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Abstract. Recently, Horváth introduced a new method to refine the well known discrete Jensen’s

inequality (see [2]). He also gave a parameter dependant refinement of the discrete Jensen’s inequality

(see [3]). We apply the new exponential convexity method as illustrated in [7], to the functionals obtained

from the refinement results of [2] and [3]. In this way we are able to generalize the results given in [4] as

well as given in [1].
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1. Introduction and Preliminary Results

We start with the notations given in [2]:

Let X be a set. The power set of X is denoted by P (X). |X| means the number of
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elements in X. For every nonnegative integer m, let

Pm(X) := {Y ⊂ X | |Y | = m} .

We need the following hypotheses:

(H1) Let S1, . . . , Sn be finite, pairwise disjoint and nonempty sets, let

S :=
n⋃
j=1

Sj,

and let c be a function from S into R such that

c(s) > 0, s ∈ S, and
∑
s∈Sj

c(s) = 1, j = 1, . . . , n.

Let the function τ : S → {1, . . . , n} be defined by

τ(s) := j, if s ∈ Sj.

(H2) Suppose A ⊂ P (S) is a partition of S into pairwise disjoint and nonempty sets. Let

k := max {|A| | A ∈ A} ,

and let

Al := {A ∈ A | |A| = l} , l = 1, . . . , k.

Then Al (l = 1, . . . , k − 1) may be the empty set, and |S| =
k∑
l=1

l |Al|. The empty sum is

taken to be zero.

In the sequel, we also require the following hypotheses:

(H3) Let J ⊂ R be an interval, x := (x1, ...,xn) ∈ Jn, and p := (p1, ..., pn) be a positive

n-tuple such that
n∑
i=1

pi = 1.

(H4) Let f : J → R be a convex function.

(H5) Let h, g : J → R be continuous and strictly monotone functions.

Theorem 1.1. [2] Assume (H1)-(H4). Then

(1) f

(
n∑
j=1

pjxj

)
≤ Nk ≤ Nk−1 ≤ . . . ≤ N2 ≤ N1 =

n∑
j=1

pjf(xj),
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where

(2) Nk :=
k∑
l=1

∑
A∈Al

(∑
s∈A

c(s)pτ(s)

)
f


∑
s∈A

c(s)pτ(s)xτ(s)∑
s∈A

c(s)pτ(s)

 ,

and for every 1 ≤ m ≤ k − 1 the number Nk−m is given by

(3) Nk−m :=
m∑
l=1

(∑
A∈Al

(∑
s∈A

c(s)pτ(s)f(xτ(s))

))
+

k∑
l=m+1

(
m!

(l − 1) . . . (l −m)

·
∑
A∈Al

 ∑
B∈Pl−m(A)

(∑
s∈B

c(s)pτ(s)

)
f


∑
s∈B

c(s)pτ(s)xτ(s)∑
s∈B

c(s)pτ(s)

 .

Assume (H1), (H2) and

(H6) Let x := (x1, ...,xn) and p := (p1, ..., pn) be positive n-tuples such that
n∑
i=1

pi = 1.

We define the power means of order r ∈ R corresponding to A ∈ Al (l = 1, . . . , k) as

follows:

(4) Mr(x,p, A) :=



( ∑
s∈A

c(s)pτ(s)x
r
τ(s)∑

s∈A
c(s)pτ(s)

) 1
r

; r 6= 0,(∏
s∈A

x
c(s)pτ(s)
τ(s)

) 1∑
s∈A

c(s)pτ(s)

; r = 0.

We also use the means

Mr :=


(

n∑
i=1

pix
r
i

) 1
r

, r 6= 0,

n∏
i=1

xpii , r = 0.

Assume (H1), (H2) and (H6), and let γ, η ∈ R. We define the mixed symmetric means

corresponding to (2) and (3) as follows:

M1
η,γ(x,p, k)

:=



(
k∑
l=1

( ∑
A∈Al

((∑
s∈A

c(s)pτ(s)

)
Mη

γ (x,p, A)

))) 1
η

; η 6= 0,

k∏
l=1

( ∏
A∈Al

(
(Mγ(x,p, A))

∑
s∈A

c(s)pτ(s)
))

; η = 0,
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and for 1 ≤ m ≤ k − 1

M1
η,γ(x,p, k −m) := m∑
l=1

( ∑
A∈Al

( ∑
s∈A

c(s)pτ(s)x
η
τ(s)

))
+

k∑
l=m+1

(
m!

(l−1)...(l−m)

∑
A∈Al

( ∑
B∈Pl−m(A)

(( ∑
s∈B

c(s)pτ(s)

)
Mη
γ (x,p, B)

)))


1
η

,

if η 6= 0 and for η = 0, we have

M1
η,γ(x,p, k −m) :=

m∏
l=1

( ∏
A∈Al

(
Π
s∈A

x
c(s)pτ(s)
τ(s)

))
×

k∏
l=m+1


 ∏
A∈Al

 ∏
B∈Pl−m(A)

(Mγ(x,p, B))

( ∑
s∈B

c(s)pτ(s)

)
m!

(l−1)...(l−m)

 .
The monotonicity of these mixed symmetric means is a consequence of Theorem 1.1.

Corollary 1.2. Assume (H1), (H2) and (H6). Let η, γ ∈ R such that η ≤ γ. Then

(5) Mη ≤Mγ,η
1(x,p, k) ≤Mγ,η

1(x,p, k − 1) ≤ ... ≤Mγ,η
1(x,p, 1) = Mγ,

and

(6) Mη = M1
η,γ(x,p, 1) ≤ .... ≤M1

η,γ(x,p, k − 1) ≤M1
η,γ(x,p, k) ≤Mγ.

Proof. Assume η, γ 6= 0. To obtain (5) we apply Theorem 1.1 for the function f(x) = x
γ
η

(x > 0) and the n-tuples (xη1, . . . , x
η
n) in (1) and then raising the power 1

γ
. (6) can be

proved in a similar way by using f(x) = x
η
γ (x > 0) and (xγ1 , . . . , x

γ
n) and raising the

power 1
η
.

When η = 0 or γ = 0, we get the required results by taking limit. �

Assume (H1-H3) and (H5). Then we define the generalized means with respect to (2) and

(3) as follows:

M1
h,g(x,p, k) :=

h−1

(
k∑
l=1

( ∑
A∈Al

((∑
s∈A

c(s)pτ(s)

)
h ◦ g−1

( ∑
s∈A

c(s)pτ(s)g(xτ(s))∑
s∈A

c(s)pτ(s)

))))
,
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and for 1 ≤ m ≤ k − 1

M1
h,g(x,p, k −m) :=

h−1

 m∑
l=1

( ∑
A∈Al

( ∑
s∈A

c(s)pτ(s)h(xτ(s))

))
+

k∑
l=m+1

(
m!

(l−1)...(l−m)

×
∑

A∈Al

( ∑
B∈Pl−m(A)

(( ∑
s∈B

c(s)pτ(s)

)
h ◦ g−1

( ∑
s∈B

c(s)pτ(s)g(xτ(s))∑
s∈B

c(s)pτ(s)

))))
 .

We also need the quasi-arithmetic mean. Assume (H3), and let q : J → R be a continuous

and strictly monotone function:

Mq := q−1

(
n∑
i=1

piq(xi)

)
.

The monotonicity of the generalized means is given in the next corollary.

Corollary 1.3. Assume (H1-H3) and (H5). Then

(7) Mg ≤M1
h,g(x,p, k) ≤M1

h,g(x,p, k − 1) ≤ ... ≤M1
h,g(x,p, 1) = Mh,

if either h ◦ g−1 is convex and h is strictly increasing or h ◦ g−1 is concave and h is strictly

decreasing;

(8) Mg = M1
g,h(x,p, 1) ≤ ... ≤M1

g,h(x,p, k − 1) ≤M1
g,h(x,p, k) ≤Mh,

if either g ◦ h−1 is convex and g is strictly decreasing or g ◦ h−1 is concave and g is strictly

increasing.

Proof. First, we can apply Theorem 1.1 to the function h ◦ g−1 and the n-tuples (g(x1), . . . , g(xn)),

then we can apply h−1 to the inequality coming from (1). This gives (7). A similar argu-

ment gives (8): g ◦ h−1, (h(x1), . . . , h(xn)) and g−1can be used. �

We illustrate the means defined above by a concrete example based on an example from

[2]. Further interesting means can be derived from the other examples in [2].

Example 1.4. Let n ≥ 1 and k ≥ 1 be fixed integers, and let Ik ⊂ {1, . . . , n}k such that

αIk,i ≥ 1, 1 ≤ i ≤ n,
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where αIk,i means the number of occurrences of i in all the sequences ik := (i1, . . . , ik)

from Ik. For j = 1, . . . , n we introduce the sets

Sj := {((i1, . . . , ik) , l) | (i1, . . . , ik) ∈ Ik, 1 ≤ l ≤ k, il = j} .

Let c be a positive function on S :=
n⋃
j=1

Sj such that

∑
((i1,...,ik),l)∈Sj

c ((i1, . . . , ik) , l) = 1, j = 1, . . . , n.

The condition (H2) is fulfilled if

A := {{((i1, . . . , ik) , l) | l = 1, . . . , k} | (i1, . . . , ik) ∈ Ik} .

In this case Ak = A and Al = ∅ (l = 1, . . . , k − 1). If (H3) and (H4) also hold, then the

numbers Nk−m (0 ≤ m ≤ k − 1) are given as follows:

(9) Nk :=
∑

(i1,...,ik)∈Ik

( k∑
l=1

c ((i1, . . . , ik) , l) pil

)
f

 k∑
l=1

c((i1,...,ik),l)pilxil

k∑
l=1

c((i1,...,ik),l)pil

,
and for every 1 ≤ m ≤ k − 1

(10) Nk−m :=
m!

(k − 1) . . . (k −m)

∑
(i1,...,ik)∈Ik

 ∑
1≤l1<...<lk−m≤k

(
k−m∑
j=1

c ((i1, . . . , ik) , lj) pilj

)
× f


k−m∑
l=1

c ((i1, . . . , ik) , lj) piljxilj

k−m∑
l=1

c ((i1, . . . , ik) , lj) pilj



 .

(a) Assume (H6). For 1 ≤ m ≤ k − 1 let

Jk−m :=
{

(l1, . . . , lk−m) ∈ {1, . . . , k}k−m | 1 ≤ l1 < . . . < lk−m ≤ k
}
.

We give the analogue of the power means defined in (4). For r ∈ R and ik ∈ Ik

Mr(x,p, i
k) :=



 k∑
l=1

c((i1,...,ik),l)pilx
r
il

k∑
l=1

c((i1,...,ik),l)pil


1
r

; r 6= 0,

(
k∏
l=1

x
c((i1,...,ik),l)pil
il

) 1
k−m∑
l=1

c((i1,...,ik),l)pil ; r = 0,
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and for r ∈ R, ik ∈ Ik and lk−m ∈ Jk−m

Mr(x,p, i
k, lk−m) :=



 k−m∑
j=1

c((i1,...,ik),lj)pilj
xrilj

k−m∑
j=1

c((i1,...,ik),lj)pilj


1
r

; r 6= 0,

(
k−m∏
j=1

x
c((i1,...,ik),lj)pilj
ilj

) 1
k−m∑
j=1

c((i1,...,ik),l)pil ; r = 0,

Now let γ, η ∈ R. The mixed symmetric means corresponding to (9) and (10) can be

written as

M1
η,γ(x,p, k)

=



( ∑
(i1,...,ik)∈Ik

(
k∑
l=1

c ((i1, . . . , ik) , l) pil

)
Mη

γ (x,p, ik)

) 1
η

; η 6= 0,

∏
(i1,...,ik)∈Ik

((
Mγ(x,p, i

k)
) k∑
l=1

c((i1,...,ik),l)pil

)
; η = 0,

and for 1 ≤ m ≤ k − 1

M1
η,γ(x,p, k −m)

=

 m!
(k−1)...(k−m)

∑
(i1,...,ik)∈Ik( ∑

1≤l1<...<lk−m≤k

((
k−m∑
j=1

c ((i1, . . . , ik) , lj) pilj

)
Mη
γ (x,p, ik, lk−m)

)))


1
η

,

if η 6= 0, and for η = 0, we have

M1
η,γ(x,p, k −m)

=

 ∏
(i1,...,ik)∈Ik

 ∏
1≤l1<...<lk−m≤k

(
Mγ(x,p, ik, lk−m)

)(k−m∑
j=1

c((i1,...,ik),lj)pilj

)


m!
(k−1)...(k−m)

.

(b) Assume (H3) and (H5). The generalized means with respect to (9) and (10) can be

written as

M1
h,g(x,p, k) :=

h−1

 ∑
(i1,...,ik)∈Ik

( k∑
l=1

c ((i1, . . . , ik) , l) pil

)
h ◦ g−1


k∑
l=1

c((i1,...,ik),l)pil
g(xil

)

k∑
l=1

c((i1,...,ik),l)pil



 ,

and for 1 ≤ m ≤ k − 1
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M1
h,g(x,p, k −m) :=

h−1


m!

(l−1)...(l−m)

∑
(i1,...,ik)∈Ik ∑

1≤l1<...<lk−m≤k

(k−m∑
j=1

c ((i1, . . . , ik) , lj) pilj

)
h ◦ g−1


k−m∑
j=1

c((i1,...,ik),lj)pilj
g(xilj

)

k−m∑
j=1

c((i1,...,ik),lj)pilj






 .

Remark 1.5. By choosing

c ((i1, . . . , ik) , l) =
1

|Sj|
=

1

αIk,j
if ((i1, . . . , ik) , l) ∈ Sj

in the previous example, we have the means defined in [4] (1.14), (1.15), (1.20) and (1.21)

as special cases. Thus we have some extensions of these means.

Remark 1.6. Results about mixed symmetric means and generalized means similar to

Corollary 1.2 and Corollary 1.3 can be given for Example 1.4 as a special case.

The following result is given in [3].

Theorem 1.7. Assume (H3) and (H4) and let λ ≥ 1 be a real number. We introduce the

sets

Sk :=

{
(i1, . . . , in) ∈ Nn |

n∑
j=1

ij = k

}
, k ∈ N,

and for k ∈ N define the numbers

Ck(λ) = Ck(x1, . . . , xn; p1, . . . , pn;λ)

:= 1

(n+λ−1)k

∑
(i1,...,in)∈Sk

k!
i1!...in!

(
n∑
j=1

λijpj

)
f

 n∑
j=1

λij pjxj

n∑
j=1

λij pj

 .

Then

f

(
n∑
j=1

pjxj

)
= C0(λ) ≤ C1(λ) ≤ . . . ≤ Ck(λ) ≤ . . . ≤

n∑
j=1

pjf(xj).

Remark 1.8. The results about mixed symmetric means and generalized means corre-

sponding to Theorem 1.7 are given in [3].

Remark 1.9. Under the conditions (H1)-(H3) we define
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Υ1(f) := Υ1
m,l(x,p, f) := Nm −Nl; 1 ≤ m < l ≤ k,

Υ2(f) := Υ2
l (x,p, f) := Nl − f

(
n∑
j=1

pjxj

)
; 1 ≤ l ≤ k,

and under the conditions (H3) we define

Υ3(f) := Υ3
m,l (x,p, f) := Cm(λ)− Cl(λ); 0 ≤ l < m ≤ k, k ∈ N,

Υ4(f) := Υ4
l (x,p, f) :=

n∑
j=1

pjf(xj)− Cl(λ); 0 ≤ l ≤ k, k ∈ N,

where f : J → R is a function.

It is easy to see that the functionals f → Υi(f) are linear, i = 1, ..., 4, and Theorem 1.1

and Theorem 1.7 imply that

Υi(f) ≥ 0, i = 1, ..., 4

if f : J → R is a convex function.

In [1] the log-convexity and in [6] exponential convexity is proved for some functionals

obtained from the interpolations of the discrete Jensen’s inequality. The results in [1]

are without weights but in [6] are with weights. In [4], a more general class of twice

differentiable convex functions is used to construct the exponential convexity of some

more general functionals. In [7] a notion of n-exponential convexity is introduced as a

generalizations of log-convexity.

In this paper, we use a new method given in [7], to prove the n-exponential convexity

and exponential convexity of the functionals f → Υi(f) for i = 1, ..., 4, together with the

Cauchy type mean value theorems. In this way, our results are more general than the

corresponding results in [4].

The notion of n-exponentially convex function and the following properties of exponentially

convex function defined on an interval I ⊂ R, are given in [7].

Definition 1. A function g : I → R is called n-exponentially convex in the Jensen sense

if
n∑

i,j=1

aiajg

(
xi + xj

2

)
≥ 0

holds for every ai ∈ R and every xi ∈ I, i = 1, 2, ..., n.
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A function g : I → R is n-exponentially convex if it is n-exponentially convex in the

Jensen sense and continuous on I.

Remark 1.10. From the definition it is clear that 1-exponentially convex functions in

the Jensen sense are in fact the nonnegative functions. Also, n-exponentially convex

functions in the Jensen sense are m-exponentially convex in the Jensen sense for every

m ∈ N, m ≤ n.

Proposition 1.11. If g : I → R is an n-exponentially convex function, then for every

xi ∈ I, i = 1, 2, ..., n and for all m ∈ N, m ≤ n the matrix
[
g
(xi+xj

2

) ]m
i,j=1

is a positive

semi-definite matrix. Particularly,

det

[
g

(
xi + xj

2

)]m
i,j=1

≥ 0

for all m ∈ N, m = 1, 2, ..., n.

Definition 2. A function g : I → R is exponentially convex in the Jensen sense, if it is

n-exponentially convex in the Jensen sense for all n ∈ N.

A function g : I → R is exponentially convex if it is exponentially convex in the Jensen

sense and continuous.

Remark 1.12. It is easy to see that a positive function g : I → R is log-convex in the

Jensen sense if and only if it is 2-exponentially convex in the Jensen sense, that is

a2
1g(x) + 2a1a2g

(
x+ y

2

)
+ a2

2g(y) ≥ 0

holds for every a1, a2 ∈ R and x, y ∈ I.

Similarly, if g is 2-exponentially convex, then g is log-convex. Conversely, if g is log-

convex and continuous, then g is 2-exponentially convex.

Divided differences are fertile to study functions having different degree of smoothness.

Definition 3. The second order divided difference of a function g : I → R at mutually

different points y0, y1, y2 ∈ I is defined recursively by

[yi; g] = g(yi), i = 0, 1, 2
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[yi, yi+1; g] =
g(yi+1)− g(yi)

yi+1 − yi
, i = 0, 1

(11) [y0, y1, y2; g] =
[y1, y2; g]− [y0, y1; g]

y2 − y0

.

Remark 1.13. The value [y0, y1, y2; g] is independent of the order of the points y0, y1, and

y2. By taking limits this definition may be extended to include the cases in which any two

or all three points coincide as follows: ∀ y0, y1, y2 ∈ I such that y2 6= y0

lim
y1→y0

[y0, y1, y2; g] = [y0, y0, y2; g] =
g(y2)− g(y0)− g′(y0)(y2 − y0)

(y2 − y0)2

provided that g′ exists, and furthermore, taking the limits yi → y0, i = 1, 2 in (11), we get

[y0, y0, y0; g] = lim
yi→y0

[y0, y1, y2; g] =
g
′′
(y0)

2
for i = 1, 2

provided that g
′′

exist on I.

2. Main Results

Theorem 2.1. Assume J ⊂ R is an interval, and assume Λ = {φt | t ∈ J} is a family of

functions defined on an interval I ⊂ R, such that the function t→ [y0, y1, y2;φt] (t ∈ J) is

n-exponentially convex in the Jensen sense on J for every three mutually different points

y0, y1, y2 ∈ I. Let Υ be a linear functional on the vector space of real functions defined

on I such that Υ(f) ≥ 0 for every convex function f on I. Then t → Υ(φt) (t ∈ J) is

an n-exponentially convex function in the Jensen sense on J . If the function t → Υ(φt)

(t ∈ J) is continuous, then it is n-exponentially convex on J .

Proof. Let tk, tl ∈ J, tkl := tk+tl
2

and bk, bl ∈ R for k, l = 1, 2, ..., n, and define the function

ω on I by

ω :=
n∑

k,l=1

bkblφtkl .

Since the function t→ [y0, y1, y2;φt] (t ∈ J) is n-exponentially convex in the Jensen sense,

we have

[y0, y1, y2;ω] =
n∑

k,l=1

bkbl[y0, y1, y2;φtkl ] ≥ 0,
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which implies that ω is a convex function on I. Therefore we have Υ(ω) ≥ 0, which yields

by the linearity of Υ, that
n∑

k,l=1

bkblΥ(φtkl) ≥ 0.

We conclude that the function t → Υ(φt) (t ∈ J) is an n-exponentially convex function

in the Jensen sense on J .

If the function t→ Υ(φt) (t ∈ J) is continuous on J , then it is n-exponentially convex on

J by definition. �

As a consequence of the above theorem we can give the following corollaries.

Corollary 2.2. Assume J ⊂ R is an interval, and assume Λ = {φt | t ∈ J} is a family of

functions defined on an interval I ⊂ R, such that the function t → [y0, y1, y2;φt] (t ∈ J)

is exponentially convex in the Jensen sense on J for every three mutually different points

y0, y1, y2 ∈ I. Let Υ be a linear functional on the vector space of real functions defined

on I such that Υ(f) ≥ 0 for every convex function on I. Then t → Υ(φt) (t ∈ J) is an

exponentially convex function in the Jensen sense on J . If the function t→ Υ(φt) (t ∈ J)

is continuous, then it is exponentially convex on J .

Corollary 2.3. Assume J ⊂ R is an interval, and assume Λ = {φt : t ∈ J} is a family of

functions defined on an interval I ⊂ R, such that the function t→ [y0, y1, y2;φt] (t ∈ J) is

2-exponentially convex in the Jensen sense on J for every three mutually different points

y0, y1, y2 ∈ I. Let Υ be a linear functional on the vector space of real functions defined on

I such that Υ(f) ≥ 0 for every convex function on I. Then the following two statements

hold:

(i) If the function t → Υ(φt) (t ∈ J) is positive and continuous, then it is 2-

exponentially convex on J , and thus log-convex.

(ii) If the function t → Υ(φt) (t ∈ J) is positive and differentiable, then for every

s, t, u, v ∈ J , such that s ≤ u and t ≤ v, we have

(12) us,t(Υ,Λ) ≤ uu,v(Υ,Λ)
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where

(13) us,t(Υ,Λ) :=


(

Υ(φs)
Υ(φt)

) 1
s−t

, s 6= t,

exp
(

d
ds

Υ(φs)

Υ(φs)

)
, s = t

for φs, φt ∈ Λ.

Proof. (i) See Remark 1.12 and Theorem 2.1.

(ii) From the definition of a convex function ψ on J , we have the following inequality

(see [8, page 2])

(14)
ψ (s) − ψ (t)

s − t
≤ ψ (u) − ψ (v)

u − v
,

∀ s, t, u, v ∈ J such that s ≤ u, t ≤ v, s 6= t, u 6= v.

By (i), s → Υ(φs), s ∈ J is log-convex, and hence (14) shows with ψ(s) =

log Υ(φs), s ∈ J that

(15)
log Υ(φs) − log Υ(φt)

s− t
≤ log Υ(φu)− log Υ(φv)

u− v

for s ≤ u, t ≤ v, s 6= t, u 6= v, which is equivalent to (12). For s = t or u = v (12)

follows from (15) by taking limit.

�

Remark 2.4. Note that the results from Theorem 2.1, Corollary 2.2, Corollary 2.3 are

valid when two of the points y0, y1, y2 ∈ I coincide, say y1 = y0, for a family of differ-

entiable functions φt such that the function t → [y0, y1, y2;φt] is n-exponentially convex

in the Jensen sense (exponentially convex in the Jensen sense, log-convex in the Jensen

sense), and moreover, they are are also valid when all three points coincide for a family

of twice differentiable functions with the same property. The proofs can be obtained by

recalling Remark 1.13 and suitable characterization of convexity.

The following result is related to the first condition of Theorem 2.1.

Theorem 2.5. Assume J ⊂ R is an interval, and assume Λ = {φt | t ∈ J} is a family of

twice differentiable functions defined on an interval I ⊂ R such that the function t 7→ φ′′t (x)
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(t ∈ J) is exponentially convex for every fixed x ∈ I. Then the function t 7→ [y0, y1, y2;φt]

(t ∈ J) is exponentially convex in the Jensen sense for any three points y0, y1, y2 ∈ I.

Proof. Let tk, tl ∈ J, tkl := tk+tl
2

and bk, bl ∈ R for k, l = 1, 2, ..., n, and fix x ∈ I. Then(
n∑

k,l=1

bkblφtkl

)′′
(x) =

n∑
k,l=1

bkblφ
′′
tkl

(x) ≥ 0.

It follows that the function
n∑

k,l=1

bkblφtkl

is convex, and hence

n∑
k,l=1

bkbl[y0, y1, y2;φtkl ] = [y0, y1, y2;
n∑

k,l=1

bkblφtkl ] ≥ 0

for every three mutually different points y0, y1, y2 ∈ I. This implies the exponential

convexity of t 7→ [y0, y1, y2;φt] (t ∈ J) in the Jensen sense. �

Remark 2.6. It comes from either the conditions of Theorem 2.5 or the proof of this

theorem that the functions φt, t ∈ J are convex.

Now we formulate mean value theorems.

Theorem 2.7. Let Υ be a linear functional on the vector space of real functions defined

on [a, b] ⊂ R such that Υ(f) ≥ 0 for every convex function f on [a, b]. Let g ∈ C2[a, b].

Then there exists ξ ∈ [a, b] such that

Υ (g) =
1

2
g′′ (ξ) Υ

(
x2
)
.

Proof. Since g ∈ C2[a, b], there exist the real numbers m = min
x∈[a,b]

g′′(x) and M =

max
x∈[a,b]

g′′(x). It is easy to show that the functions φ1 and φ2 defined on [a, b] by

φ1(x) =
M

2
x2 − g (x) ,

and

φ2(x) = g (x)− m

2
x2,

are convex.



26 LÁSZLÓ HORVÁTH1, KHURAM ALI KHAN 2,3,∗, AND JOSIP PEČARIĆ 2,4

By applying the functional Υ to the functions φ1 and φ2, we have the properties of Υ that

Υ

(
M

2
x2 − g (x)

)
≥ 0,

(16) ⇒ Υ (g) ≤ M

2
Υ
(
x2
)
,

and

Υ
(
g (x)− m

2
x2
)
> 0

(17) ⇒ m

2
Υ
(
x2
)
≤ Υ (g) .

From (16) and from (17), we get

m

2
Υ
(
x2
)
≤ Υ (g) ≤ M

2
Υ
(
x2
)
.

If Υ (x2) = 0, then nothing to prove. If Υ (x2) 6= 0, then

m ≤ 2Υ (g)

Υ (x2)
≤M.

Hence we have

Υ (g) =
1

2
g′′ (ξ) Υ

(
x2
)
.

�

Theorem 2.8. Let Υ be a linear functional on the vector space of real functions defined

on [a, b] ⊂ R such that Υ(f) ≥ 0 for every convex function f on [a, b]. Let g, h ∈ C2[a, b].

Then there exists ξ ∈ [a, b] such that

Υ (g)

Υ (h)
=
g′′ (ξ)

h′′ (ξ)
,

provided that Υ (h) 6= 0.

Proof. Define L ∈ C2[a, b] by

L := c1g − c2h,

where

c1 : = Υ (h)
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and

c2 : = Υ (g) .

Now using Theorem 2.7 for the function L, we have

(18)

(
c1
g′′ (ξ)

2
− c2

h′′ (ξ)

2

)
Υ
(
x2
)

= 0.

Since Υ (h) 6= 0, Theorem 2.7 implies that Υ (x2) 6= 0, and therefore (18) gives

Υ (g)

Υ (h)
=
g′′ (ξ)

h′′ (ξ)
.

�

3. Applications to Cauchy Means

In this section we apply the main results to generate new Cauchy means. We mention

that the functionals Υi, i = 1, . . . , 4 defined in Remark 1.9 are linear on the vector space

of real functions defined on the inteval J ⊂ R, and Υi(f) ≥ 0 for every convex function

on J .

Example 3.1. Assume (H1)-(H3) with J = R, and consider the linear functionals Υi

defined in Remark 1.9.

We consider the class of convex functions

Λ1 := {φt : R→ [0,∞) | t ∈ R},

where

φt(x) :=

 1
t2
etx; t 6= 0,

1
2
x2; t = 0.

Then t 7→ φ′′t (x) (t ∈ R) is exponentially convex for every fixed x ∈ R (see [5]), thus by

Theorem 2.5, the function t 7→ [y0, y1, y2;φt], t ∈ R is exponentially convex in the Jensen

sense for every three mutually different points y0, y1, y2 ∈ R.

Now fix 1 ≤ i ≤ 4. By applying Corollary 2.2 with Λ = Λ1, we get the exponential

convexity of t 7→ Υi(φt) (t ∈ R) in the Jensen sense. This mapping is also differentiable,

therefore exponentially convex, and the expression in (13) has the form
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us,t(Υ
i,Λ1) =



(
Υi(φs)
Υi(φt)

) 1
s−t
, s 6= t,

exp
(

Υi(id φs)
Υi(φs)

− 2
s

)
, s = t 6= 0,

exp
(

Υi(id φ0)
3Υi(φ0)

)
, s = t = 0,

where “id” means the identity function on R.

From (12) we have the monotonicity of the functions us,t(Υ
i,Λ1) in both parameters.

Suppose Υi(φt) > 0 (t ∈ R), a := min{x1, ..., xn}, b := max{x1, ..., xn}, and let

Ms,t(Υ
i,Λ1) := log us,t(Υ

i,Λ1); s, t ∈ R.

Then from Theorem 2.8 we have

a ≤Ms,t(Υ
i,Λ1) ≤ b,

and thus Ms,t(Υ
i,Λ1) (s, t ∈ R) are means. The monotonicity of these means is followed

by (12).

Example 3.2. Assume (H1)-(H3) with J = (0,∞), and consider the linear functionals

Υi defined in Remark 1.9.

We consider the class of convex functions

Λ2 = {ψt : (0,∞)→ R | t ∈ R},

where

ψt(x) :=


xt

t(t−1)
; t 6= 0, 1,

− log x; t = 0,

x log x; t = 1.

Then t 7→ ψ′′t (x) = xt−2 = e(t−2) log x (t ∈ R) is exponentially convex for every fixed

x ∈ (0,∞).

Now fix 1 ≤ i ≤ 4. By similar arguments as given in Example 3.1 we get the exponential

convexity of t 7→ Υi(ψt) (t ∈ R) in the Jensen sense. This mapping is differentiable too,

therefore exponentially convex. It is easy to calculate that (13) can be written as
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us,t(x,p,Υ
i,Λ2) =



(
Υi(ψs)
Υi(ψt)

) 1
s−t

; s 6= t,

exp
(

1−2s
s(s−1)

− Υi(ψsψ0)
Υi(ψs)

)
; s = t 6= 0, 1,

exp
(

1− Υi(ψ2
0)

2Υi(ψ0)

)
; s = t = 0,

exp
(
−1− Υi(ψ0ψ1)

2Υi(ψ1)

)
; s = t = 1.

Suppose Υi(ψt) > 0 (t ∈ R), and let a := min{x1, ..., xn}, b := max{x1, ..., xn}. By

Theorem 2.8, we can check that

(19) a ≤ us,t(x,p,Υ
i,Λ2) ≤ b; s, t ∈ R.

The means us,t(x,p,Υ
i,Λ2) (s, t ∈ R) are continuous, symmetric and monotone in both

parameters (by use of (12)).

Let s, t, r ∈ R such that r 6= 0. By the substitutions s → s
r
, t → t

r
, (x1, . . . , xn) →

(xr1, . . . , x
r
n) in (19), we get

ā ≤ us/r,t/r(x
r,p,Υi,Λ2) ≤ b̄,

where ā := min{xr1, . . . , xrn} and b̄ := max{xr1, . . . , xrn}. Thus new means can be defined

with three parameters:

us,t,r(x,p,Υ
i,Λ2) :=


(
us/r,t/r(x

r,p,Υi,Λ2)
) 1
r ; r 6= 0,

us,t(log x,p,Υi,Λ1); r = 0,

where log x = (log x1, ..., log xn).

The monotonicity of these three parameter means is followed by the monotonicity and

continuity of the two parameter means.

Example 3.3. Assume (H1)-(H3) with J = (0,∞), and consider the linear functionals

Υi defined in Remark 1.9.

We consider the class of convex functions

Λ3 = {ηt : (0,∞)→ (0,∞) | t ∈ (0,∞)},
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where

ηt(x) :=

 t−x

log2t
; t 6= 1,

x2

2
; t = 1.

t 7→ ψ′′t (x) (t ∈ (0,∞)) is exponentially convex for every fixed x ∈ (0,∞), being the

restriction of the Laplace transform of a nonnegative function (see [5] or [9] page 210).

Now fix 1 ≤ i ≤ 4. We can get the exponential convexity of t 7→ Υi(ψt) (t ∈ R) as in

Example 3.1. For the class Λ3, (13) has the form

us,t(Υ
i,Λ3) =



(
Υi(ηs)
Υi(ηt)

) 1
s−t

; s 6= t,

exp
(
− 2
slog s

− Υi(idηs)
sΥi(ηs)

)
; s = t 6= 1,

exp
(
−Υi(idη1)

3Υi(η1)

)
; s = t = 1.

The monotonicity of us,t(Υ
i,Λ3) (s, t ∈ (0,∞)) comes from (12).

Suppose Υi(ηt) > 0 (t ∈ (0,∞)), and let a := min{x1, ..., xn}, b := max{x1, ..., xn}, and

define

Ms,t(Υ
i,Λ3) := −L(s, t) log us,t(Υ

i,Λ3), s, t ∈ (0,∞),

where L(s, t) is the well known logarithmic mean

L(s, t) :=

 s−t
log s−log t

; s 6= t,

t; s = t.

From Theorem 2.8 we have

a ≤Ms,t(Υ
i,Λ3) ≤ b, s, t ∈ (0,∞),

and therefore we get means.

Example 3.4. Assume (H1)-(H3) with J = (0,∞), and consider the linear functionals

Υi defined in Remark 1.9.

We consider the class of convex functions

Λ4 = {γt : (0,∞)→ (0,∞) | t ∈ (0,∞)},

where

γt(x) :=
e−x
√
t

t
.
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t 7→ ψ′′t (x) = e−x
√
t, t ∈ (0,∞) is exponentially convex for every fixed x ∈ (0,∞), being

the restriction of the Laplace transform of a non-negative function (see [5] or [9] page

214).

Now fix 1 ≤ i ≤ 4. As before t 7→ Υi(ψt) (t ∈ R) is exponentially convex and differentiable.

For the class Λ4, (13) becomes

us,t(Υ
i,Λ4) =


(

Υi(γs)
Υi(γt)

) 1
s−t

; s 6= t,

exp
(
−1

t
− Υi(idγt)

2
√
tΥi(γt)

)
; s = t,

where id means the identity function on (0,∞). The monotonicity of us,t(Υ
i,Λ4) (s, t ∈

(0,∞)) is followed by (12).

Suppose Υi(ηt) > 0 (t ∈ (0,∞)), let a := min{x1, ..., xn}, b := max{x1, ..., xn}, and define

Ms,t(Υ
i,Λ4) := −(

√
s+
√
t) log us,t(Υ

i,Λ4), s, t ∈ (0,∞).

Then Theorem 2.8 yields that

a ≤Ms,t(Υ
i,Λ4) ≤ b,

thus we have new means.
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