
Available online at http://scik.org

Adv. Inequal. Appl. 2017, 2017:7

ISSN: 2050-7461

TWO SCHUR-CONVEX FUNCTIONS RELATED TO THE GENERALIZED
INTEGRAL QUASIARITHMETIC MEANS

SHUN-YI JIANG1, DONGSHENG WANG1, HUAN-NAN SHI2,∗

1Basic courses department, Beijing Vocational College of Electronic Technology, Beijing 100026, China

2Department of Electronic information, Teacher’s College, Beijing Union University, Beijing 100176, China

Copyright c© 2017 Jiang, Wang, and Shi. This is an open access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. The Schur-convexity of two functions which related to the generalized integral quasiarithmetic means

are researched, and two new inequalities are established. As applications, some refinements of Hadamard-type

inequalities for convex functions and log-convex function are obtained.

Keywords: Schur-convex function; inequality; convex function; log-convex function; Hadamard’s inequality;

quasiarithmetic means.

2010 AMS Subject Classification: Primary 26D15, 26B25; Secondary 26E60.

1. Introduction

Throughout the paper we assume that the set of n-dimensional row vector on real number

field by Rn, and Rn
+ = {x = (x1, . . . ,xn) ∈ Rn : xi > 0, i = 1, . . . ,n}. In particular, R1 and R1

+

denoted by R and R+ respectively.

Let f be a convex function defined on the interval I ⊆ R→ R and the real numbers a,b ∈ I

with a < b. Then
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(1) f
(

a+b
2

)
≤ 1

b−a

∫ b

a
f (x)dx≤ f (a)+ f (b)

2

is known as the Hadamard’s inequality for convex function [1]. For some recent results which

generalize, improve, and extend this classical inequality, see [2-8].

When f ,−g both are convex functions satisfying
∫ b

a g(x)dx > 0 and f (a+b
2 ) ≥ 0, S.-J. Yang

in [5] generalized (1) as

(2)
f
(a+b

2

)
g
(a+b

2

) ≤ 1
b−a

∫ b
a f (x)dx

1
b−a

∫ b
a g(x)dx

.

To go further in exploring (2), Lan He in [8] define two mappings L and F by

L : [a,b]× [a,b]→ R,

L(x,y; f ,g) =
[∫ y

x
f (t)dt− (y− x) f

(
x+ y

2

)][
(y− x)g

(
x+ y

2

)
−
∫ y

x
g(t)dt

]
and

F : [a,b]× [a,b]→ R,

F(x,y; f ,g) = g
(

x+ y
2

)∫ y

x
f (t)dt− f

(
x+ y

2

)∫ y

x
g(t)dt.

Huan-nan Shi in [9] studied the Schur-convexity of L(x,y; f ,g) and F(x,y; f ,g) with variables

(x,y) in [a,b]× [a,b]⊆ R2, obtained the following results.

Theorem A Let f and −g both be convex function on [a,b]. Then L(x,y; f ,g) is Schur-convex

on [a,b]× [a,b]⊆ R2.

Theorem B Let f and −g both be nonnegative convex function on [a,b]. Then F(x,y; f ,g) is

Schur-convex on [a,b]× [a,b]⊆ R2.

And then Shi established the refinement of the inequality of (2).

Theorem C Let f and−g both be convex function on [a,b]⊆R. If
∫ a

b g(x)dx > 0 and f
(a+b

2

)
≥

0, then

(3)
f
(a+b

2

)
g
(a+b

2

) ≤ ∫ b
a f (t)dt−

∫ tb+(1−t)a
ta+(1−t)b f (t)dt∫ b

a g(t)dt−
∫ tb+(1−t)a

ta+(1−t)b g(t)dt
≤
∫ b

a f (t)dt∫ b
a g(t)dt

,

where 1
2 ≤ t < 1 or 0≤ t ≤ 1

2 .
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Vera Čuljak et al in [10] discovered the following property of Schur-convexity of the gener-

alized integral quasiarithmetic means.

Theorem D Let f be a real Lebesgue integrable function defined on the interval I ⊆ R, with

range J. Let k be a real continuous strictly monotone function on J. Then, for the generalized

integral quasiarithmetic mean of function f defined as

(4) Mk( f ;a,b) =


k−1
(

1
b−a

∫ b
a (k ◦ f )(t)dt

)
, a 6= b;

f (a), a = b.

the following hold:

(i) Mk( f ;x,y) is Schur-convex on I2 if k ◦ f is convex on I and k is increasing on J or if k ◦ f

is concave on I and k is decreasing on J;

(ii) Mk( f ;x,y) is Schur-concave on I2 if k ◦ f is convex on I and k is decreasing on J or if

k ◦ f is concave on I and k is increasing on J.

In recent years, Schur-convexity of various functions connected to the Hermite-Hadamard in-

equality has invoked the interest of many researchers and numerous papers have been dedicated

to the investigation of it, see [9-13].

In this paper, comparing (2) with (4), we studied the Schur-convexity of the following two

functions:

(5) Hp,q( f ,g;a,b) =


Mp( f ;a,b)
Mq(g;a,b) , a 6= b;

f (a)
g(a) , a = b.

and

(6) Lp,q( f ;g;a,b) =


[
Mp( f ;a,b)− f (a+b

2 )
]
·
[
g(a+b

2 )−Mq(g;a,b)
]
, a 6= b;

0, a = b.

2. Preliminaries

We need the following definitions and lemmas.

Definition 1. [14],[15] Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn) ∈ Rn.



4 SHUN-YI JIANG, DONGSHENG WANG, HUAN-NAN SHI

(i) x is said to be majorized by y (in symbols x≺ y) if ∑
k
i=1 x[i]≤∑

k
i=1 y[i] for k= 1,2, . . . ,n−

1 and ∑
n
i=1 xi = ∑

n
i=1 yi, where x[1] ≥ ·· · ≥ x[n] and y[1] ≥ ·· · ≥ y[n] are of x and y in a

descending order.

(ii) Let Ω⊆Rn. The function ϕ: Ω→R be said to be a Schur-convex function on Ω if x≺ y

on Ω implies ϕ (x)≤ ϕ (y) . ϕ is said to be a Schur-concave function on Ω if and only

if −ϕ is Schur-convex.

Lemma 1.[14],[15] Let Ω ⊆ Rn be a symmetric set and with a nonempty interior Ω0, ϕ :

Ω→ R be a continuous on Ω and differentiable in Ω0. Then ϕ is the Schur− convex(Schur−

concave) f unction, if and only if ϕ is symmetric on Ω and

(7) (x1− x2)

(
∂ϕ

∂x1
− ∂ϕ

∂x2

)
≥ 0(≤ 0)

holds for any x = (x1, · · · ,xn) ∈Ω0.

Lemma 2.[16] Let a ≤ b,u(t) = ta+(1− t)b,v(t) = tb+(1− t)a. If 1
2 ≤ t ≤ 1 or 0 ≤ t ≤ 1

2 ,

then

(8)
(

a+b
2

,
a+b

2

)
≺ (u(t),v(t))≺ (a,b).

Lemma 3.

(i) If ϕ(x) is a convex function defined on the convex set A ⊆ R and if h : R→ R is an

increasing convex function, then the function ψ : R→ R defined by ψ(x) = h(ϕ(x)) is

convex on A.

(ii) If ϕ(x) is a concave function defined on the convex set A ⊆ R and if h : R→ R is an

increasing concave function, then the function ψ : R→R defined by ψ(x) = h(ϕ(x)) is

concave on A.

Proof. We only give the proof of Lemma 3 (i) in detail. Similar argument leads to the proof of

Lemma 3 (ii). If x,y ∈ A, then for all α ∈ [0,1],
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ψ(αx+(1−α)y) = h(ϕ(αx+(1−α)y))

≤ h(αϕ(x)+(1−α)ϕ(y))

≤ αh(ϕ(x)+(1−α)h(ϕ(y))

= αψ(x)+(1−α)ψ(y).

Here the first inequality uses the monotonicity of h together with the convexity of ϕ; the second

inequality uses the convexity of h. �

3. Main results

Our main results are as follows:

Theorem 1. Let f and g be a real Lebesgue integrable function defined on the interval I ⊆ R,

with range J1 and J2, respectively, p and q be a real continuous strictly increasing function on

J1 and J2, respectively, and let Mp( f ;a,b)≥ 0, Mq(g;a,b)> 0 and g
(a+b

2

)
6= 0.

(i) if p◦ f is convex on I, q◦g is concave on I, then Hp,q( f ,g;a,b) is Schur-convex on I2.

And then for a < b, we have

(9)
Mp( f ;a,b)
Mq(g;a,b)

≥
Mp( f ; ta+(1− t)b, tb+(1− t)a)
Mq(g; ta+(1− t)b, tb+(1− t)a)

≥
f
(a+b

2

)
g
(a+b

2

) ,
where 1

2 ≤ t ≤ 1 or 0≤ t ≤ 1
2 .

(ii) if p◦ f is concave on I, q◦g is convex on I, then Hp,q( f ,g;a,b) is Schur-concave on I2.

And then the inequality chains (7) reverse hold.

Proof. (i) It is clear that Hp,q( f ,g;a,b) is symmetric with a,b. Without loss of generality, we

may assume b≥ a. Directly calculating yields

∂Hp,q

∂a
=

1
M2

q(g;a,b)

(
∂Mp

∂a
Mq−

∂Mq

∂a
Mp

)
,

∂Hp,q

∂b
=

1
M2

q(g;a,b)

(
∂Mp

∂b
Mq−

∂Mq

∂b
Mp

)
,
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and then

∆ : = (b−a)
(

∂Hp,q

∂b
−

∂Hp,q

∂a

)
=

Mq

M2
q(g;a,b)

(b−a)
(

∂Mp

∂b
−

∂Mp

∂a

)
−

Mp

M2
q(g;a,b)

(b−a)
(

∂Mq

∂b
−

∂Mq

∂a

)
From Theorem D and Lemma 1, it follows that

(b−a)
(

∂Mp

∂b
−

∂Mp

∂a

)
≥ 0, (b−a)

(
∂Mq

∂b
−

∂Mq

∂a

)
≤ 0,

so ∆ ≥ 0, from Lemma 1, it follows that Hp,q( f ,g;a,b) is Schur-convex on I2. And then from

Lemma 2, we have

Hp,q( f ,g;a,b)≥ Hp,q( f ,g; ta+(1− t)b, tb+(1− t)a)≥ Hp,q

(
f ,g;

a+b
2

,
a+b

2

)
,

that is the inequalities (7) hold.

By the same arguments, we can carry out the proof of the proposition (ii).

This completes the proof.

Theorem 2. Let f and g be a real Lebesgue integrable non negative function defined on the

interval I ⊆ R, with range J1 and J2, respectively, and let Mp( f ;a,b) ≥ 0, Mq(g;a,b) > 0 and

g
(a+b

2

)
6= 0. If p,q is a real continuous strictly increasing function on J1 and J2, respectively,

and p ◦ f is convex on I, q ◦ g is concave on I, then Lp,q( f ,g;a,b) is Schur-convex on I2. And

then the following inequality chains hold.

(10)
Mp( f ;a,b)
Mq(g;a,b)

≥
Mp( f ;a,b)
2Mq(g;a,b)

+
f
(a+b

2

)
2g
(a+b

2

) ≥ f
(a+b

2

)
2Mq(g;a,b)

+
Mp( f ;a,b)

2g
(a+b

2

) ≥ f
(a+b

2

)
g
(a+b

2

)

Proof. It is clear that Lp,q( f ,g;a,b) is symmetric with a,b. Without loss of generality, we may

assume b≥ a. Directly calculating yields

∂Lp,q

∂a
=

[
∂Mp

∂a
− 1

2
f ′
(

a+b
2

)]
·
[

g
(

a+b
2

)
−Mq(g;a,b)

]
+

[
1
2

g′
(

a+b
2

)
−

∂Mq

∂a

]
·
[

Mp( f ;a,b)− f
(

a+b
2

)]
,
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∂Lp,q

∂b
=

[
∂Mp

∂b
− 1

2
f ′
(

a+b
2

)]
·
[

g
(

a+b
2

)
−Mq(g;a,b)

]
+

[
1
2

g′
(

a+b
2

)
−

∂Mq

∂b

]
·
[

Mp( f ;a,b)− f
(

a+b
2

)]
,

and then

∆ : = (b−a)
(

∂Lp,q

∂b
−

∂Lp,q

∂a

)
=

[
g
(

a+b
2

)
−Mq(g;a,b)

]
(b−a)

(
∂Mp

∂b
−

∂Mp

∂a

)
−
[

Mp( f ;a,b)− f
(

a+b
2

)]
(b−a)

(
∂Mq

∂b
−

∂Mq

∂a

)
.

From Theorem D and Lemma 1, it follows that

(b−a)
(

∂Mp

∂b
−

∂Mp

∂a

)
≥ 0, (b−a)

(
∂Mq

∂b
−

∂Mq

∂a

)
≤ 0.

Since
(a+b

2 , a+b
2

)
≺ (a,b), from (i) and (ii) in Theorem D, we have g

(a+b
2

)
≥Mq(g;a,b) and

Mp( f ;a,b) ≥ f
(a+b

2

)
, respectively, so ∆ ≥ 0, from Lemma 1, it follows that Lp,q( f ,g;a,b) is

Schur-convex on I2.

And then, we have

Lp,q( f ,g;a,b)≥ Lp,q

(
f ,g;

a+b
2

,
a+b

2

)
= 0,

namely [
Mp( f ;a,b)− f (

a+b
2

)

]
·
[

g(
a+b

2
)−Mq(g;a,b)

]
≥ 0,

it is equivalent to

(11) g(
a+b

2
)Mp( f ;a,b)+ f (

a+b
2

)Mq(g;a,b)≥ f (
a+b

2
)g(

a+b
2

)+Mp( f ;a,b)Mq(g;a,b).

Dividing each term of the inequalities (11) by 2Mq(g;a,b)g(a+b
2 ), we get second inequality

in (8).

From the inequalities (7), it is easy to see that

(12) g
(

a+b
2

)
Mp( f ;a,b)− f

(
a+b

2

)
Mq(g;a,b)≥ 0.
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Dividing each term of the inequalities (12) by Mq(g;a,b), we obtain

(13) 2g
(

a+b
2

)
Mp( f ;a,b)
Mq(g;a,b)

−g
(

a+b
2

)
Mp( f ;a,b)
Mq(g;a,b)

− f
(

a+b
2

)
≥ 0,

further, dividing each term of the inequalities (13) by 2g
(a+b

2

)
, we get first inequality in (8).

From Theorem D, it follows that

Mp( f ;a,b)≥Mp

(
f ;

a+b
2

,
a+b

2

)
and

Mq(g;a,b)≤Mq

(
g;

a+b
2

,
a+b

2

)
,

namely

Mp( f ;a,b)− f
(

a+b
2

)
≥ 0

and

g
(

a+b
2

)
−Mq(g;a,b)≥ 0,

and then, we have

g
(

a+b
2

)[
f
(

a+b
2

)(
g
(

a+b
2

)
−Mq(g;a,b)

)
+Mq(g;a,b)

(
Mp( f ;a,b)− f

(
a+b

2

))]
≥ 0,

this is (
g
(

a+b
2

))2

f
(

a+b
2

)
+g
(

a+b
2

)
Mp( f ;a,b)Mq(g;a,b)(14)

≥2g
(

a+b
2

)
f
(

a+b
2

)
Mq(g;a,b).

Dividing each term of the inequalities (14) by 2
(
g
(a+b

2

))2
Mq(g;a,b), we get third inequality

in (8).

This completes the proof.

3. Applications

Theorem 3. Let f and g be non negative integrable function on I = [a,b] ⊆ R+, satisfying
1

b−a
∫ b

a (g(t))
sdt > 0 and g

(a+b
2

)
> 0, for r ≥ 1 and 0 < s ≤ 1. If f is convex and g is concave
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on I, then (
1

b−a
∫ b

a ( f (t))rdt
) 1

r

(
1

b−a
∫ b

a (g(t))sdt
) 1

s
≥

(
1

b−a
∫ ta+(1−t)b

tb+(1−t)a ( f (t))rdt
) 1

r

(
1

b−a
∫ ta+(1−t)b

tb+(1−t)a (g(t))
sdt
) 1

s
≥

f
(a+b

2

)
g
(a+b

2

) .(15)

where 1
2 ≤ t < 1 or 0≤ t ≤ 1

2 .

If f is concave and g is convex, then the inequality chains (15) reverse hold.

Proof. For r≥ 1 and 0< s≤ 1, taking p(x) = xr and q(x) = xs, then p and q is strictly increasing

convex and concave on R+, respectively, and then from Lemma 3, it follows that f ◦ p is convex

on [a,b] and g ◦ q is concave on [a,b], and then by Theorem 1, it is deduced that inequalities

(15) hold.

The proof of Theorem 3 is completed. �

By a similar proof of Theorem 1, from Theorem 2, we can obtain the following Theorem.

Theorem 4. Let f and g be non negative integrable function on I = [a,b] ⊆ R+, satisfying
1

b−a
∫ b

a (g(t))
sdt > 0 and g

(a+b
2

)
> 0, for r ≥ 1 and 0 < s ≤ 1. If f is convex and g is concave

on I, then (
1

b−a
∫ b

a ( f (t))rdt
) 1

r

(
1

b−a
∫ b

a (g(t))sdt
) 1

s
≥

(
1

b−a
∫ b

a ( f (t))rdt
) 1

r

2
(

1
b−a

∫ b
a (g(t))sdt

) 1
s
+

f
(a+b

2

)
2g
(a+b

2

)(16)

≥
f
(a+b

2

)
2
(

1
b−a

∫ b
a (g(t))sdt

) 1
s
+

(
1

b−a
∫ b

a ( f (t))rdt
) 1

r

2g
(a+b

2

) ≥
f
(a+b

2

)
g
(a+b

2

) .

Remark 1. It is obvious that inequalities (15) and (16) are strengthening and extension of the

inequality (2).

Theorem 5. Let f and g be positive integrable function on I = [a,b]⊆R+, satisfying g
(a+b

2

)
>

0. If f (x) be log-convex function, and g”(x)≤ 0,x ∈ I, then

(17)
exp{ 1

b−a
∫ b

a log f (t)dt}
exp{ 1

b−a
∫ b

a logg(t)dt}
≥

exp{ 1
b−a

∫ ta+(1−t)b
tb+(1−t)a log f (t)dt}

exp{ 1
b−a

∫ ta+(1−t)b
tb+(1−t)a logg(t)dt}

≥
f
(a+b

2

)
g
(a+b

2

) .
where 1

2 ≤ t < 1 or 0≤ t ≤ 1
2 .
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Proof. Taking p(x) = q(x) = logx, since g”(x)≤ 0, and then (logg(x))” = g(x)g
′′
(x)−(g′(x))2

(g(x))2 ≤ 0,

this is logg(x) is concave. f (x) is a log-convex function, namely, log f (x) is convex. So from

Theorem 1, it is deduced that inequalities (17) hold. �

Similar to the proof of Theorem 5, by the theorem 2, we can prove the following theorem.

Theorem 6. Let f and g be positive integrable function on I = [a,b]⊆R+, satisfying g
(a+b

2

)
>

0. If f (x) is a log-convex function, and g”(x)≤ 0,x ∈ I, then

exp{ 1
b−a

∫ b
a log f (t)dt}

exp{ 1
b−a

∫ b
a logg(t)dt}

≥
exp{ 1

b−a
∫ b

a log f (t)dt}
2exp{ 1

b−a
∫ b

a logg(t)dt}
+

f
(a+b

2

)
2g
(a+b

2

)(18)

≥
f
(a+b

2

)
2exp{ 1

b−a
∫ b

a logg(t)dt}
+

exp{ 1
b−a

∫ b
a log f (t)dt}

2g
(a+b

2

) ≥
f
(a+b

2

)
g
(a+b

2

) .
In particular, taking g(x) = e,x ∈ [a,b], from Theorem 5, we have the following corollary.

Corollary 1. Let f be positive integrable function on I = [a,b] ⊆ R+. If f (x) is a log-convex

function, then

(19) exp{ 1
b−a

∫ b

a
log f (t)dt} ≥ exp{ 1

b−a

∫ ta+(1−t)b

tb+(1−t)a
log f (t)dt} ≥ f

(
a+b

2

)
.

where 1
2 ≤ t < 1 or 0≤ t ≤ 1

2 .

Remark 2. In [17], Dragomir and Mond proved that the following inequalities of Hermite-

Hadamard type hold for log-convex functions:

f
(

a+b
2

)
≤ exp{ 1

b−a

∫ b

a
log f (t)dt}(20)

≤ 1
b−a

∫ b

a

√
f (t) f (a+b− t)dt

≤ 1
b−a

∫ b

a
log f (t)dt

≤ f (a)− f (b)
log f (a)− log f (b)

≤ f (a)+ f (b)
2

.

The inequality chain (19) is a refinement of the first inequality in [20].
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