COMMON FIXED POINT THEOREM FOR TWO SELFMAPS OF AN S-METRIC SPACE WITH RATIONAL INEQUALITY

V. KIRAN*

Department of Mathematics, Osmania University, Hyderabad 500007, India

Abstract: A common fixed point theorem for two self maps of an S-metric space with rational inequality is proved in the present paper.

Keywords: S-metric space; fixed point; associated sequence of a point relative to two self maps; compatible mappings.

2010 AMS Subject Classification: 54H25, 47H10.

1. INTRODUCTION

*Corresponding author
E-mail address: kiranmathou@gmail.com
Received March 3, 2019
The purpose of this paper is to prove a common fixed point theorem for two self maps of an S-metric space with rational inequality.

2. Preliminaries

Definition 2.1 [5]: Let X be a non empty set. By an S–metric we mean a function $S : X^3 \to [0, \infty)$ which satisfies the following conditions for all $x, y, z, w \in X$:

(a) $S(x, y, z) \geq 0$

(b) $S(x, y, z) = 0$ if and only if $x = y = z$.

(c) $S(x, y, z) \leq S(x, x, w) + S(y, y, w) + S(z, z, w)$

Also, the pair (X, S) is called a S-metric space.

Example 2.2: Let $X = \mathbb{R}$ and $S : \mathbb{R}^3 \to [0, \infty)$ be defined by $S(x, y, z) = |y + z - 2x| + |y - z|$ for all $x, y, z \in X$, then (X, S) is a S-metric space.

Remark 2.3: It was shown in ([5], Lemma 2.5) that $S(x, x, y) = S(y, y, x)$ for all $x, y \in X$.

Definition 2.4: Let (X, S) be a S–metric space. A sequence $\{x_n\}$ in X is said to be Convergent, if there is a $x \in X$ such that $S(x_n, x_n, x) \to 0$ as $n \to \infty$; that is, for each $\varepsilon > 0$, there exists a $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$, we have $S(x_n, x_n, x) < \varepsilon$ and we write in this case that $\lim_{n \to \infty} x_n = x$.

Definition 2.5: Let (X, S) be a S–metric space. A sequence $\{x_n\}$ in X is said to be a Cauchy sequence, if for each $\varepsilon > 0$, there exists a $n_0 \in \mathbb{N}$ such that $S(x_n, x_n, x_m) < \varepsilon$ for each $n, m \geq n_0$.
It is easy to see that (in fact proved in [5], Lemma 2.10 and Lemma 2.11), if \{x_n\} converges to \(x\) in \((X,S)\) then \(x\) is unique and \{x_n\} is a Cauchy sequence in \((X,S)\). However, a Cauchy sequence in \((X,S)\) need not be convergent as shown in the following example

Example 2.6: Let \(X=(0,1] \) and \(S(x,y,z)=|x-y|+|y-z|+|z-x|\) for \(x,y,z \in X\), so that \((X,S)\) is a \(S\)-metric space. Taking \(x_n=\frac{1}{n}\) for \(n=1,2,3,...\) then \(S(x_n,x_n,x_m)=2\left|\frac{1}{n}-\frac{1}{m}\right|\) so that \(S(x_n,x_n,x_m) \to 0\) as \(n,m \to \infty\) proving that \{x_n\} is a Cauchy sequence in \((X,S)\) but \{x_n\} does not converge to any point in \(X\).

Definition 2.7: Let \((X,S)\) be an \(S\)-metric space. If there exists sequences \(\{x_n\}\) and \(\{y_n\}\) in \(X\) such that \(\lim_{n \to \infty} x_n = x\) and \(\lim_{n \to \infty} y_n = y\) then \(\lim_{n \to \infty} S(x_n,x_n,y_n) = S(x,x,y)\). Then we say that \(S(x,y,z)\) is continuous in \(x\) and \(y\).

Definition 2.8: If \(g\) and \(f\) are selfmaps of a \(S\)-metric space \((X,S)\) such that for every sequence \(\{x_n\}\) in \(X\) with \(\lim_{n \to \infty} gx_n = \lim_{n \to \infty} fx_n = t\) for some \(t \in X\) we have

\[
\lim_{n \to \infty} S(gx_n,fx_n,fgx_n) = 0
\]
then \(g\) and \(f\) are said to be compatible.

Trivially commuting self maps of a \(S\)-metric space are compatible but not conversely. As an example we have the following.

Example 2.9: Let \(X=[0,1]\) with \(S(x,y,z)=|x-y|+|y-z|+|z-x|\) for \(x,y,z \in X\). Then \(S\) is a \(S\)-metric on \(X\). Define \(g:X \to X, f:X \to X\) by \(gx = \frac{x^2}{2}\) and \(fx = \frac{x^2}{3}\) for \(x \in X\). we now prove that \(g, f\) are compatible.
Let \(\{x_n\} \) be a sequence in \(X \) with \(\lim g x_n = \lim f x_n = t \) for some \(t \in X \). Then
\[
\lim \frac{x_n^2}{2} = t = \lim \frac{x_n^2}{3}
\]
so that \(3t = 2t \) which shows that \(t = 0 \). Also since \(g f x_n = \frac{x_n^4}{18} \) and then we have
\[
\lim S(g f x_n, g f x_n, f g x_n) = \lim S \left(\frac{x_n^4}{18}, \frac{x_n^4}{18}, \frac{x_n^4}{12} \right) = \lim \frac{x_n^4}{18} = 0
\]
showing that \((g, f)\) is a pair of compatible self maps. But \(g f (1) = \frac{1}{18} \) and \(f g (1) = \frac{1}{12} \)
proves that \(g f (1) \neq f g (1) \) showing that that \(g \) and \(f \) are not commutative

Definition 2.10: Let \(g \) and \(f \) be self maps of a \(S \)-metric space such that \(g(X) \subseteq f(X) \). For any \(x_0 \in X \), if \(\{x_n\} \) is a sequence in \(X \) such that \(f x_n = g x_{n-1} \) for \(n \geq 0 \). Then \(\{x_n\} \) is called an associated sequence of \(x_0 \) relative to the two self maps \(g \) and \(f \).

3. Main Results

Before stating main Theorem, we prove an essential Lemma.

Lemma 3.1: Let \(f \) and \(g \) be compatible self maps of an \(S \)-metric space \((X, S)\). Suppose
\[
\lim f x_n = \lim g x_n = x \quad \text{for some} \quad x \in X \quad \text{and some sequence} \quad \{x_n\} \quad \text{in} \quad X,
\]
then \(\lim g f x_n = f x \) if \(f \) is continuous.

Proof: suppose \(f \) and \(g \) are compatible mappings and \(\lim f x_n = \lim g x_n = x \) for some \(x \in X \). Then
\[
(3.1.1) \quad \lim S(g f x_n, g f x_n, g f x_n) = 0
\]
since \(f \) is continuous and \(g x_n \rightarrow x \) as \(n \rightarrow \infty \) we have
\[
(3.1.2) \quad \lim g f x_n = f x.
\]
From (3.1.1) and (3.1.2) we get
\[
\lim S(f x, f x, g f x_n) = 0 \quad \text{which imply} \quad \lim g f x_n = f x.
\]
S-METRIC SPACE WITH RATIONAL INEQUALITY

Proving the lemma.

Theorem 3.2. Let \(f \) and \(g \) be self maps of a \(S \)-metric space \((X,S) \) satisfying

1. \(g(X) \subseteq f(X) \)
2. \(S(gx, gx, gy) \leq \frac{\alpha S(fx, fx, gy)[1 + S(fx, fx, gx)]}{1 + S(fx, fx, fy)} + \beta S(fx, fx, fy) \)

for all \(x, y \in X \) where \(\alpha, \beta \geq 0, \alpha + \beta < 1 \)

3. one of \(f \) and \(g \) is continuous
4. \(f \) and \(g \) are compatible
5. an associated sequence \(\{x_n\} \) of a point \(x_0 \in X \) relative to the self maps \(f \) and \(g \) is such that \(\{fx_n\} \) converges to \(t \) for some point \(t \in X \),

Then \(t \) is the common fixed point of \(f \) and \(g \).

Proof: From (v), the associated sequence \(\{x_n\} \) of \(x_0 \) relative to the selfmaps \(f \) and \(g \) such that \(fx_n = gx_{n-1} \) for \(n \geq 1 \) and \(fx_n \rightarrow t \) as \(n \rightarrow \infty \) it follows that \(gx_n \rightarrow t \) as \(n \rightarrow \infty \)

Case(i): If \(f \) is continuous, then we have by Lemma 3.1 that

\[\lim_{{n \to \infty}} \alpha S(fx_n, fx_n, gy) = \alpha \]

and also

\[\lim_{{n \to \infty}} f^2 x_n = ft \]

Now from (ii) we get

\[S(gfx_n, gfx_n, gx_{n-1}) \leq \frac{S(f^2 x_n, f^2 x_n, gx_{n-1})[1 + S(f^2 x_n, f^2 x_n, gfx_n)]}{1 + S(f^2 x_n, f^2 x_n, fx_{n-1})} + \beta[S(f^2 x_n, f^2 x_n, fx_{n-1})] \]

Where \(\alpha, \beta \geq 0, \alpha + \beta < 1 \)

on letting \(n \rightarrow \infty \) in the above inequality and using (3.2.1) and (3.2.2), we get
\[S(ft, ft, t) \leq \frac{\alpha S(ft, ft, t)[1 + S(ft, ft, t)]}{1 + S(ft, ft, t)} + \beta S(ft, ft, t) \]

i.e \[S(ft, ft, t) \leq \frac{\alpha S(ft, ft, t)}{1 + S(ft, ft, t)} + \beta S(ft, ft, t) \]

\[S(ft, ft, t) < (\alpha + \beta)S(ft, ft, t) \]

which implies \(S(ft, ft, t) = 0 \) and hence \(ft = t \)

Also from (ii), we get
\[S(gt, gt, gx_{n-1}) \leq \frac{\alpha S(ft, ft, gx_{n-1})[1 + S(ft, ft, gt)]}{1 + S(ft, ft, fx_{n-1})} + \beta S(ft, ft, gx_{n-1}) \]

where \(\alpha, \beta \geq 0, \ \alpha + \beta < 1 \)

Letting \(n \to \infty \) in the above inequality, we obtain
\[S(gt, gt, t) \leq \frac{\alpha S(ft, ft, t)[1 + S(ft, ft, t)]}{1 + S(ft, ft, t)} + \beta S(ft, ft, t) \]

since \(ft = t \), we get \(S(gt, gt, t) = 0 \) which implies \(gt = t \), showing that \(t \) is a common fixed point of \(f \) and \(g \).

Case(ii): Now suppose that \(g \) is a continuous, then we have by Lemma 3.1, that

(3.2.3) \[\lim_{n \to \infty} fgx_n = gt \]

(3.2.4) \[\lim_{n \to \infty} g^2x_n = gt \]

Now from (ii), we get
\[S(g^2x_n, g^2x_n, gx_{n-1}) \leq \frac{S(fgx_n, fgx_n, gx_{n-1})[1 + S(fgx_n, fgx_n, g^2x_n)]}{1 + S(fgx_n, fgx_n, fx_{n-1})} + \beta[S(fgx_n, fgx_n, fx_{n-1})] \]

where \(\alpha, \beta \geq 0, \ \alpha + \beta < 1 \)

on letting \(n \to \infty \) in the above inequality and using (3.2.3) and (3.2.4), we get
S-METRIC SPACE WITH RATIONAL INEQUALITY

\[S(gt, gt, t) \leq \frac{\alpha S(gt, gt, t)(1 + S(gt, gt, gt))}{1 + S(gt, gt, t)} + \beta S(gt, gt, t) \]
\[< (\alpha + \beta)S(gt, gt, t) \]

which implies \(S(gt, gt, t) = 0 \) and hence \(gt = t \)

(since \(\alpha + \beta < 1 \), \(1 + S(gt, gt, t) > 1 \Rightarrow \frac{1}{1 + S(gt, gt, t)} < 1 \))

From (i), we can find \(w \in X \) such that \(gt = fw \). Now from (ii) we have

\[S(g^2 x_n, g^2 x_n, gw) \leq \frac{S(fgx_n, fgx_n, gw)(1 + S(fgx_n, fgx_n, g^2 x_n))}{1 + S(fgx_n, fgx_n, fw) + \beta[S(fgx_n, fgx_n, fw)]} \]

where \(\alpha, \beta \geq 0, \alpha + \beta < 1 \)

Letting \(n \to \infty \) in the above inequality and using (3.2.3) and (3.2.4), we obtain

\[S(gt, gt, gw) \leq \frac{\alpha S(gt, gt, gw)(1)}{1} \]

That is, \(S(gt, gt, gw) \leq \alpha S(gt, gt, gw) \)

which implies that \(gt = gw \) since \(\alpha \in (0,1) \)

thus \(t = gt = gw = fw \).

Now put \(y_n = w \) for \(n = 0, 1, 2, 3... \) then \(fy_n \to fw \) and \(gy_n \to gw \) as \(n \to \infty \) since \(\lim S(fgx_n, fgx_n, gfw) = 0 \) giving \(S(fgw, fgw, gfw) = 0 \) which implies that \(fgw = gfw \)

since \(fw = gw = t \) we get \(ft = gt \) and since \(gt = t \), it follows that \(ft = gt = t \), showing that \(t \) is a common fixed point of \(f \) and \(g \).
Finally to prove the uniqueness of common fixed point \(f \) and \(g \).

Suppose \(u = fu = gu \) and \(v = fv = gv \) for some \(u, v \in X \)

From (ii), we get

\[
S(u, u, v) = S(gu, gu, gv) \leq \frac{\alpha S(fu, fu, gv)[1 + S(fu, fu, gu)]}{1 + S(fu, fu, fv)} + \beta S(fu, fu, fv)
\]

where \(\alpha, \beta \geq 0, \alpha + \beta < 1 \)

\[
S(u, u, v) \leq \frac{\alpha S(u, u, v) [1 + S(u, u, u)]}{1 + S(u, u, v)} + \beta S(u, u, v)
\]

\[
= \frac{[\alpha + \beta]S(u, u, v)}{1 + S(u, u, v)}
\]

which implies that \(S(u, u, v) = 0 \) since \(\frac{S(u, u, v)}{1 + S(u, u, v)} < 1 \) and hence \(u = v \), proving the theorem completely.

3.3 Example: Let \(X = [0, 1) \) and \(S(x, y, z) = d(x, y) + d(x, z) + d(y, z) \) for all \(x, y, z \in X \)

and \(d(x, y) = |x - y| \), then \((X, S) \) is a \(S \)-metric space. Define \(f : X \rightarrow X \) and \(g : X \rightarrow X \)

by \(f(x) = x, \ g(x) = \frac{x}{2} \) for all \(x \in X \) Then \(g(X) = [0, \frac{1}{2}] \subset [0, 1) = f(X) \), clearly \(fg = gf \),

so that \(f \) and \(g \) are compatible. Also an associated sequence of \(x_0 = 0 \) relative to the self

maps \(f \) and \(g \) is given by \(x_n = 0 \) for \(n \geq 0 \) and since \(\{fx_n\} \) is a constant sequence converging

to ‘0’, which is a point in \(X \) taking \(\alpha = 0, \beta = \frac{1}{2} \) then \(f \) and \(g \) satisfy the inequality (ii).

Thus the conditions (iii) and (v) of Theorem 3.2 are satisfied.

Hence by Theorem 3.2, ‘0’ is the unique common fixed point of \(f \) and \(g \).
S-METRIC SPACE WITH RATIONAL INEQUALITY

REFERENCES

