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1. Introduction 

     Fuzzy set was defined by Zadeh [1]. Kramosil and Michlek [2] introduced the concept of 

fuzzy metric space . Later  in 1994, A.George and P.Veeramani [3] modified the notion of fuzzy 

metric space with the help of t-norm. 

      Subramanyam [4] , Vasuki[5] , Pant and Jha [6] obtained some analogous results proved by 

Balasubraman et.al.[7]. 

      Jungck [8] introduced the notion of compatible maps for a pair of self maps. Popa ([9],[10]) 

introduced the idea of implicit function to prove a common fixed point theorem in metric space, 

Singh and Jain [11] extened the result of Popa ([9],[10]) in fuzzy metric space.Recently in 2009, 

using the concept of subcompatible maps ,H.Bouhadjera et.al.[12] proved common fixed point 

theorems. 
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Atanassov [13] introduced and studies the concept of intuitionistic fuzzy sets. in 2004, Park 

[14] defined the notion of intuitionistic fuzzy metric space with the help of continuous t-norm 

and continuous t- conorm.In 2009, Bouhadjera and Godet-Thobie [15] introduced new notions 

of subcompatibility and subsequential continuity which are respectively weaker than owc and 

reciprocally continuity.  In 2010 and 2011, B.Singh et.al. ( [16],[17],[18]) proved fixed point  

theorem in fuzzy metric space and Menger space using the concept of semi-compatibility, weak 

compatibility and compatibility of type (𝛽 ) respectively. 

 

2.  Preliminaries 

 Definition 2.1 [19] A binary operation *:[0,1] x[0,1]→ [0,1] is a continuous t –norm if it 

satisfies the following conditions  

( i ) *is associative and commutative,  

( ii ) *is continuous,  

( iii ) a*1 = a, for all a ∈[0,1] 

( iv ) a*b ≤ c*d, whenever a ≤ c and b ≤ d, for all a,b,c,d ∈ [0,1]. 

Definition 2.2  [19] A binary operation ◊:[0,1] x[0,1]→ [0,1] is a continuous t –conorm if it 

satisfies the following conditions : 

( i ) ◊is associative and commutative,  

( ii ) ◊is continuous,  

( iii ) a◊1 = a, for all a ∈[0,1] 

( iv ) a◊b ≤ c◊d, whenever a ≤ c and b ≤ d, for all a,b,c,d ∈   [0,1]. 

Definition 2.3 [20] A 5-tuple (X, M, N, *, ◊)  is said to be an Intuitionistic fuzzy mertic space if 

X is an arbitrary set, * is a continuous t -norm, ◊ is a continuous t –conorm and M,N are fuzzy 

sets on X2 x [0,∞) satisfying the following conditions. 

( i ) M(x,y,t) + N(x,y,t) ≤ 1, for all x,y ∈ X and t > 0,  

( ii ) M(x,y,0) = 0, for all x,y ∈ X, 

( iii ) M(x,y,t) = 1, for all x,y ∈ X and t > 0, iff x = y, 

( iv ) M(x,y,t) = M(y,x,t), for all x,y ∈ X and t > 0, 

( v ) M(x,y,t)*M(y,z,s) ≤ M(x,z,t+s), for all x,y ∈ X and t ,s > 0, 

( vi ) for all x,y ∈ x, M(x,y,.) : [0,∞) → [0,1] is left continuous, 

( vii ) limt→∞ M(x,y,t) = 1, for all x,y ∈ X and t > 0, 
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( viii ) N(x,y,0) = 1, for all x,y ∈ X , 

( ix ) N(x,y,t) = 0, for all x,y ∈ X and t > 0, iff x = y, 

( x ) N(x,y,t) = N(y,x,t), for all x,y ∈ X and t > 0, 

( xi ) N(x,y,t)*N(y,z,s) ≤ N(x,z,t+s), for all x,y ∈ X and t ,s > 0, 

( xii ) for all x,y ∈ x, N(x,y,.) : [0,∞) → [0,1] is right continuous, 

( xiii ) limt→∞ N(x,y,t) = 0, for all x,y ∈ X. 

Remark 2.1[20] 

In intuitionistic metric fuzzy space (X ,M ,*) is an intuitionistic fuzzy space of the form 

(X ,M ,1- M ,*, ◊) , such that t-norm * and t-conorm ◊ are associated as  x◊y = 1-((1-x) * (1-y)) 

for all x,y ∈ X . 

Remark 2.2[20] 

In intuitionistic fuzzy metric space (X ,M ,N ,*,◊) , M(x,y,*) is non-decreasing and N(x,y,◊) is 

Non-increasing for all x,y ∈ X . 

Example 2.1 – Let (X ,d) be a metric space . Define a*b = ab and a◊ b = min {1,a + b} for all a,b 

∈ [0,1] and let Md and Nd be a fuzzy sets on X2 x (0,∞) defined as  

Md (x,y,t) = t / t + d(x,y) , Nd(x,y,t) =d(x,y) / t + d(x,y) 

Then (X , Md ,Nd ,*,◊) is an  intuitioistic fuzzy metric space. 

Definition 2.4[20] Let (X , M , N ,*,◊) be an intuitioistic fuzzy metric space . Then  

( 1 ) A sequence {xn} in X is set to be convergent to a point x in X iff Limn→∞  M(xn , x,t) = 1 

and  

lim n→∞  N(xn , x,t) = 0, for all t > 0. 

Definition 2.5[20] A pair of self mappings ( P ,Q ) of a intuitionistic fuzzy metric space ( X , M , 

N ,*,◊) is said to be compatible if limn→∞ M(PQxn , QPxn , t) = 1 and limn→∞ N(PQxn , QPxn , t) 

= 0 , for all t > o, Whenever {xn} is a sequence in X such that  

lim n→∞ Pxn = Lim n→∞Qxn = z, for some z ∈ X. 

Definition 2.6[20]A pair of self mappings ( P ,Q ) of a intuitionistic fuzzy metric space ( X , M , 

N ,*,◊) is said to be semi compatible if  lim n→∞ PQxn = Qx , When ever {xn} is a sequence in X 

such that  

lim n→∞ Pxn = Lim n→∞Qxn = x, for some x ∈ X. 
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Definition 2.7[21]  A pair (P,Q) of self mappings defined on an  Intuitionistic fuzzy metric space 

(X,M,N,*,◊) is said to be Subcompatible if and only if there exists a sequence {xn} such that   

Lim n→∞ Pxn = Lim n→∞Qxn = z, for some z ∈ X , and 

limn→∞ M(PQxn, QPxn,t) = 1 , for all t > 0. 

Definition 2.8 [4]   A pair (P,Q)  of self mappings defined on an  Intuitionistic fuzzy metric 

space (X,M,N,*,◊) is said to be reciprocally continuous if for a sequence  {xn} in X ,  limn→∞ 

PQxn =P z  and   limn→∞ QPxn= Qz. Whenever  

limn→∞ Pxn = z = limn→∞ Qxn for some z ∈ X . 

Definition 2.9 [21]   A pair (P,Q)  of self mappings defined on an  Intuitionistic fuzzy metric 

space (X,M,N,*,◊) is said to be Subsequentially continuous if and only if there exists a sequence 

{xn} such that   Lim n→∞ Pxn = Lim n→∞Qxn = z, for some 

z ∈ X , and  limn→∞ PQxn =Pz  and   limn→∞ QPxn= Qz. 

Implicit Relation 2.10 -  Let 𝛷 be the set of all real continuous function  ∅ : [0,1]4→ R , non –

decreasing in first argument ,and  satisfying the following conditions :  

(i). For u,v ≥ 0 , ∅(u,v,u,v) ≥ 0 𝑜𝑟 ∅(u,v,v,u)≥ 0 implies that u≥v, 

(ii). ∅(u,u,1,1) ≥ 0 implies that u ≥ 1. 

 Example    Define ∅(a,b,c,d ) = 15a-13b+5c-7d.  Then ∅ ∈ 𝛷. 

 

3. Main Result 

Theorem 3.1-   Let P, Q, S and T be four self maps  of an Intuitionistic Fuzzy metric space 

(X,M,N,*,◊ ) with continuous t-norm * and continuous t- conorm ◊ defined by t*t ≥ t , and (1-t) 

◊ (1-t)≤ (1-t) respectively for all t∈[0,1] . If the pairs (P,S) and (Q,T) are subsequential  

continuous and compatible mappings ,then 

  (a).  For any x,y∈ X, ∅, Ѱ𝜓 ∈𝛷 , and for all t > 0 , 

          ∅[ M(Px,Qy,t), M(Px,Ty,t),M(Sx,Px,t),M(Ty,Qy,t) ] ≥ 0 .   𝑎𝑛𝑑 

           ψ[N(Px,Qy,t), N(Px,Ty,t),N(Sx,Px,t),N(Ty,Qy,t)] ≤ 0. 

then the pairs (P,S) and (Q,T) have a point of coincidence. Then P,Q,S and T have a unique 

common fixed point. 

Proof- Since the pairs (P,S) and (Q,T) are subsequential continuous and compatible mappings , 

then there exists two sequences  {xn} and {yn}  in X such that 

limn→∞  Pxn =  limn→∞ Sxn = z , for some z∈ 𝑋  , and  limn→∞  M(PSxn, SPxn ,t) =1 , for all  t > 0. 
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limn→∞ Qyn = limn→∞ Tyn = w , for some w∈ X ,  and   limn→∞  M(QTyn , TQyn,t) =1 , for all t > 0 . 

           Therefore Pz = Sz  and  Qw = Tw ,                                                                 …(1) 

that is z is the coincidence point of the pair (P,S)  and  w is the coincidence point of the pair 

(Q,T). 

     Now , we will prove that z = w . 

    Put x =xn   and y =yn in inequality 3.1 (a) , we get  

      ∅ [ M( Pxn, Qyn,t) , M(Pxn, Tyn,t), M(Sxn ,Pxn ,t) , M(Tyn,Qyn,t)] ≥ 0 , and  

       𝜓Ѱ [ N( Pxn, Qyn,t) , N(Pxn, Tyn,t), N(Sxn ,Pxn ,t) ,N(Tyn,Qyn,t)] ≤ 0 

    Taking lim n→∞ , we get  

      ∅[ M(z,w,t),M(z,w,t), M(z,z,t),M(w,w,t)]≥ 0,   and  

      ψ[N(z,w,t), N(z,w,t),N(z,z,t), N(w,w,t)] ≤ 0. 

     ∅[ M(z,w,t), M(z,w,t),1,1] ≥ 0,  and    ψ [N(z,w,t),N(z,w,t),1,1] ≤ 0 

      In view of  2.10 (ii) , z = w . 

     Again , we claim that  Pz = z . 

     By putting x =z and y = yn  , in inequality  3.1 (a), we get 

     ∅[ M(Pz,Qyn,t), M(Pz,Tyn,t), M(Sz,Pz,t),M(Tyn,Qyn,t)] ≥ 0 ,   and 

      ψ[ N(Pz,Qyn,t), N(Pz,Tyn,t) ,N(Sz,Pz,t), N(Tyn,Qyn,t)] ≤ 0. 

      Taking limit n→∞ , we get  

     ∅[ M(Pz,w,t),M(Pz,w,t),M(Sz,Pz,t), M(w,w,t)]≥ 0 ,  and  

     ψ[ N(Pz,w,t), N(Pz,w,t),N( Sz,Pz,,t),N(w,w,t)] ≤ 0 .    

     ∅[M(Pz,w,t), M(Pz,w,t),1,1] ≥ 0 , and   ψ[ N(Pz,w,t), N(Pz,w,t),1,1] ≤ 0. 

     Since w = z , then we get 

     ∅[M(Pz,z,t), M(Pz,z,t),1,1]≥ 0 ,  and  Ѱ[N(Pz,z,t),N(Pz,z,t),1,1] ≤ 0. 

     From 2.12(ii) , we get  Pz = z .  Since Pz = Sz , combining  both  results  , we get  

           Pz = z = Sz                                                                          …(2) 

    Now , again we claim that     Qw = z . 

   substitute  x =z and y = w in inequality 3.1(a), we get 

    ∅[M(Pz,Qw,t), M(Pz,Tw,t),M(Sz,Pz,t),M(Tw,Qw,t)] ≥ 0 ,   and   

   ψ[N(Pz,Qw,t),N( Pz,Tw,t),N(Sz,Pz,t),N(Tw,Qw,t)] ≤ 0 .  

   Using (1)  and  (2) , we get  

  ∅[M(z,Qw,t), M(z,Qw,t), M(Pz,Pz,t), M(Qw,Qw,t)] ≥ 0 ,  and  
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  ψ[N(z,Qw,t), N(z,Qw,t), N(Pz,Pz,t),N(Qw,Qw,t)] ≤ 0  . 

  ∅[M(z,Qw,t), M(z,Qw,t), 1,1] ≥ 0  ,  and   ψ[N(z,Qw,t),N(z,Qw,t),1,1] ≤ 0 . 

   From 2.10 (ii) , we get    Qw = z . Since w = z  , then we get Qz = z . 

  Since Qz = Tz  , hence  from this we conclude that  Qz = z = Tz. 

  Therefore , combining all the result , we get 

    z = Pz  = Sz = Qz = Tz . 

  That is z is a common fixed point of P, Q, S and T. 

Uniqueness – Let u be another common fixed point of  P, Q , S and  T . Then  

              Pu = Su = Qu = Tu = u. 

   Put x = z and y = u in inequality 3.1(a) , we get  

   ∅[M(Pz,Qu,t), M(Pz,Tu,t), M(Sz,Pz,t), M(Tu,Qu,t) ] ≥ 0  ,      and  

   ψ [N(Pz,Qu,t),N(Pz,Tu,t),N(Sz,Pz,t),N(Tu,Qu,t)] ≤   0.  

   ∅[𝑀(z,u,t),M(z,u,t), M(z,z,t), M(u,u,t)]  ≥ 0 ,     and       

   ψ[N(z,u,t), N(z,u,t), N(z,z,t), N(u,u,t)]  ≤ 0 .  

    ∅[M(z,u,t) ,M(z,u,t), 1,1] ≥ 0 ,   and    ψ[N(z,u,t),N(z,u,t),1,1] ≤ 0 . 

    𝐹𝑟𝑜𝑚 2.10 (ii) , we get  z = u . 

    Therefore , uniqueness follows.  

  Corollary 3.2   Let P , Q and  S be three self-maps of an Intuitionistic fuzzy metric space 

(X,M,N,*,◊) with continuous  

    t-norm * and continuous  t- conor m ◊ defined by t *t ≥ 𝑡  and  (1-t) ◊(1-t) ≤ (1-t)  , for all 

t∈[0,1] . If the pairs (P,S) and 

     (Q,T) are subsequential continuous and compatible mappings , then  for some ∅ , Ѱ ∈ 𝛷 and 

for all x,y ∈ X , and every t > 0 , 

         ∅[ 𝑀(𝑃𝑥, 𝑄𝑦, 𝑡), M(Sx,Px,t),M(Sy,Qy,t),M(Sx,Qy,t),M(Sy,Px,t)] ≥ 0,  and  

        𝜓Ѱ [ 𝑁(𝑃𝑥, 𝑄𝑦, 𝑡), 𝑁(Sx, Px, t), N(Sy, Qy, t), N(Sx, Qy, t), N(Sy, Px, t)] ≤ 0.   

then (𝑃, 𝑆) and (Q,S) have a coincidence points. Then P, Q and S have a unique common fixed 

point. 

   Corollary 3.3   Let P ,Q ,S and T be four self maps of an Intuitionistic fuzzy metric space 

(X,M,N,*,◊) with continuous  t-norm * and  continuous  t- conor m ◊ defined by t *t ≥ 𝑡  and  

(1-t) ◊(1-t) ≤ (1-t)  , for all t∈[0,1] . If the pairs (P,S) and (Q,T) are subsequential continuous 

and compatible mappings , then  for some ∅ , Ѱ ∈ 𝛷 and for all x,y ∈ X , and every  t > 0 , 
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        ∅[ M(Px,Qy,t),  1/2{ M(Sx,Px,t) + M(Ty,Qy,t)} , M(Sx,Qy,t), M(Ty,Px,t)]≥ 0 ,   𝑎𝑛𝑑 

          ψ[N(Px,Qy,t),  1/2{N (Sx,Px,t) + N(Ty,Qy,t)} , N(Sx,Qy,t), N(Ty,Px,t)] ≤ 0 . 

𝑇ℎ𝑒𝑛 (𝑃, 𝑆) and (Q,T) have a coincidence points . Then P, Q, S and T a unique common fixed 

point. 
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