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Abstract. In this paper, we prove that any convex set in a normed space is ε−proximinal. Consequently, every

subspace in a Banach space is ε−proximinal. Some other results of proximinality in tensor product spaces are

given.
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1. Introduction

Let X be a Banach space and Y be any subset of X . For x ∈ X we define

d(x,Y ) = inf
y∈Y
‖x− y‖

However, such infimum need not to be attained in Y . If for any x ∈ X there exists some y0 ∈ Y

such that ‖x− y0‖ = d(x,Y ), then we say that Y is proximinal in X and y0 is called a best

approximant to x out of Y . Y is called uniquely proximinal if every x ∈ X has a unique best
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approximant in Y.The problem of whether a set is proximinal or not is a very important problem.

It has many applications in approximation theory in function spaces. In fact one of the most

classical open conjecture in approximation theory is : If E is a uniquely proximinal set in

a Hilbert space X ,then E is convex. We refer to [1], [2], [3], and [10] for many results on

proximinality. Many other types of proximinality were introduced over the years. The concept

of ε− proximinality was introduced later. Many papers were written on such concept, see

[4], [5], [6], [7], [8] and [9] . In this paper we prove that every set in a Banach space is

ε−proximinal. Some other results on proximinality in tensor product spaces are presented.

2. ε−Proximinality In Banach Spaces

The notion of ε− proximinality was introduced in [9], then used in [5], [6], [7], and [8].

In this section we prove that every set in a Banach space is ε− proximinal. We start with the

definition of ε− proximinality.

Definition 2.1. Let G be a subset of a Banach space X . Let ε > 0 be given and x ∈ X . Then we

say that x0 ∈ G is an ε−best approximant or ε−best approximation of x in G if

‖x− x0‖ ≤ ‖x−g‖+ ε ∀g ∈ G

If this is true for every x ∈ X , then we say G is ε−proximinal in X .

Remark 2.1. Let G be proximinal in X . Then G is ε−proximinal in X for every ε > 0. This is

because, if x ∈ X and x0 is the best approximant of x in G, then

‖x− x0‖ ≤ ‖x−g‖ ≤ ‖x−g‖+ ε

However, the converse need not be true. The set A = [0,1) is not proximinal in R, but it is

ε−proximinal. Indeed: It is clear that A is not proximinal since ∀x≥ 1, x has no best approxi-

mation in A. Now, to show that A is ε−proximinal, let x ∈ R. Then

(1) If x < 0, then 0 is the best approximation for x in A.

(2) If x ∈ A, then x is the best approximation to itself.
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(3) If x ≥ 1, then for any ε > 0 take x0 ∈ [1− ε,1). Then x0 is an ε-best approximation of

x in A. This is true since:

|x− x0| ≤ |x− (1− ε)| ≤ |x−1|+ ε

≤ |x−g|+ ε ∀g ∈ A

Consequently A is ε−proximinal.

Now we prove the main theorem in this section.

Theorem 2.1. Let E be any set in a Banach space X. Then for any ε > 0, E is ε− proximinal

in X.

Proof. Let x ∈ X be any element.

If x ∈ E, then take x0 = x. So

‖x− x0‖ ≤ ‖x− e‖+ ε ∀e ∈ E

Now, let x ∈ X−E, such that d(x,E) = r.

Consider B
[
x,r+ ε

2

]
. Then B

[
x,r+ ε

2

]
∩E 6= φ .

Since if not, then ∀e ∈ E we have e /∈ B
[
x,r+ ε

2

]
.

That means,

‖x− e‖> r+
ε

2
∀e ∈ E.

Hence

r = inf
e∈E
‖x− e‖ ≥ r+

ε

2
.

This is a contradiction.

So take any y ∈ B
[
x,r+ ε

2

]
∩E. Then

‖x− y‖ ≤ r+
ε

2
= inf

e∈E
‖x− e‖+ ε

2

≤ ‖x− e‖+ ε

2
∀e ∈ E

≤ ‖x− e‖+ ε ∀e ∈ E

Thus E is ε− proximinal.
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Theorem 2.1 shows that the definition of ε− proximinality that was introduced and used in

[4], [5] , [6], [7], [8] and [9] is really redundant.

3. Proximinality In Injective Tensor Product Spaces

We recall the following definition

Definition 3.1. Let X be a Banach space. Then X is said to have the approximation property if

for every compact subset K of X and every ε > 0 there exists a finite rank operator S : X → X

such that

‖Sx− x‖ ≤ ε f or every x ∈ K

For the next result, We need the following two Lemmas.

Lemma 3.1. [11], Let X and Y be Banach spaces such that X∗ has the Radon-Nicodym

property and either X∗ or Y ∗ has the approximation property . Then

(X
∨
⊗Y )∗ ∼= X∗

∧
⊗Y ∗

Lemma 3.2. [10], Let X and Y be Banach spaces such that X∗ has the approximation property.

If every A ∈ L(X ,Y ∗) is compact ,then

(X
∧
⊗Y )∗ ∼= X∗

∨
⊗Y ∗

Theorem 3.3. Let X be a reflexive space with the approximation property. If H is a finite

dimensional subspace of a Banach space Y , then X
∨
⊗H is proximinal in X

∨
⊗Y .

Proof. Since X is reflexive, then so is X∗. Hence, X∗ has the Radon-Nicodym property; [11].

Also H∗ has the approximation property, since the Identity operator is a finite rank operator on

H∗ such that

‖Ix− x‖ ≤ ε for every x ∈ H∗and every ε > 0

Thus by Lemma 3.1 we have

(X
∨
⊗H)∗ ∼= X∗

∧
⊗H∗
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Now, since X is reflexive then X∗∗ = X has the approximation property. Further, any A ∈

L(X∗,H∗∗) = L(X∗,H) is compact. This is because for any bounded subset M ⊆ X∗ we have

A(M) is closed and bounded in H and hence is compact. So, by Lemma 3.2 we get

(X∗
∧
⊗H∗)∗ ∼= X

∨
⊗H

Consequently, X
∨
⊗H is reflexive subspace in X

∨
⊗Y . But every reflexive subspace is proximinal

[12]. Thus X
∨
⊗H is proximinal in X

∨
⊗Y.

4. Proximinality In Projective Tensor Product Spaces

Let X and Y be two Banach spaces, and let X
∧
⊗Y denote the completed projective tensor

product of X and Y . Then

X
∧
⊗Y = {

∞

∑
i=1

xi⊗ yi :
∞

∑
i=1
‖xi‖‖yi‖< ∞,where xi ∈ X and yi ∈ Y ∀i ∈ N}; see [10]

Theorem 4.1. Let E and F be two subsets of X and Y respectively. We let [E] and [F ] denote

the span of the sets E and F respectively. Assume that [E] is separable dual space in X and [F ]

is finite dimensional in Y . Then [E]
∧
⊗ [F ] is proximinal in X

∧
⊗Y .

Proof. Let h ∈ X
∧
⊗Y such that

d(h, [E]
∧
⊗ [F ]) = inf

w∈[E]
∧
⊗[F ]

‖h−w‖= r

By the definition of the infimum; there exists a sequence (wm) ∈ [E]
∧
⊗ [F ] such that lim

m→∞
‖h−

wm‖= r. Since [F ] is finite dimensional, then any element z ∈ [E]
∧
⊗ [F ] can be written

z =
n

∑
i=1

xi⊗ ei where xi ∈ [E] and {e1,e2, , , ,en} is a basis for [F ]; [10]

Thus wm = ∑
n
i=1 xm

i ⊗ ei, where

w1 = x1
1⊗ e1 + x1

2⊗ e2 + ....+ x1
n⊗ en

w2 = x2
1⊗ e1 + x2

2⊗ e2 + ....+ x2
n⊗ en

...
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Further we have ‖wm‖ ≤ 2‖h‖ is a bounded sequence; [12].

Now, Consider the sequences (xm
1 ), (x

m
2 ), ,,(xm

n ).

Then each one of them has a w∗−convergent subsequence; being a bounded sequence in a

separable dual space space [E], (Helly’s selection theorem).

We can extract w∗−convergent subsequences with uniform index, say (xm j
1 ), (xm j

2 ), ,,(xm j
n ).

Now, take the sequence

um j = xm j
1 ⊗ e1 + xm j

2 ⊗ e2 + ..+ xm j
n ⊗ en

Then (um j) is a subsequence of (wm) which is w∗−convergent, say to u.

Thus we have for any f in the unit ball of the predual space of [E]
∧
⊗ [F ] = (G

∨
⊗H)∗ where G

and H are the predual spaces of [E] and [F ] respectively; Lemma 3.1.

|< h−u, f > | = lim
j→∞
|< |h−um j , f > |

≤ lim
j→∞
‖h−um j‖

= inf
w∈[E]

∧
⊗[F ]

‖h−w‖

Hence

‖h−u‖ ≤ d(h, [E]
∧
⊗ [F ])

This implies that [E]
∧
⊗ [F ] is proximinal and u is a best approximation to h.

Corollary 4.2. Let Y be a finite dimensional subspace of a Banach space X, Then `p ∧⊗Y is

proximinal in `p ∧⊗X for 1 < p < ∞

Corollary 4.3. Let [E] be reflexive in X and [F ] be a finite dimensional subspace in Y . Then

[E]
∧
⊗ [F ] is proximinal in [X ]

∧
⊗ [Y ].

Proof. It follows by proceeding as the proof in Theorem 4.1 and using the fact that every

bounded sequence in reflexive space has a w− convergent subsequence; [11].
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