieto and Rodriguez-Lopez [7] and applied to boundary value problems of nonlinear first order ordinary
differential equations for proving the existence results under certain monotonic conditions. Since then many mathematicians have established several fixed point theorems for different classes of contraction mappings in partially ordered metric spaces (see, for example [1], [3], [4], [10], [12]). In this paper we investigate the existence of solutions of quadratic differential equations with maxima in partially ordered spaces. More precisely, we consider the following equation,

\[
\frac{d}{dt} \left[\frac{x(t)}{f(t, x(t))} \right] + \lambda \left[\frac{x(t)}{f(t, x(t))} \right] = g(t, \max_{a \leq \xi \leq t} x(\xi)) \quad \text{for all } t \in I = [a, b], \ a, b, x_0 \text{ and } f, g \in I \times \mathbb{R} \to \mathbb{R} \text{ are continuous functions.}
\]

By the solution of the QDE(12),we mean a function \(x \in C^1(I, \mathbb{R}) \) that satisfies.

(i) \(t \mapsto \frac{x}{f(t, x)} \) is continuous differentiable function \(x \in \mathbb{R} \) and,

(ii) \(x \)-satisfies the equation in (12) on \(I \),where \(C(I, \mathbb{R}) \) is a space of continuously differentiable real valued defined on \(I \).

2. Preliminaries

We need the following notions and results.

Definition 2.1. A mapping \(\mathcal{A} : X \to X \) is called isotope or monotone nondecreasing if it preserves the order relation \(\preceq \), that is, if \(x \preceq y \) implies \(\mathcal{A}x \preceq \mathcal{Ay} \) for all \(x, y \in X \).

Definition 2.2. An operator \(\mathcal{A} \) on a normed linear space \(X \) into itself is called compact if \(\mathcal{A}(X) \) is a relatively compact subset of \(X \). \(\mathcal{A} \) is called totally bounded if for any bounded subset \(S \) of \(X \), \(\mathcal{A}(S) \) is a relatively compact subset of \(X \). If \(\mathcal{A} \) is continuous and totally bounded, then it is called completely continuous on \(X \).

Definition 2.3. [Dhage 4] A mapping \(\mathcal{A} : X \to X \) is called partially continuous at a point \(a \in X \) if for \(\varepsilon > 0 \) there exists a \(\delta > 0 \) such that \(\|\mathcal{A}x - \mathcal{A}a\| < \varepsilon \) whenever \(x \) is comparable to \(a \) and \(\|x - a\| < \delta \). \(\mathcal{A} \) called partially continuous on \(X \) if it is partially continuous at every point of it.
It is clear that if \mathcal{A} is partially continuous on X, then it is continuous on every chain C contained in X.

Definition 2.4. [Dhage 4] An operator \mathcal{A} on a partially normed linear space X into itself is called *partially bounded* if $\mathcal{A}(C)$ is bounded for every chain C in X. \mathcal{A} is called *uniformly partially bounded* if all chains $\mathcal{A}(C)$ in X are bounded by a unique constant. \mathcal{A} is called *partially compact* if $\mathcal{A}(C)$ is a relatively compact subset of X for all totally ordered sets or chains C in X. \mathcal{A} is called *partially totally bounded* if for any totally ordered and bounded subset C of X, $\mathcal{T}(C)$ is a relatively compact subset of X. If \mathcal{A} is partially continuous and partially totally bounded, then it is called *partially completely continuous* on X.

Definition 2.5. [Dhage 4] The order relation \preceq and the metric d on a non-empty set X are said to be *compatible* if \{${x_n}$\} is a monotone, that is, monotone nondecreasing or monotone nondecreasing sequence in X and if a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ converges to x^* implies that the whole sequence $\{x_n\}$ converges to x^*. Similarly, given a partially ordered normed linear space $(X, \preceq, \|\cdot\|)$, the order relation \preceq and the norm $\|\cdot\|$ are said to be compatible if \preceq and the metric d defined through the norm $\|\cdot\|$ are compatible.

Definition 2.6. Let $(X, \preceq, \|\cdot\|)$ be a partially ordered normed linear space. A mapping $\mathcal{A} : X \rightarrow X$ is called partially nonlinear \mathcal{D}-Lipschitz if there exists a \mathcal{D}-function $\psi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ such that

\[
\|\mathcal{A}x - \mathcal{A}y\| \leq \psi(\|x - y\|)
\]

for all comparable elements $x, y \in X$, where $\psi(0) = 0$. If $\psi(r) = kr, k > 0$, then \mathcal{A} is called a partially Lipschitz with a Lipschitz constant k. If $k < 1$, \mathcal{A} is called a partially contraction with contraction constant k. Finally, \mathcal{A} is called nonlinear \mathcal{D}-contraction if it is a nonlinear \mathcal{D}-Lipschitz with $\psi(r) < r$ for $r > 0$.

Theorem 2.7. Let $(X, \preceq, \|\cdot\|)$ be a regular partially ordered complete normed linear space such that the order relation \preceq and the norm $\|\cdot\|$ are compatible in X. Let $A, B : X \rightarrow X$ be two nondecreasing operators such that

(a) A is partially bounded and partially nonlinear \mathcal{D}-Lipschitz with \mathcal{D}-function ψ_A,

(b) B is partially continuous and uniformly partially compact, and
(c) \(M \psi_{\alpha<r,r>0} \), where \(M = \sup \{ \| B(C) \| : C \text{ is a chain in } x \} \)

(d) there exists an element \(x_0 \in X \) such that \(x_0 \leq Ax_0Bx_0 \) or \(x_0 \geq Ax_0Bx_0 \).

Then the operator equation \(AxBx = x \) has a solution \(x^* \) in \(X \) and the sequence \(\{ x_n \} \) of successive iterations defined by \(x_{n+1} = Ax_nBx_n, n = 0, 1, \ldots \), converges monotonically to \(x^* \).

3. Main results

The QDE (1) is considered in the function space \(C(I; \mathbb{R}) \) of continuous real-valued functions defined on \(I \). We define a norm \(\| \cdot \| \) and the order relation \(\leq \) in \(C(I; \mathbb{R}) \) by

\[
\| x \| = \sup_{t \in I} |x(t)|
\]

and

\[
x \leq y \iff x(t) \leq y(t)
\]

for all \(t \in I \) respectively. Clearly, \(C(I; \mathbb{R}) \) is a Banach algebra with respect to above supremum norm and is also partially ordered w.r.t. the above partially order relation \(\leq \). It is known that the partially ordered Banach algebra \(C(I; \mathbb{R}) \) has some nice properties w.r.t. the above order relation in it. The following lemma follows by an application of Arzella-Ascoli theorem.

Lemma 3.1. Let \(C((I, \mathbb{R}), \leq, \| \cdot, \|) \) be a partially ordered Banach space with the norm \(\| \cdot \| \) and the order relation \(\leq \) defined by (3) and (4) respectively. Then \(\| \cdot \| \) and \(\leq \) are compatible in every partially compact subset of \(C(I; \mathbb{R}) \).

Proof. Let \(S \) be a partially compact subset of \(C(I; \mathbb{R}) \) and let \(\{ x_n \}_{n \in \mathbb{N}} \) be a monotone nondecreasing sequence of points in \(S \). Then we have

\[
x_1(t) \leq x_2(t) \leq x_3(t) \cdots
\]

for each \(t \in \mathbb{R}_+ \). Suppose that a subsequence \(\{ x_{nk} \}_{n \in \mathbb{N}} \) of \(\{ x_n \}_{n \in \mathbb{N}} \) is convergent and converges to a point \(x \) in \(S \). Then the subsequence \(\{ x_{nk} \}_{n \in \mathbb{N}} \) of the monotone real sequence \(\{ x_n \}_{n \in \mathbb{N}} \) is convergent. By monotone characterization, the whole sequence \(\{ x_n \}_{n \in \mathbb{N}} \) is convergent and converges to a point \(x(t) \in \mathbb{R} \) for each \(t \in \mathbb{R}_+ \). This shows that the sequence \(\{ x_n \}_{n \in \mathbb{N}} \) converges
point-wise in S. To show the convergence is uniform, it is enough to show that the sequence $\{x_n\}_{n \in \mathbb{N}}$ is equicontinuous. Since S is partially compact, every chain or totally ordered set and consequently $\{x_n\}_{n \in \mathbb{N}}$ is an equicontinuous sequence by Arzella-Ascoli theorem. Hence $\{x_n\}_{n \in \mathbb{N}}$ is convergent and converges uniformly to x. As a result \leq and $\Vert \cdot \Vert$ are compatible in S.

This completes the proof. We need the following definition in what follows.

Definition 3.2. A function $u \in C^1(I, \mathbb{R})$ is said to be a lower solution of the QDE (1) if the function $t \mapsto u(t)$ is continuously differentiable and satisfies

\[
\frac{d}{dt} \left[\frac{u(t)}{f(t,u(t))} \right] + \lambda \left[\frac{u(t)}{f(t,u(t))} \right] \leq g(t, \max_{a \leq \xi \leq t} u(\xi)) \right] \\
\left\{ \begin{array}{l}
\end{array} \right.
\]

all $u \in I$. We consider the following set of assumptions:

- (C_0) $t \mapsto \frac{x}{f(t,x)}$ is injection for each $t \in I$,
- (C_1) f defines a function $f : I \times \mathbb{R} \rightarrow \mathbb{R}$,
- (C_2) There exist a constant $M_f > 0$ such that $0 < f(t,x) \leq M_f$ for all $t \in I$ and $x \in \mathbb{R}$,
- (C_3) There exist a D-Function ϕ, such that, $0 \leq f(t,x) - f(t,y) \leq \phi(x-y)$ for all $t \in I$ and $x,y \in \mathbb{R}, x \leq y$,
- (C_4) g defines a function $g : I \times \mathbb{R} \rightarrow \mathbb{R}$,
- (C_5) There exists a constant $M_g > 0$ such that $g(t, \max_{a \leq \xi \leq t} x(\xi)) \leq M_g$ for all $t \in I$,
- (C_6) $g(t,x)$ is increasing in x for all $t \in I$,
- (C_7) The QDE (1) has a lower solution $u \in C^1(I, \mathbb{R})$.

Lemma 3.3. Suppose that hypothesis (C_0) holds. Then a function $x \in C(I, \mathbb{R})$ is a solution of the QDE (1), if and only if it is a solution of the nonlinear quadratic integral equation (in short QIE),

\[
x(t) = \left[f(t,x(t)) \right] \left(\frac{ce^{-\lambda t}}{f(a,x_0)} + \int_a^t e^{-\lambda(t-s)} g(s, \max_{a \leq s \leq t} x(s)) ds \right)
\]

for all $t \in I = [a,b]$, where $C = x_0e^{\lambda a}$.

Theorem 3.4. Assume that hypotheses (C_1)-(C_7) hold. Furthermore, assume that

\[
\left(\frac{x_0}{f(a,x_0)} + M_g \right) \phi(r) < r, r < 0
\]
then the QDE (12) has a positive solution x^* defined on I and the sequence $\{x_n\}$ of successive approximations defined by

\begin{equation}
\tag{8}
x_{n+1}(t) = \left[f(t, x_n(t)) \right] \left(\frac{ce^{-\lambda t}}{f(a, x_0)} + \int_a^t e^{-\lambda(t-s)} g(s, \max_{a \leq s \leq t} x_n(s)) ds \right)
\end{equation}

for $t \in \mathbb{R}$, where $x_1 = u$, converges monotonically to x^*.

Proof. Set $X = C(I, \mathbb{R})$ and define two operators A and B on X by

\begin{equation}
\tag{9}
Ax(t) = f(t, x(t)), t \in I
\end{equation}

and

\begin{equation}
\tag{10}
Bx(t) = \frac{ce^{-\lambda t}}{f(a, x_0)} + \int_a^t e^{-\lambda(t-s)} g(s, \max_{a \leq s \leq t} x(s)) ds, t \in I.
\end{equation}

From the continuity of the integral, it follows that A and B define the maps $A, B : X \rightarrow X$. The QDE (1) is equivalent to the operator equation

\begin{equation}
\tag{11}
Ax(t)Bx(t) = x(t), t \in I.
\end{equation}

We shall show that the operators A and A satisfy all the conditions of Theorem (2.1). This is achieved in the series of following steps.

Step I: A and B are nondecreasing on X.

Let $x, y \in X$ be such that $x \leq y$. Then by hypothesis (C3), we obtain

\[Ax(t) = f(t, x(t)) \geq f(t, y(t)) = Ay(t) \]

for all $t \in I$. This shows that A is nondecreasing operator on X into X. Similarly using hypothesis (C3), it is shown that the operator B is also nondecreasing on X into itself. Thus, A and B are nondecreasing positive operators on X into itself.

Step II: A is partially bounded and partially D-Lipschitz on X.

Let $x \in X$ be arbitrary. Then by (C2),

\[|Ax(t)| = |f(t, x(t))| \leq M_f \]

for all $t \in I$. Taking supremum over t, we obtain $\|Ax\| \leq M_f$ and so, A is bounded. This further implies that A is partially bounded on E.
Next, let \(x, y \in I \) be such that \(x \geq y \). Then
\[
|Ax(t) - Ay(t)| = |f(t, x(t)) - f(t, y(t))| \leq \phi(|x(t) - y(t)|) \quad \text{for all } t \in I
\]
Taking supremum over \(t \), we obtain \(|Ax - Ay| \leq \phi(|x - y|) \) for all \(x, y \in X, x \geq y \). Hence, \(A \) is a partial nonlinear \(D \)-Lipschitz on \(X \) which further implies that \(A \) is a partially continuous on \(X \).

Step III: \(B \) is a partially continuous on \(X \).

Let \(\{x_n\} \) be a sequence in a chain \(C \) of \(X \) such that \(x_n \to x \) for all \(n \in \mathbb{N} \). Then, by dominated convergence theorem, we have
\[
\lim_{n \to \infty} Bx_n(t) = \lim_{n \to \infty} \frac{ce^{-\lambda t}}{f(a, x_0)} + \int_a^t e^{-\lambda(t-s)}g(s, \max_{a \leq s \leq t} x_n(s))ds
\]
\[
= \frac{ce^{-\lambda t}}{f(a, x_0)} + \int_a^t e^{-\lambda(t-s)}[\lim_{n \to \infty} g(s, \max_{a \leq s \leq t} x_n(s))]ds
\]
\[
= \frac{ce^{-\lambda t}}{f(a, x_0)} + \int_a^t e^{-\lambda(t-s)}g(s, \max_{a \leq s \leq t} x(s))ds
\]
\[
= Bx(t).
\]
for all \(t \in I \). This shows that \(Bx_n \) converges monotonically to \(Bx \) pointwise on \(I \). Next, we will show that \(\{Bx_n\}_{n \in \mathbb{N}} \) is an equicontinuous sequence of functions in \(X \). Let \(t_1, t_2 \in I \) with \(t_1 < t_2 \). Then
\[
|Bx_n(t_2) - Bx_n(t_1)| \leq \left| \frac{ce^{-\lambda t_1}}{f(a, x_0)} - \frac{ce^{-\lambda t_2}}{f(a, x_0)} \right|
\]
\[
+ \left| \int_a^{t_1} e^{-\lambda(t_1-s)}g(s, \max_{a \leq s \leq t} x_n(s))ds - \int_a^{t_1} e^{-\lambda(t_2-s)}g(s, \max_{a \leq s \leq t} x_n(s))ds \right|
\]
\[
+ \left| \int_a^{t_2} e^{-\lambda(t_1-s)}g(s, \max_{a \leq s \leq t} x_n(s))ds - \int_a^{t_2} e^{-\lambda(t_2-s)}g(s, \max_{a \leq s \leq t} x_n(s))ds \right|
\]
\[
\leq \left| \frac{ce^{-\lambda t_1}}{f(a, x_0)} - \frac{ce^{-\lambda t_2}}{f(a, x_0)} \right| + \left| \int_a^{t_1} e^{-\lambda(t_1-s)} - e^{-\lambda(t_2-s)} ||g(s, \max_{a \leq s \leq t} x_n(s))||ds \right|
\]
\[
+ \left| \int_{t_1}^{t_2} ||g(s, \max_{a \leq s \leq t} x_n(s))||ds \right|
\]
\[
\leq \left| \frac{ce^{-\lambda t_1}}{f(a, x_0)} - \frac{ce^{-\lambda t_2}}{f(a, x_0)} \right| + M_g \left| \int_a^{t_2} e^{-\lambda(t_1-s)} - e^{-\lambda(t_2-s)} ||g(s, \max_{a \leq s \leq t} x_n(s))||ds \right|
\]
\[
+ M_g |t_1 - t_2|
\]
\[
\to 0 \quad \text{as} \quad t_2 - t_1
\]
uniformly for all \(n \in \mathbb{N} \). This shows that the convergence \(Bx_n \to Bx \) is uniform and hence \(B \) is partially continuous on \(X \).

Step IV: \(B \) is uniformly partially compact operator on \(X \).

Let \(C \) be an arbitrary chain in \(X \). We show that \(B(C) \) is a uniformly bounded and equicontinuous set in \(X \). First, we show that \(B(C) \) is uniformly bounded. Let \(y \in B(C) \) be any element. Then there is an element \(x \in C \), such that \(y = Bx \). Now, by hypothesis (C2),

\[
|y(t)| \leq \left| \frac{ce^{-\lambda t}}{f(a, x_0)} \right| + \left| \int_a^t e^{-\lambda(t-s)} g(s, \max_{a \leq s \leq t} x_n(s)) \right| ds \\
\leq \left| \frac{ce^{-\lambda t}}{f(a, x_0)} \right| + \left| \int_a^t e^{-\lambda(t-s)} g(s, \max_{a \leq s \leq t} x_n(s)) \right| ds \\
\leq \left| \frac{x_0}{f(a, x_0)} \right| + \left| \int_a^b ds \right| \\
\leq \left| \frac{a}{f(a, x_0)} \right| + M_g b = M
\]

for all \(t \in I \). Taking supremum over \(t \), we obtain \(||y|| = ||Bx|| \leq M \) for all \(y \in B(C) \). Hence, \(B(C) \) is a uniformly bounded subset of \(X \). Moreover, \(||B(C)|| \leq M \) for all chains \(C \) in \(X \). Hence, \(B \) is a uniformly partially bounded operator on \(X \).

Next, we will show that \(B(C) \) is an equicontinuous set in \(X \). Let \(t_1, t_2 \in I \) with \(t_1 < t_2 \). Then, for any \(y \in B(C) \), one has

\[
|y(t_2) - y(t_1)| = |Bx(t_2) - Bx(t_1)| \\
\leq \left| \frac{ce^{-\lambda t_1}}{f(a, x_0)} - \frac{ce^{-\lambda t_2}}{f(a, x_0)} \right| + \left| \int_a^{t_1} e^{-\lambda(t_1-s)} ds \right| (\max_{a \leq s \leq t_1} x_n(s)) \\
\leq \left| \frac{ce^{-\lambda t_1}}{f(a, x_0)} - \frac{ce^{-\lambda t_2}}{f(a, x_0)} \right| + \left| \int_a^{t_1} e^{-\lambda(t_1-s)} ds \right| (\max_{a \leq s \leq t_1} x_n(s)) \\
\leq \left| \frac{ce^{-\lambda t_1}}{f(a, x_0)} - \frac{ce^{-\lambda t_2}}{f(a, x_0)} \right| + M_g \int_a^{t_2} e^{-\lambda(t_1-s)} - e^{-\lambda(t_2-s)} ds \\
+ M_g |t_1 - t_2| \\
\to 0 \quad \text{as} \quad t_2 - t_1 \to 0
\]
uniformly for all \(y \in B(C) \). Hence \(B(C) \) is an equicontinuous subset of \(X \). Now, \(B(C) \) is a uniformly bounded and equicontinuous set of functions in \(X \), so it is compact. Consequently, \(B \) is a uniformly partially compact operator on \(X \) into itself.

Step V: \(u \) satisfies the operator inequality \(u \leq AuBu \).

By hypothesis (C7), the QDE (1) has a lower solution \(u \) defined on \(I \). Then, we have

\[
\frac{d}{dt} \left[\frac{x(t)}{f(t,x(t))} \right] + \lambda \left[\frac{x(t)}{f(t,x(t))} \right] = g(t, \max_{a \leq \xi \leq t} x(\xi)) \\
x(a) = x_0
\]

for all \(t \in I \). Multiplying the above inequality (11) by the integrating factor \(e^{\lambda t} \), we obtain

\[
\left(e^{\lambda t} \frac{u(t)}{f(t,u(t))} \right)' \leq e^{\lambda t} g(t,u(t))
\]

for all \(t \in I \). A direct integration of (12) from \(a \) to \(t \) yields

\[
u(t) \leq \left[f(t,u(t)) \right] \left(\frac{ce^{-\lambda t}}{f(a,x_0)} + \int_a^t e^{-\lambda(t-s)} g(s, \max_{a \leq u \leq t} u(s)) ds \right)
\]

for all \(t \in J \). From definitions of the operators \(A \) and \(B \), it follows that \(u(t) \leq Au(t)Bu(t) \), for all \(t \in I \). Hence \(u \leq AuBu \).

Step VI: \(D \)-function \(\phi \) is satisfies the growth condition \(M\phi_A(r), r > 0 \)

Finally, the \(D \)-function \(\phi \) of the operator \(A \) satisfies the inequality given in hypothesis (d) of Theorem 2.1. Now from the estimate given in Step IV, it follows that

\[
M\phi_A(r) \leq \left(\frac{x_0}{f(a,x_0)} + Mgb \right) \phi(r) < r,
\]

for all \(r > 0 \).

Thus, \(A \) and \(B \) satisfy all the conditions of Theorem 2.1 and we apply it to conclude that the operator equation \(Ax_Bx = x \) has a solution. Consequently the integral Equation(6) and the QDE (1) has a solution \(x^* \) defined on \(I \). Furthermore, the sequence \(\{x_n\}_{n=1}^\infty \) of successive approximations defined by(7) converges monotonically to \(x^* \). This completes the proof.

Conflict of Interests

The authors declare that there is no conflict of interests.
REFERENCES

