

Available online at http://scik.org
Advances in Inequalities and Applications, 1 (2012), No. 1, 45-52

SOME COMPACT GENERALIZATIONS OF ENESTROM-KAKEYA TYPE THEOREM FOR POLYNOMIALS

B. A. ZARGER*
P.G. Deptt. of Math. University of Kashmir, Srinagar

Abstract

In this paper we present an interesting generalization of Enestrom-Kakeya Theorem which amoung other things yields a number of already known classical results by putting some restrictive conditions on the coefficients of the polynomials.

keywords: coefficients, zeros, parameter
2010 AMS Subject Classification : 20C10,20C15.

1. INTRODUCTION AND STATEMENT OF RESULTS

The following result due to Enestrom-and Kakeya [7] is well-known in the theory of distribution of the zeros of polynomials

THEOREM A. If

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}
$$

is a polynomial of degree n such that

$$
\begin{equation*}
a_{n} \geq a_{n-1} \geq \ldots \geq a_{1} \geq a_{0} \geq 0 \tag{1}
\end{equation*}
$$

then $\mathrm{P}(\mathrm{z})$ does not vanish in $|z|>1$.

[^0]Received March 26, 2012

Applying this result to $\mathrm{P}(\mathrm{tz})$, the following more general result is immediate.
THEOREM B. If

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}
$$

is a polynomial of degree n such that

$$
t^{n} a_{n} \geq t^{n-1} a_{n-1} \geq \ldots \geq t a_{1} \geq a_{0} \geq 0
$$

then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in $|z| \leq t$.
In the literature $[1,2,4,5,8]$ these exist some extensions and generalizations of Enestrom-Kakeya Theorem, Joyal, Labellel and Rahman[6] extended this theorem to polynomials whose coefficients were monotonic but not necessarily non-negative. Recently Aziz and Zarger[3] relaxed the hypothesis in several ways and among other things proved the following interesting generalization of Theorem A :

THEOREM C. If

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}
$$

is a polynomial of degree n such that for some $k \geq 1$.

$$
k a_{n} \geq a_{n-1} \geq \ldots \geq a_{1} \geq a_{0} \geq 0
$$

then $\mathrm{P}(\mathrm{z})$ has all its zeros in

$$
\begin{equation*}
|z+k-1| \leq k \tag{2}
\end{equation*}
$$

In this paper we start by proving the following result which includes Theorems A,B and C as special cases.

THEOREM 1. Let

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}
$$

be a polynomial of degree n , if for some real number $k \geq 1$,

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|\left(k a_{n}-a_{n-1}\right)+\left(a_{n-1}-a_{n-2}\right)+\ldots+\left(a_{1}-a_{0}\right) z^{n-1}+a_{0} z^{n}\right| \leq M \tag{3}
\end{equation*}
$$

then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the disk

$$
\begin{equation*}
|z+k-1| \leq \frac{M}{\left|a_{n}\right|} \tag{4}
\end{equation*}
$$

REMARK 1. Suppose $\mathrm{P}(\mathrm{z})$ satisfies the conditions of Theorem C , then clearly for $|z|=1$,

$$
\left|\left(k a_{n}-a_{n-1}\right)+\left(a_{n-1}-a_{n-2}\right) z+\ldots+a_{0} z^{n}\right|
$$

$$
\begin{aligned}
& \leq\left|\left(k a_{n}-a_{n-1}\right)\right|+\left|a_{n-1}-a_{n-2}\right|+\ldots+\left|a_{1}-a_{0}\right|+\left|a_{0}\right| \\
& =k a_{n}-a_{n-1}+a_{n-1}-a_{n-2}+\ldots+a_{1}-a_{0}+a_{0} \\
& =k a_{n}
\end{aligned}
$$

We take $M=k a_{n}$ in Theorem 1, it follows that all the zeors of $\mathrm{P}(\mathrm{z})$ satisfying the conditions of Theorem C lie in the circle

$$
|z+k-1| \leq k
$$

which is precisely the conclusion of Theorem C.
The following corollary follows by taking $k=\frac{a_{n-1}}{a_{n}}$ in Theorem 1.
COROLLARY 1. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$, is a polynomial of degree n , such that

$$
a_{n-1} \geq a_{n} \quad \text { and } \quad \operatorname{Max}_{|z|=1}\left|\left(a_{n-1}-a_{n-2}\right) z+\ldots+a_{0} z^{n}\right| \leq M_{1}
$$

then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the disk.

$$
\left|z+\frac{a_{n-1}}{a_{n}}-1\right| \leq \frac{M_{1}}{\left|a_{n}\right|}
$$

REMARK 2. Let

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}
$$

be a polynomial of degree n satisfying the condition

$$
\begin{equation*}
0<a_{n} \leq a_{n-1} \geq \ldots \geq a_{1} \geq a_{0} \geq 0 \tag{05}
\end{equation*}
$$

then $\quad M_{1}=\operatorname{Max}_{|z|=1}\left|\left(a_{n-1}-a_{n-2}\right)+\left(a_{n-2}-a_{n-3}\right) z+\ldots+a_{0} z^{n}\right|$

$$
\begin{aligned}
& \leq\left(a_{n-1}-a_{n-2}\right)+\left(a_{n-2}-a_{n-3}\right)+\ldots+a_{0} \\
= & a_{n-1} .
\end{aligned}
$$

Hence from Corollary 1 it follows that all the zeros of $P(z)$ satisfying (5) lie in the circle.

$$
\left|z+\frac{a_{n-1}}{a_{n}}-1\right| \leq \frac{a_{n-1}}{a_{n}}
$$

This result was earlier proved by the authors in [3] Cor. 2.
Theorem 1 follows by taking $t=1$ in the following general result:
THEOREM 2. Let

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}
$$

be a polynomial of degree n . If for some positive real numbers t and $k \geq 1$

$$
\begin{equation*}
\operatorname{Max}_{|z|=\left\lvert\,=\frac{1}{t}\right.}|H(z)| \leq M, \text { where } \tag{6}
\end{equation*}
$$

$$
H(z)=\left\{\left(t k a_{n}-a_{n-1}\right)+\left(t a_{n-1}-a_{n-2}\right) z+\ldots+\left(t a_{1}-a_{0}\right) z^{n-1}+t a_{0} z^{n}\right\}
$$

then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in

$$
\begin{equation*}
|z+t(k-1)| \leq \frac{M}{\left|a_{n}\right|} \tag{7}
\end{equation*}
$$

Since

$$
\begin{aligned}
& M \geq \operatorname{Max}_{|z|=\frac{1}{t}}|H(z)| \geq\left|H\left(\frac{1}{t}\right)\right| \\
& =\left|\left(t k a_{n}-a_{n-1}\right)+\left(t a_{n-1}-a_{n-2}\right) \frac{1}{t}+\left(t a_{n-2}-a_{n-3}\right) \frac{1}{t^{2}}+\ldots+\left(t a_{1}-a_{0}\right) \frac{1}{t^{n-1}}+t a_{0} \cdot \frac{1}{t^{n}}\right| \\
& \geq k t a_{n}
\end{aligned}
$$

Theorem 2 follows by taking $R=\frac{1}{t}$ in the following more general result which yields a number of other interesting results for various choices of parameters R and t :

THEOREM 3. Let

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}
$$

be a polynomial of degree n. If for some positive real numbers t and $k \geq 1$

$$
\begin{gather*}
\operatorname{Max}_{|z|=R}|H(z)| \leq M, \text { where } \tag{8}\\
H(z)=\left(k t a_{n}-a_{n-1}\right)+\left(t a_{n-1}-a_{n-2}\right) z+\ldots+t a_{0} z^{n} .
\end{gather*}
$$

then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the circle

$$
\begin{equation*}
|z+t(k-1)| \leq \frac{M}{\left|a_{n}\right|} \quad \text { if } \quad M \geq\left[k t+\left(\frac{1}{R}-t\right)\right]\left|a_{n}\right| \tag{9}
\end{equation*}
$$

and in
(10) $|z| \leq t(2 k-1)+\left(\frac{1}{R}-t\right), \quad$ if $\quad M<\left[k t+\left(\frac{1}{R}-t\right)\right]\left|a_{n}\right|$.

PROOF OF THEOREM 3. Consider the polynomial

$$
\begin{aligned}
F(z) & =(t-z) P(z) \\
& =(t-z)\left(a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}\right)
\end{aligned}
$$

$$
=-a_{n} z^{n+1}+\left(t a_{n}-a_{n-1}\right) z^{n}+\left(t a_{n-1}-a_{n-2}\right) z^{n-1}+\ldots+\left(t a_{1}-a_{0}\right) z+t a_{0}
$$

then we have

$$
\begin{aligned}
G(z) & =z^{n+1} F\left(\frac{1}{z}\right) \\
& =-a_{n}+\left(t a_{n}-a_{n-1}\right) z+\left(t a_{n-1}-a_{n-2}\right) z^{2}+\ldots+\left(t a_{1}-a_{0}\right) z^{n}+t a_{0} z^{n+1} \\
& =-a_{n}+t a_{n} z-k t a_{n} z+\left(t k a_{n}-a_{n-1}\right) z+\left(t a_{n-1}-a_{n-2}\right) z^{2}+\ldots+t a_{0} z^{n+1} \\
& =-a_{n}+t a_{n} z-k t a_{n} z+z H(z)
\end{aligned}
$$

where

$$
H(z)=\left\{\left(t k a_{n}-a_{n-1}\right)+\left(t a_{n-1}-a_{n-2}\right) z+\ldots+t a_{0} z^{n}\right\}
$$

Now for $|z| \leq R$,

$$
\begin{equation*}
|G(z)| \geq\left|a_{n}\right||t(k-1) z+1|-|z||H(z)| \tag{11}
\end{equation*}
$$

Since
$|H(z)| \leq M \quad$ for $|z|=R$, and $H(z)$ is analytical for $|z| \leq R$, therefore by Maximum Modulus Theorem $|H(z)| \leq M$ for $|z| \leq R$.

Using this fact in (11), we get

$$
\begin{aligned}
|G(z)| & \geq\left|a_{n}\right||t(k-1) z+1|-|z| M \\
& >0, \text { if } \\
\frac{M}{a_{n}}|z| & <|t(k-1) z+1| \text { for }|z| \leq R
\end{aligned}
$$

Thus in $|z| \leq R$,

$$
|G(z)|>0 \text { for } z \in E,
$$

where

$$
E=\left\{z ; \frac{M}{\left|a_{n}\right|}|z|<|t(k-1) z+1|\right\}
$$

we show if $\mathrm{w} \in \mathrm{E}$, then $|w| \leq R$ if

$$
M \geq\left(k t+\left(\frac{1}{R}-t\right)\right)\left|a_{n}\right|
$$

Let $W \in E$, then

$$
\begin{aligned}
\frac{M}{\left|a_{n}\right|}|w| & <|t(k-1) w+1| \\
& <t(k-1)|w|+1
\end{aligned}
$$

This implies,

$$
\left\{\frac{M}{\left|a_{n}\right|}-t(k-1)\right\}|W|<1
$$

or

$$
|W|<\frac{\left|a_{n}\right|}{M-t(k-1)\left|a_{n}\right|} \leq R
$$

if

$$
\left|a_{n}\right| \leq M R-t(k-1)\left|a_{n}\right| R
$$

or if,

$$
M \geq \frac{\left|a_{n}\right|}{R}\{R t(k-1)+1\}=\left|a_{n}\right|\left\{k t+\frac{1}{R}-t\right\}
$$

Thus if

$$
M \geq\left(k t+\left(\frac{1}{R}-t\right)\right)\left|a_{n}\right|
$$

then in $|z| \leq R$,

$$
\begin{gathered}
|G(z)|>0, \text { if } \\
\frac{M}{a_{n}}|z|<|t(k-1) z+1|
\end{gathered}
$$

This shows that all the zeros of $\mathrm{G}(\mathrm{z})$ lie in the region defined by

$$
\frac{M}{\left|a_{n}\right|}|z| \geq|t(k-1) z+1|
$$

Replacing z by $\frac{1}{z}$ and noting that $F(z)=z^{n+1} G(z)$, it follows that all the zeros of $\mathrm{F}(\mathrm{z})$ lie in

$$
|z+t(k-1)| \leq \frac{M}{\left|a_{n}\right|} .
$$

Since all the zeros of $\mathrm{P}(\mathrm{z})$ are also the zeros of $\mathrm{F}(\mathrm{z})$, we conclude that all the zeros of $\mathrm{P}(\mathrm{z})$ lie in

$$
\begin{equation*}
|z+t(k-1)| \leq \frac{M}{a_{n}} \quad \text { if } \quad M \geq\left\{k t+\left(\frac{1}{R}-t\right)\right\}\left|a_{n}\right| . \tag{12}
\end{equation*}
$$

We now assume that

$$
M<\left(\frac{R t(k-1)+1}{R}\right)\left|a_{n}\right|
$$

then for $|z| \leq R$,

$$
\begin{aligned}
|G(z)| & =\left|-a_{n}+\left(t a_{n}-k t a_{n}\right) z+z H(z)\right| \\
& \geq\left|a_{n}\right|\left\{1-\left\lvert\, z\left(\left\lvert\, t(k-1)+\frac{|H(z)|}{\left|a_{n}\right|}\right.\right)\right.\right\} \\
& \geq\left|a_{n}\right|-|z|\left\{t(k-1)+\frac{M}{\left|a_{n}\right|}\right\} \\
& \geq\left|a_{n}\right|\left\{1-|z|\left(t(k-1)+\left(\frac{1}{R}-t\right)+t k\right)\right\}
\end{aligned}
$$

>0, if

$$
|z|<\frac{1}{t(2 k-1)+\left(\frac{1}{R}-t\right)}(\leq R) .
$$

Tthis shows that all the zeros of $\mathrm{G}(\mathrm{z})$ lie in the region

$$
|z| \geq \frac{1}{t(2 k-1)+\left(\frac{1}{R}-t\right)}
$$

Replacing z by $\frac{1}{z}$ and as before noting that

$$
F(z)=z^{n+1} G\left(\frac{1}{z}\right)
$$

it follows that all the zeros of $\mathrm{F}(\mathrm{z})$ and hence all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the circle

$$
\begin{equation*}
|z| \leq t(2 k-1)+\left(\frac{1}{R}-t\right) \tag{13}
\end{equation*}
$$

if

$$
M<\left\{\left(\frac{1}{R}-t\right)+k t\right\}\left|a_{n}\right|
$$

From (12) and (13), the desired result follows.

REFERENCES

[1] A. Aziz and Q.G Mohammad, On the zeros of certain class of polynomials and related analytic functions, J. Math. Anal.Appl. 75 (1980), 495-502.
[2] A. Aziz and W.M.Shah, On the zeros of polynomials and related analytic functions, Glasnik Matematicki, 33 (1998), 173-189.
[3] A. Aziz and B. A. Zargar , Some Extension of Enestrom - Kakeya Theorem, Glasnik Matematicki, 31 (1996) 239-244
[4] K.K. Dewan and M. Bidkham, on the Enestrom-Kakeya Theorem, J.Math Anal. Appl. 180(1993), 29-36.
[5] N.K. Govil and Q.I Rahman, On the Enestrom-Kakeya Theorem, Tohoku Math.J. 20 (1968), 126-136.
[6] A. Joyal.G.Labelle and Q.I. Rahman, On the Location of the zeros of polynomials, Canad, Math. Bull 10 (1967), $53-63$
[7] M. Marden, Geometry of polynomials, Math surveys No 3. Amer Math. Soc. (R.I. Providence) 1966.
[8] G.V Milovanoic , D.S. Mitrinovic, Th.M Rassias. Topics in polynomials, Extremal problems, Inequalities, zeros (World Scientific, Singapore, (1994);

[^0]: *Corresponding author

