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1. Introduction

If f is a convex function defined on a real interval I and x1,x2, . . . ,xn ∈ I, then

f (x1)+ f (x2)+ · · ·+ f (xn)≥ n f
(

x1 + x2 + · · ·+ xn

n

)
is Jensen non-weighted discrete inequality [4,5].

Recently, we extended Jensen’s discrete inequality to half convex functions [1,2] and partially

convex functions [3]. Using the notation

I≥s = {u|u ∈ I,u≥ s}, I≤s = {u|u ∈ I,u≤ s},
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the half convex function theorem (HCF-Theorem) and the partially convex function theorem

(PCF-Theorem) have the following statements.

HCF-Theorem. Let f be a function defined on a real interval I and convex on I≥s or I≤s,

where s ∈ I. The inequality

f (x1)+ f (x2)+ · · ·+ f (xn)≥ n f
(

x1 + x2 + · · ·+ xn

n

)
holds for all x1,x2, . . . ,xn ∈ I satisfying x1 + x2 + · · ·+ xn = ns if and only if

f (x)+(n−1) f (y)≥ n f (s)

for all x,y ∈ I such that x+(n−1)y = ns.

PCF-Theorem. Let f be a function defined on a real interval I, decreasing on I≤s0 and in-

creasing on I≥s0 , where s0 ∈ I. In addition, f is convex on [s,s0] or [s0,s], where s ∈ I. The

inequality

f (x1)+ f (x2)+ · · ·+ f (xn)≥ n f
(

x1 + x2 + · · ·+ xn

n

)
holds for all x1,x2, . . . ,xn ∈ I satisfying x1 + x2 + · · ·+ xn = ns if and only if

f (x)+(n−1) f (y)≥ n f (s)

for all x,y ∈ I such that x+(n−1)y = ns.

Notice that HCF-Theorem is an immediate consequence of both the right half convex function

theorem (RHCF-Theorem) and the left half convex function theorem (LHCF-Theorem).

RHCF-Theorem. Let f be a function defined on a real interval I and convex on I≥s. The

inequality

f (x1)+ f (x2)+ · · ·+ f (xn)≥ n f
(

x1 + x2 + · · ·+ xn

n

)
holds for all x1,x2, . . . ,xn ∈ I satisfying x1 + x2 + · · ·+ xn ≥ ns if and only if

f (x)+(n−1) f (y)≥ n f (s)

for all x,y ∈ I such that x≤ s≤ y and x+(n−1)y = ns.
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LHCF-Theorem. Let f be a function defined on a real interval I and convex on I≤s. The

inequality

f (x1)+ f (x2)+ · · ·+ f (xn)≥ n f
(

x1 + x2 + · · ·+ xn

n

)
holds for all x1,x2, . . . ,xn ∈ I satisfying x1 + x2 + · · ·+ xn ≤ ns if and only if

f (x)+(n−1) f (y)≥ n f (s)

for all x,y ∈ I such that x≥ s≥ y and x+(n−1)y = ns.

Remark 1.1. Let

g(u) =
f (u)− f (s)

u− s
, h(x,y) =

g(x)−g(y)
x− y

.

As it is shown in [1,2,3], for many applications of these theorems, it is useful to replace the

hypothesis condition

f (x)+(n−1) f (y)≥ n f (s) ∀ x,y ∈ I, x+(n−1)y = ns.

by the equivalent condition

h(x,y)≥ 0 ∀ x,y ∈ I, x+(n−1)y = ns.

An extension of HCF-Theorem to half convex functions with support lines was given by

Zlatko Pavić in [6]. In what it follows, we continue this topic by giving some new refinements

and extensions of these results.

2. First extensions

The theorem below, called the right partially convex function theorem (RPCF-Theorem) is

an extension of PCF-Theorem. Thus, the condition in PCF-Theorem

f is decreasing on I≤s0 and increasing on I≥s0

is relaxed in RPCF-Theorem to

f is decreasing on I≤s0 and f (u)≥ f (s0) for u ∈ I≥s0 .
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RPCF-Theorem. Let f be a function defined on a real interval I and convex on [s,s0], where

s,s0 ∈ I, s < s0. In addition, f is decreasing on I≤s0 and satisfies

min
u∈I

f (u) = f (s0).

The inequality

f (x1)+ f (x2)+ · · ·+ f (xn)≥ n f
(

x1 + x2 + · · ·+ xn

n

)
holds for all x1,x2, . . . ,xn ∈ I satisfying x1 + x2 + · · ·+ xn = ns if and only if

f (x)+(n−1) f (y)≥ n f (s)

for all x,y ∈ I such that x≤ s≤ y and x+(n−1)y = ns.

Proof. Clearly, the necessity in RPCF-Theorem is obvious. By Lemma 2.1 below, to prove

the sufficiency in RPCF-Theorem, it suffices to consider that x1,x2, . . . ,xn ∈ J, where J= I≤s0 .

Because f is convex on J≥s, the desired inequality in RPCF-Theorem follows immediately from

RHCF-Theorem applied to the interval J.

Lemma 2.1. Let f be a function defined on a real interval I and convex on [s,s0], where s,s0 ∈ I,

s < s0. In addition, f (u) is decreasing on I≤s0 and

min
u∈I

f (u) = f (s0).

If the inequality

f (x1)+ f (x2)+ · · ·+ f (xn)≥ n f (s)

holds for all x1,x2, . . . ,xn ∈ I≤s0 such that x1+x2+· · ·+xn = ns, then it holds for all x1,x2, . . . ,xn ∈

I such that x1 + x2 + · · ·+ xn = ns.

Proof. For i = 1,2, . . . ,n, define the numbers yi ∈ I≤s0 as follows

yi =


xi, xi ≤ s0

s0, xi > s0.

We have yi ≤ xi and f (yi)≤ f (xi) for i = 1,2, . . . ,n. Therefore,

y1 + y2 + · · ·+ yn ≤ x1 + x2 + · · ·+ xn = ns



THREE EXTENSIONS OF HCF AND PCF THEOREMS 5

and

f (y1)+ f (y2)+ · · ·+ f (yn)≤ f (x1)+ f (x2)+ · · ·+ f (xn).

Thus, it suffices to show that

f (y1)+ f (y2)+ · · ·+ f (yn)≥ n f (s)

for all y1,y2, . . . ,yn ∈ I≤s0 such that y1+y2+ · · ·+yn ≤ ns. By hypothesis, this inequality is true

for y1,y2, . . . ,yn ∈ I≤s0 and y1 + y2 + · · ·+ yn = ns. Since f is decreasing on I≤s0 , we have also

f (y1)+ f (y2)+ · · ·+ f (yn)≥ n f (s) for y1,y2, . . . ,yn ∈ I≤s0 such that y1 + y2 + · · ·+ yn ≤ ns.

Similarly, the following theorem, called the left partially convex function theorem (LRPCF-

Theorem) is an extension of PCF-Theorem.

LPCF-Theorem. Let f be a function defined on a real interval I and convex on [s0,s], where

s0,s ∈ I, s0 < s. In addition, f is increasing on I≥s0 and satisfies

min
u∈I

f (u) = f (s0).

The inequality

f (x1)+ f (x2)+ · · ·+ f (xn)≥ n f
(

x1 + x2 + · · ·+ xn

n

)
holds for all x1,x2, . . . ,xn ∈ I satisfying x1 + x2 + · · ·+ xn = ns if and only if

f (x)+(n−1) f (y)≥ n f (s)

for all x,y ∈ I such that x≥ s≥ y and x+(n−1)y = ns.

Proof. The necessity in LPCF-Theorem is obvious. By Lemma 2.2 below, to prove the suffi-

ciency in LPCF-Theorem, it suffices to consider that x1,x2, . . . ,xn ∈ J, where J= I≥s0 . Because

f is convex on J≤s, the desired inequality in LPCF-Theorem follows immediately from LHCF-

Theorem applied to the interval J.

Lemma 2.2. Let f be a function defined on a real interval I and convex on [s0,s], where s0,s∈ I,

s0 < s. In addition, f (u) is increasing on I≥s0 and satisfies

min
u∈I

f (u) = f (s0).
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If the inequality

f (x1)+ f (x2)+ · · ·+ f (xn)≥ n f (s)

holds for all x1,x2, . . . ,xn ∈ I≥s0 such that x1+x2+· · ·+xn = ns, then it holds for all x1,x2, . . . ,xn ∈

I such that x1 + x2 + · · ·+ xn = ns.

Proof. For i = 1,2, . . . ,n, define the numbers yi ∈ I≥s0 as follows

yi =


s0, xi ≤ s0

xi, xi > s0.

Since yi ≥ xi for i = 1,2, . . . ,n, we have

y1 + y2 + · · ·+ yn ≥ x1 + x2 + · · ·+ xn = ns.

In addition, since f (yi)≤ f (xi) for xi ≤ s0 and f (yi) = f (xi) for xi > s0, we have f (yi)≤ f (xi)

for i = 1,2, . . . ,n, hence

f (y1)+ f (y2)+ · · ·+ f (yn)≤ f (x1)+ f (x2)+ · · ·+ f (xn).

Thus, it suffices to show that

f (y1)+ f (y2)+ · · ·+ f (yn)≥ n f (s)

for all y1,y2, . . . ,yn ∈ I≥s0 such that y1+y2+ · · ·+yn ≥ ns. By hypothesis, this inequality is true

for y1,y2, . . . ,yn ∈ I≥s0 and y1 + y2 + · · ·+ yn = ns. Since f is increasing on I≥s0 , we have also

f (y1)+ f (y2)+ · · ·+ f (yn)≥ n f (s) for y1,y2, . . . ,yn ∈ I≥s0 such that y1 + y2 + · · ·+ yn ≥ ns.

Remark 2.1. The inequalities in RPCF-Theorem and LPCF-Theorem turn into equalities for

x1 = x2 = · · · = xn = s. In addition, the equality holds also for x1 = x and x2 = · · · = xn = y if

there exist x,y ∈ I, x 6= y, such that

x+(n−1)y = ns, f (x)+(n−1) f (y) = n f (s).

The inequality in the following example cannot be proved by HCF-Theorem or PCF-Theorem,

but can be proved using LPCF-Theorem.
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Example 2.1. If x1,x2, . . . ,xn are real numbers such that x1 + x2 + · · ·+ xn = n, then

x1(x1−1)
4(n−1)x2

1 +n2 +
x2(x2−1)

4(n−1)x2
2 +n2 + · · ·+

xn(xn−1)
4(n−1)x2

n +n2 ≥ 0,

with equality for x1 = x2 = · · ·= xn = 1, and also for x1 =
n
2

and x2 = · · ·= xn =
n

2(n−1)
(or

any cyclic permutation).

To prove this inequality, we write it as

f (x1)+ f (x2)+ · · ·+ f (xn)≥ n f (s), s = 1,

where

f (u) =
u(u−1)

4(n−1)u2 +n2 , u ∈ I= R.

From

f ′(u) =
4(n−1)u2 +2n2u−n2

[4(n−1)u2 +n2]2
,

it follows that f is increasing on (−∞,s1]∪ [s0,∞) and decreasing on [s1,s0], where

s1 =
n(−n−

√
n2 +4n−4)

4(n−1)
, s0 =

n(−n+
√

n2 +4n−4)
4(n−1)

∈ (0,1).

Since

lim
u→−∞

f (u) =
1

4(n−1)

and f (s0)< f (1) = 0, we have

min
u∈I

f (u) = f (s0).

From

f ′′(u) =
2g(u)

[4(n−1)u2 +n2]3
, g(u) = n4 +12n2(n−1)u(1−u)−16(n−1)2u3,

it follows that f is convex on [0,1], because

g(u)≥ n4−16(n−1)2u3 ≥ n4−16(n−1)2 = (n−2)2(n2 +4n−4)≥ 0.

Clearly, we cannot apply HCF-Theorem because f is not half convex. Also, we cannot apply

PCF-Theorem because f is not decreasing for all u ≤ s0. On the other hand, all preliminary

conditions in LPCF-Theorem are satisfied. Therefore, we only need to prove that f (x)+ (n−
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1) f (y)≥ n f (1) for all x,y ∈ R such that x+(n−1)y = n. According to Remark 1.1, it suffices

to show that h(x,y)≥ 0 for all x,y ∈ R which satisfy x+(n−1)y = n. We have

g(u) =
f (u)− f (1)

u−1
=

u
4(n−1)u2 +n2 ,

h(x,y) =
g(x)−g(y)

x− y
=

n2−4(n−1)xy
[4(n−1)x2 +n2][4(n−1)y2 +n2]

=
[2(n−1)y−n]2

[4(n−1)x2 +n2][4(n−1)y2 +n2]
≥ 0.

3. Second extension

The following four propositions are extensions of RHCF, LHCF, RPCF and LPCF theorems

to the case in which f is defined on I\{u0}, where u0 is an interior point of I.

Proposition 3.1. RHCF-Theorem is also valid in the case in which f is defined on I \ {u0},

where u0 ∈ I, u0 < s.

Proposition 3.2. LHCF-Theorem is also valid in the case in which f is defined on I \ {u0},

where u0 ∈ I, u0 > s.

Proposition 3.3. RPCF-Theorem is also valid in the case in which f is defined on I \ {u0},

where u0 ∈ I, u0 > s0.

Proposition 3.4. LPCF-Theorem is also valid in the case in which f is defined on I \ {u0},

where u0 ∈ I, u0 < s0.

These propositions follow immediately from the proofs of the respective theorems. For in-

stance, the main idea in the proof of RHCF-Theorem is to replace the desired inequality

f (x1)+ f (x2)+ · · ·+ f (xn)≥ n f (s), x1,x2, . . . ,xn ∈ I\{u0},

with a sharper inequality in which all variables are located in I≥s, where f is convex. More

precisely, under the assumption that

x1 ≤ ·· · ≤ xk ≤ s≤ xk+1 ≤ ·· · ≤ xn,

from the hypothesis

f (x)+(n−1) f (y)≥ n f (s), x+(n−1)y = ns, x≤ s≤ y
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it follows that

f (xi)+(n−1) f (yi)≥ n f (s), xi +(n−1)yi = ns, xi ≤ s≤ yi

for i = 1, . . . ,k. Therefore, it suffices to prove the sharper inequality

k

∑
i=1

[n f (s)− (n−1) f (yi)]+ f (xk+1)+ · · ·+ f (xn)≥ n f (s),

where all variables y1, . . . ,yk and xk+1, . . . ,xn are located in I≥s.

Example 3.1. Let x1,x2, . . . ,xn 6= −k be real numbers such that x1 + x2 + · · ·+ xn = n. If

k ≥ n
2
√

n−1
, then

x1(x1−1)
(x1 + k)2 +

x2(x2−1)
(x2 + k)2 + · · ·+ xn(xn−1)

(xn + k)2 ≥ 0,

with equality for x1 = x2 = · · ·= xn = 1. If k =
n

2
√

n−1
, then the equality holds also for x1 =

n
2

and x2 = · · ·= xn =
n

2(n−1)
(or any cyclic permutation).

To prove the inequality in Example 3.1, we write it as

f (x1)+ f (x2)+ · · ·+ f (xn)≥ n f (s), s = 1,

where

f (u) =
u(u−1)
(u+ k)2 , u ∈ R\{−k}.

From

f ′(u) =
(2k+1)u− k

(u+ k)3 ,

it follows that f is increasing on (−∞,−k)∪ [s0,∞) and decreasing on (−k,s0], where

s0 =
k

2k+1
< 1.

Since

lim
u→−∞

f (u) = 1

and f (s0)< f (1) = 0, we have

min
u∈I

f (u) = f (s0).

From
1
2

f ′′(u) =
k(k+2)− (2k+1)u

(x+ k)4 ,
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it follows that f is convex on
[

0,
k(k+2)
2k+1

]
, hence on [s0,1]. According to LPCF-Theorem,

Proposition 3.4 and Remark 1.1, it suffices to show that h(x,y)≥ 0 for all x,y∈R\{−k} which

satisfy x+(n−1)y = n. We have

g(u) =
f (u)− f (1)

u−1
=

u
(u+ k)2 ,

h(x,y) =
g(x)−g(y)

x− y
=

k2− xy
(x+ k)2(y+ k)2 .

Since

k2− xy≥ n2

4(n−1)
− xy =

[2(n−1)y−n]2

4(n−1)
≥ 0,

it follows that h(x,y)≥ 0.

4. Third extension

The following theorem is an extension of RPCF-Theorem for the case in which the condition

” f is decreasing on I≤s0” is not satisfied.

Theorem 4.1. Let f be a function defined on a real interval I, convex on [s,s0] and satisfying

min
u≥s

f (u) = f (s0),

where

s,s0 ∈ I, s < s0, ns− (n−1)s0 ≤ infI.

If

f (x)+(n−1) f (y)≥ n f (s)

for all x,y ∈ I such that x≤ s≤ y and x+(n−1)y = ns, then

f (x1)+ f (x2)+ · · ·+ f (xn)≥ n f
(

x1 + x2 + · · ·+ xn

n

)
for all x1,x2, . . . ,xn ∈ I satisfying x1 + x2 + · · ·+ xn = ns.

Proof. In order to prove Theorem 4.1, we define the function

f0(u) =


f (u), u ∈ I≤s0

f (s0), u ∈ I≥s0 ,
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which is convex on I≥s. Taking into account that f0(s) = f (s) and f0(u)≤ f (u) for all u ∈ I, it

suffices to prove that

f0(x1)+ f0(x2)+ · · ·+ f0(xn)≥ n f0(s)

for all x1,x2, . . . ,xn ∈ I satisfying x1 + x2 + · · ·+ xn = ns. According to RHCF-Theorem, we

only need to show that

f0(x)+(n−1) f0(y)≥ n f0(s)

for all x,y ∈ I such that x≤ s≤ y and x+(n−1)y = ns. The case y > s0 is not possible because

x = ns− (n−1)y < ns− (n−1)s0 ≤ infI

involves x 6∈ I. For the possible case y ≤ s0, the inequality f0(x)+ (n−1) f0(y) ≥ n f0(s) turns

into f (x)+(n−1) f (y)≥ n f (s), which holds (by hypothesis) for all x,y ∈ I such that x≤ s≤ y

and x+(n−1)y = ns.

Similarly, the following theorem is an extension of LPCF-Theorem for the case in which the

condition ” f is increasing on I≥s0” is not satisfied.

Theorem 4.2. Let f be a function defined on a real interval I, convex on [s0,s] and satisfying

min
u≤s

f (u) = f (s0),

where

s,s0 ∈ I, s > s0, ns− (n−1)s0 ≥ supI.

If

f (x)+(n−1) f (y)≥ n f (s)

for all x,y ∈ I such that x≥ s≥ y and x+(n−1)y = ns, then

f (x1)+ f (x2)+ · · ·+ f (xn)≥ n f
(

x1 + x2 + · · ·+ xn

n

)
for all x1,x2, . . . ,xn ∈ I satisfying x1 + x2 + · · ·+ xn = ns.

The proof of Theorem 4.2 is similar to the proof of Theorem 4.1.
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Example 4.1. Let x1,x2, . . . ,xn ≥
−n

n−2
such that x1 + x2 + · · ·+ xn = n, where n≥ 4. If k > 0,

then
1− x1

k+ x2
1
+

1− x2

k+ x2
2
+ · · ·+ 1− xn

k+ x2
n
≥ 0,

with equality for x1 = x2 = · · ·= xn = 1, and also for x1 =
−n

n−2
and x2 = · · ·= xn =

n
n−2

(or

any cyclic permutation).

To prove the inequality in Example 4.1, we write it as

f (x1)+ f (x2)+ · · ·+ f (xn)≥ n f (s), s = 1,

where

f (u) =
1−u
k+u2 , u ∈ I=

[
−n

n−2
,
n(2n−3)

n−2

]
.

From

f ′(u) =
u2−2u− k
(u2 + k)2 ,

it follows that f (u) is decreasing for u∈ [1,s0] and increasing for u≥ s0, where s0 = 1+
√

1+ k;

therefore, min
u≥1

f (u) = f (s0). From

f ′′(u) =
2 f1(u)
(u2 + k)3 ,

where

f1(u) =−u3 +3u2 +3ku− k = (k+1)(3u−1)− (u−1)3

> (k+1)(u−1)− (u−1)3 = (u−1)[k+1− (u−1)2]≥ 0,

it follows that f is convex on [1,s0]. By Theorem 4.1, it suffices to show that

ns− (n−1)s0 ≤ infI

and

f (x)+(n−1) f (y)≥ n f (s)

for all x,y ∈ I such that x+(n−1)y = ns. The first condition is equivalent to

n− (n−1)(1+
√

1+ k )≤ −n
n−2

,

(n−1)[2− (n−2)
√

1+ k ]≤ 0,
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which is clearly true for n ≥ 4 and k > 0. According to Remark 1.1, the second condition is

satisfied if h(x,y)≥ 0 for x,y ∈ I such that x+(n−1)y = n. Indeed,

g(u) =
f (u)− f (1)

u−1
=
−1

u2 + k
,

h(x,y) =
x+ y

(x2 + k)(y2 + k)
=

n+(n−2)x
(n−1)(x2 + k)(y2 + k)

≥ 0.

Notice that the inequality in Example 4.1 is an extension of the inequality from Application

4.1 in [3], where the condition for k is more restrictive, namely

k ≥ n(3n−4)
(n−2)2 .

Remark 4.1. Theorem 4.1 is also valid in the case in which f is defined on I \ {u0}, where

u0 ∈ I such that u0 < s or u0 > s0. Similarly, Theorem 4.2 is also valid in the case in which f

is defined on I \ {u0}, where u0 ∈ I such that u0 < s0 or u0 > s. According to this remark, the

inequality in Example 4.1 holds also for k = 0.
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