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Abstract. In this paper, we introduce three classes of functions and construct two contractive conditions to discuss

and obtain some new common fixed point theorems for two set-valued mappings on non-complete metric spaces.
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1. INTRODUCTION AND PRELIMINARIES

Let (X ,d) be a metric space and CB(X) the family of all nonempty closed and bounded subset

of X .

The following is the famous Banach’s fixed point theorem[1]:

Let (X ,d) be a complete metric space and f : X → X a mapping. If f satisfies

d( f x, f y)≤ hd(x,y),∀x,y ∈ X ,

where h ∈ [0,1). Then f has a unique common fixed point in X .
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Later, many generalizations of Banach’s fixed point theorem have appeared. For instance,

if f : X → X is a mapping on a complete metric space (X ,d) satisfying the following a quasi-

contraction

d( f x, f y)≤ h max{d(x,y),d(x, f x),d(y, f y),d(x, f y),d(y, f x)}, ∀x,y ∈ X ,

where h ∈ [0,1). Then f has a unique common fixed point in X .(see [2]).

In 1969, Nadlder[3] extended the famous Banach contraction Principle from a single-valued

mapping to a set-valued mappings and gave the next fixed point theorem:

Theorem 1.1([3]) Let (X ,d) be a complete metric space and T : X → CB(X). If there exists

h ∈ [0,1) such that

H (T x,Ty)≤ hd(x,y),∀x,y ∈ X ,

where H denote the Hausdorff metric on CB(X) induced by d, that is,

H (A,B) = max{sup
x∈A

D(x,B),sup
y∈B

D(y,A)}, ∀ A,B ∈CB(X),

where D(x,B) = infz∈B d(x,z). Then T has a fixed point in X .

Mizoguchi-Takahashi[4] also gave the following fixed point theorem:

Theorem 1.2([4]) Let (X ,d) be a complete metric space and T : X →CB(X). If

H (T x,Ty)≤ ξ (d(x,y))d(x,y),∀x,y ∈ X ,

where ξ : [0,∞)→ [0,1) satisfying limsups→t+ ξ (s) < 1 for all t ∈ [0,∞). Then T has a fixed

point in X .

In 2011, Amini-Harandi generalized and improved the corresponding result in [2] from a

single-valued mapping to a set-valued mapping, obtained the next result:

Theorem 1.3([5]) Let (X ,d) be a complete metric space and T : X → CB(X) a k-set-valued

quasi-contraction with k < 1
2 , that is,

H (T x,Ty)≤ k max{d(x,y),D(x,T x),D(y,Ty),D(x,Ty),D(y,T x)},∀ x,y ∈ X .

Then T has a fixed point in X .

And in 2011, Chen[6] introduced the following definition of ψ-contraction and obtained a

fixed point theorem for set-valued mappings:
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Theorem 1.4([6]) Let (X ,d) be a complete metric space and T : X → CB(X) a set-valued ψ-

contraction, that is,

H (T x,Ty)≤ ψ(d(x,y),D(x,T x),D(y,Ty),D(x,Ty),D(y,T x)),∀ x,y ∈ X ,

then T has a fixed point in X . Where ψ : R+5 → R+ is a function satisfying some particular

conditions, see [6].

On the other hand, In 2009, Wu et al[7] obtained the next common fixed point theorem for

set-valued mappings {Ai}:

Theorem 1.5([7]) Let (X ,d) be a complete metric space and Ai : X →CB(X) satisfy the condi-

tion: for any i, j = 1,2, · · · ,x,y ∈ X and u ∈ Aix, there exists v ∈ A jy such that

d(u,v)≤Φ(d(x,y),D(x,Aix),D(y,A jy),D(x,A jy),D(y,Aix)),

then {Ai} have a common fixed point in X . Where Φ : R+5→R+ is a function satisfying some

particular conditions, see [7].

The following is well-known results, see [7]:

Lemma 1.1 If (X ,d) is a metric space, A,B ∈CB(X), then for any ε > 0 and any a ∈ A, there

exists b ∈ B such that d(a,b)≤H (A,B)+ ε.

Lemma 1.2 If (X ,d) is a metric space, A ∈CB(X), then D(·,A) is continuous. Moreover, we

have that

(i) A = {x ∈ X |d(x,A) = 0};

(ii) For any x,y ∈ X , D(x,A)≤ d(x,y)+D(y,A).

In this paper, we use the method in [6] to obtain some common fixed point theorems for two

set-valued mappings in metric spaces.

2. COMMON FIXED POINTS

Now, we begin with the following definition.

Let ψ : R+5→ R+ be a functions satisfying the following conditions, where R+ = [0,+∞):

(A1) ψ is non-decreasing and continuous in each coordinate;

(A2) for all t > 0, ψ(t, t, t,0,2t) < t, ψ(t, t, t,2t,0) < t, ψ(0,0, t, t,0) < t, ψ(0, t,0,0, t) < t

and ψ(t,0,0, t, t)< t.
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Example 1.1 Let ψ : R+5→ R+ be ψ(t1, t2, t3, t4, t5) = a1t1 + a2t2 + a3t3 + a4t4 + a5t5, where

a1,a2,a3,a4,a5 are non-negative real numbers satisfying a1 +a2 +a3 +2a4 +2a5 < 1, Then ψ

satisfies (A1) and (A2).

Theorem 2.1 Let (X ,d) be a metric space, S,T : X →CB(X) two set-valued mappings satisfy-

ing the following condition: for all x,y ∈ X ,

H (Sx,Ty)< ψ(d(x,y),D(x,Sx),D(y,Ty),D(x,Ty),D(y,Sx)). (1)

If S(X) or T (X) is complete, then S and T have a common fixed point in X .

Proof. Note that for each A,B ∈CB(X), a ∈ A and γ > 0 with H (A,B)< γ , there exists b ∈ B

such that d(a,b)< γ by Lemma 1.1.

Let x0 ∈ X and take any x1 ∈ Sx0, then for x1 ∈ Sx0, there exists x2 ∈ T x1 such that

d(x1,x2)≤ ψ(d(x0,x1),D(x0,Sx0),D(x1,T x1),D(x0,T x1),D(x1,Sx0)).

Similarly, for x2 ∈ T x1, there exists x3 ∈ Sx2 such that

d(x3,x2)≤ ψ(d(x2,x1),D(x2,Sx2),D(x1,T x1),D(x2,T x1),D(x1,Sx2)).

For x3 ∈ Sx2, there exists x4 ∈ T x3 such that

d(x3,x4)≤ ψ(d(x2,x3),D(x2,Sx2),D(x3,T x3),D(x2,T x3),D(x3,Sx2)).

By the mathematical induction and the above observation, we can construct a sequence {xn}

satisfying that for x2n+1 ∈ Sx2n, there exists x2n+2 ∈ T x2n+1 such that

d(x2n+1,x2n+2)

≤ψ(d(x2n,x2n+1),D(x2n,Sx2n),D(x2n+1,T x2n+1),D(x2n,T x2n+1),D(x2n+1,Sx2n))

≤ψ(d(x2n,x2n+1),d(x2n,x2n+1),d(x2n+1,x2n+2),d(x2n,x2n+2),(x2n+1,x2n+1))

≤ψ(d(x2n,x2n+1),d(x2n,x2n+1),d(x2n+1,x2n+2),d(x2n,x2n+1)+d(x2n+1,x2n+2),0)

(2)
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and for x2n+2 ∈ T x2n+1, there exists x2n+3 ∈ Sx2n+2 such that

d(x2n+3,x2n+2)

≤ψ(d(x2n+2,x2n+1),D(x2n+2,Sx2n+2),D(x2n+1,T x2n+1),D(x2n+2,T x2n+1),D(x2n+1,Sx2n+2))

≤ψ(d(x2n+2,x2n+1),d(x2n+2,x2n+3),d(x2n+1,x2n+2),d(x2n+2,x2n+2),d(x2n+1,x2n+3))

≤ψ(d(x2n+2,x2n+1),d(x2n+2,x2n+3),d(x2n+1,x2n+2),0,d(x2n+1,x2n+2)+d(x2n+2,x2n+3)).

(3)

If d(x2n,x2n+1) < d(x2n+1,x2n+2) for some n ∈ N, then d(x2n+1,x2n+2) > 0, hence by (2),

(A1) and (A2),

d(x2n+1,x2n+2)

≤ψ(d(x2n+1,x2n+2),d(x2n+1,x2n+2),d(x2n+1,x2n+2),2d(x2n+1,x2n+2),0)

<d(x2n+1,x2n+2),

which is a contradiction. Hence

d(x2n+1,x2n+2)≤ d(x2n,x2n+1), ∀ n ∈ N.

Similarly, by (A1), (A2) and (3),

d(x2n+3,x2n+2)≤ d(x2n+1,x2n+2), ∀ n ∈ N.

Therefore, for all n ∈ N,

d(xn,xn+1)≤ d(xn−1,xn).

Let cm = d(xm,xm+1) for all m ∈ N, then {cm} is a decreasing sequence and bounded below,

hence there exists c≥ 0 such that limm→∞ cm = c. If c > 0, then using (2), we obtain

c≤c2n+1 = d(x2n+1,x2n+2)

≤ψ(d(x2n,x2n+1),d(x2n,x2n+1),d(x2n+1,x2n+2),d(x2n,x2n+1)+d(x2n+1,x2n+2),0)

=ψ(c2n,c2n,c2n+1,c2n + c2n+1,0)

≤ψ(c2n,c2n,c2n+1,2c2n,0).

Let n→ ∞ on the two-sides of the above, then by (A1) and (A2), we obtain

c≤ ψ(c,c,c,2c,0)< c.
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This contradiction shows limm→∞ cm = c = 0.

Next, we will prove that {xn} is a Cauchy sequence. Otherwise, there exists γ > 0 such that

for all k ∈ N, there exist m(k),n(k) ∈ N with m(k)> n(k)≥ k satisfying

(i) m(k) is even and n(k) is odd;

(ii) d(xm(k),xn(k))≥ γ;

(iii) m(k) the smallest even number satisfying the conditions (i) and (ii).

By (iii), we have

d(xm(k)−2,xn(k))< γ, ∀k = 1,2, · · ·

and

γ ≤ d(xm(k),xn(k))≤ d(xn(k),xm(k)−2)+ cm(k)−2 + cm(k)−1 < γ + cm(k)−2 + cm(k)−1.

Letting k→ ∞ on the above, we obtain

γ = lim
k→∞

d(xm(k)−2,xn(k)) = lim
k→∞

d(xm(k),xn(k)). (4)

We also have

γ

≤d(xm(k),xn(k))≤H (T xm(k)−1,Sxn(k)−1) = H (Sxn(k)−1,T xm(k)−1)

≤ψ(d(xn(k)−1,xm(k)−1),D(xn(k)−1,Sxn(k)−1),D(xm(k)−1,T xm(k)−1),D(xn(k)−1,T xm(k)−1),D(xm(k)−1,Sxn(k)−1))

≤ψ(d(xn(k)−1,xm(k)−1),d(xn(k)−1,xn(k)),d(xm(k)−1,xm(k)),d(xn(k)−1,xm(k)),d(xm(k)−1,xn(k)))

≤ψ(cn(k)−1 +d(xn(k),xm(k))+ cm(k)−1,cn(k)−1,cm(k)−1,cn(k)−1 +d(xn(k),xm(k)),cm(k)−1 +d(xm(k),xn(k))).

Letting k→ ∞ on the above, then using (4) and c = 0, we obtain the following contradiction

γ ≤ ψ(γ,0,0,γ,γ)< γ.

Hence {xn} is a Cauchy sequence.

Suppose that S(X) is complete. Since x2n+1 ∈ Sx2n⊂ S(X) for all n∈N, there exists u∈ S(X)

such that x2n+1→ u as n→ ∞. Hence

d(x2n+2,u)≤ d(x2n+2,x2n+1)+d(x2n+1,u) = c2n+1 +d(x2n+1,u)
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implies that x2n+2→ u as n→ ∞. By Lemma 1.2,

D(u,Tu) = lim
n→∞

D(x2n+3,Tu)

≤ lim
n→∞

H (Sx2n+2,Tu)

≤ lim
n→∞

ψ(d(x2n+2,u),d(x2n+2,x2n+3),D(u,Tu),D(x2n+2,Tu),d(u,x2n+3)).

Let n→ ∞ on the two-sides of the above, then

D(u,Tu)≤ ψ(0,0,D(u,Tu),D(u,Tu),0),

hence D(u,Tu) = 0 by (A2), so u ∈ Tu by Lemma 1.2 again. Similarly,

D(u,Su) = lim
n→∞

D(x2n+2,Su)

≤ lim
n→∞

H (T x2n+1,Su)

= lim
n→∞

H (Su,T x2n+1)

≤ lim
n→∞

ψ(d(u,x2n+1),D(u,Su),d(x2n+1,x2n+2),d(u,x2n+2),d(x2n+1,Su)).

Let n→ ∞ on the two sides of the above, then

D(u,Su)≤ ψ(0,D(u,Su),0,0,D(u,Su)),

hence D(u,Su) = 0 by (A2), so u ∈ Su. Therefore, u is the common fixed point of S and T .

If T (X) is is complete, then since x2n ∈ T (X), there exists u∈ T X such that x2n→ u as n→∞.

But

d(x2n+1,u)≤ d(x2n+1,x2n)+d(x2n,u) = c2n +d(x2n,u),

hence x2n+1→ u as n→ ∞. Hence we are easy to prove the same conclusion for the case that

T (X) is complete.

Now, we consider another type common fixed point theorem.

Let φ : R+→ R+ be a increasing and continuous function with φ(t) < 1
4t for all t > 0 and

φ(0) = 0.

Let ϕ : (R+)2→R+ be a decreasing and continuous in each coordinate such that ϕ(x,y) = 0

if and only if x = y = 0.
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Theorem 2.2 Suppose (X ,d) is a metric space and two mappings S,T : X →CB(X) satisfy that

for all x,y ∈ X ,

H (Sx,Ty)<
1
2

d(x,y)+φ(D(x,Ty)+D(y,Sx))−ϕ(D(x,Ty),D(y,Sx)). (5)

If S(X) or T (X) is complete, Then S and T have an common fixed point in X .

Proof. Note that for each A,B ∈CB(X), a ∈ A and γ > 0 with H (A,B)< γ , there exists b ∈ B

such that d(a,b)< γ.

Let x0 ∈ X and take x1 ∈ Sx0, then there exists x2 ∈ T x1 such that

d(x1,x2)≤
1
2

d(x0,x1)+φ(D(x0,T x1)+D(x1,Sx0))−ϕ(D(x0,T x1),D(x1,Sx0));

For x2 ∈ T x1, there exists x3 ∈ Sx2 such that

d(x3,x2)≤
1
2

d(x2,x1)+φ(D(x2,T x1)+D(x1,Sx2))−ϕ(D(x2,T x1),D(x1,Sx2)).

Generally, for x2n+1 ∈ Sx2n, there exists x2n+2 ∈ T x2n+1 such that

d(x2n+1,x2n+2)

≤ 1
2

d(x2n,x2n+1)+φ(D(x2n,T x2n+1)+D(x2n+1,Sx2n))−ϕ(D(x2n,T x2n+1),D(x2n+1,Sx2n))

and for x2n+2 ∈ T x2n+1, there exists x2n+3 ∈ Sx2n+2 such that

d(x2n+3,x2n+2)

≤ 1
2

d(x2n+2,x2n+1)+φ(D(x2n+2,T x2n+1)+D(x2n+1,Sx2n+2))−ϕ(D(x2n+2,T x2n+1),D(x2n+1,Sx2n+2)).

For any n ∈ N,

d(x2n+1,x2n+2)

≤1
2

d(x2n,x2n+1)+φ(d(x2n,x2n+2))−ϕ(d(x2n,x2n+2),0)

≤1
2

d(x2n,x2n+1)+
1
4

d(x2n,x2n+2)−ϕ(d(x2n,x2n+2),0)

≤1
2

d(x2n,x2n+1)+
1
4

d(x2n,x2n+2)

≤1
2

d(x2n,x2n+1)+
1
4
[d(x2n,x2n+1)+d(x2n+1,x2n+2)],

(6)
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hence we obtain that

d(x2n+1,x2n+2)≤ d(x2n,x2n+1). (7)

Similarly, since

d(x2n+3,x2n+2)

≤1
2

d(x2n+2,x2n+1)+φ(d(x2n+1,x2n+3))−ϕ(0,d(x2n+1,x2n+3))

≤1
2

d(x2n+2,x2n+1)+
1
4

d(x2n+1,x2n+3)−ϕ(0,d(x2n+1,x2n+4))

≤1
2

d(x2n+2,x2n+1)+
1
4
[d(x2n+2,x2n+1)+d(x2n+3,x2n+2)],

(8)

so

d(x2n+2,x2n+3)≤ d(x2n+1,x2n+2). (9)

Combining (7) and (9), we have that for all n ∈ N,

d(xn+1,xn+2)≤ d(xn,xn+1).

Let cm = d(xm,xm+1) for all m ∈ N, then {cm} is a non-increasing sequence and bounded

below, so there exists ξ ≥ 0 such that limm→∞ cm = ξ .

In view of (6),

ξ ≤ c2n+1 = d(x2n+1,x2n+2)

≤1
2

d(x2n,x2n+1)+
1
4

d(x2n,x2n+2)

≤1
2

d(x2n,x2n+1)+
1
4
[d(x2n,x2n+1)+d(x2n+1,x2n+2)].

(10)

Let n→ ∞ on the above, then ξ ≤ 1
2ξ + 1

4 limn→∞ d(x2n,x2n+2)≤ 1
2ξ + 1

4 [ξ +ξ ] = ξ , hence we

have that

lim
n→∞

d(x2n,x2n+2) = 2ξ .

By (6) again,

ξ ≤ d(x2n+1,x2n+2)≤
1
2

d(x2n,x2n+1)+
1
4

d(x2n,x2n+2)−ϕ(d(x2n,x2n+2),0).

Let n→ ∞ on the above, then

ξ ≤ 1
2

ξ +
1
4
×2ξ −ϕ(2ξ ,0)≤ ξ ,
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so

ϕ(2ξ ,0) = 0,

hence

ξ = 0.

This prove that limn→∞ d(xn,xn+1) = limn→∞ cn = 0.

If {xn} is not a Cauchy sequence, then there exists γ > 0 such that for all k ∈ N, there exist

m(k),n(k) ∈ N with m(k)> n(k)≥ k satisfying (i),(ii) and (iii) in Theorem 2.1 and (4) holds.

We have

γ ≤ d(xm(k),xn(k))

≤H (T xm(k)−1,Sxn(k)−1)

=H (Sxn(k)−1,T xm(k)−1)

≤1
2

d(xn(k)−1,xm(k)−1)+φ(D(xn(k)−1,T xm(k)−1)+D(xm(k)−1,Sxn(k)−1))

−ϕ(D(xn(k)−1,T xm(k)−1),D(xm(k)−1,Sxn(k)−1))

≤1
2
[cn(k)−1 +d(xn(k),xm(k))+ cm(k)−1]+φ(d(xn(k)−1,xm(k))+d(xm(k)−1,xn(k)))

−ϕ(d(xn(k)−1,xm(k)),d(xm(k)−1,xn(k)))

≤1
2
[cn(k)−1 +d(xn(k),xm(k))+ cm(k)−1]+φ([cn(k)−1 +d(xn(k),xm(k))]+ [d(xm(k),xn(k))+ cm(k)−1])

−ϕ([cn(k)−1 +d(xn(k),xm(k))], [d(xm(k),xn(k))+ cm(k)−1]).

Let k→ ∞ on the above, then we obtain that

γ ≤ 1
2

γ +φ(2γ)−ϕ(γ,γ)≤ 1
2

γ +
1
4
(2γ)−ϕ(γ,γ)≤ γ,

hence ϕ(γ,γ) = 0, so γ = 0, which is a contradiction. Hence {xn} is a Cauchy sequence.

Since S(X) or T (X) is complete, there exists z ∈ S(X) or z ∈ T (X) such that xn → z as

n→ ∞ (for detail, see the proof process of Theorem 2.1).
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Finally, by Lemma 1.2 and (5),

D(z,T z) = lim
n→∞

D(x2n+1,T z)

≤ lim
n→∞

H (Sx2n,T z)

≤ lim
n→∞

[
1
2

d(x2n,z)+φ(D(x2n,T z)+D(z,Sx2n))−ϕ(D(x2n,T z),D(z,Sx2n))]

≤ lim
n→∞

[
1
2

d(x2n,z)+φ(D(x2n,T z)+d(z,x2n+1))−ϕ(D(x2n,T z),d(z,x2n+1))]

=φ(D(z,T z))−ϕ(D(z,T z),0)

≤1
4

D(z,T z),

hence D(z,T z) = 0, therefore z ∈ T z since T z is closed.

Similarly, by Lemma 1.2 and (5),

D(z,Sz) = lim
n→∞

D(x2n+2,Sz)

≤ lim
n→∞

H (T x2n+1,Sz)

= lim
n→∞

H (Sz,T x2n+1)

≤ lim
n→∞

[
1
2

d(z,x2n+1)+φ(D(z,T x2n+1)+D(x2n+1,Sz))−ϕ(D(z,T x2n+1),D(x2n+1,Sz))]

≤ lim
n→∞

[
1
2

d(z,x2n+1)+φ(d(z,x2n+2)+D(x2n+1,Sz))−ϕ(d(z,x2n+2),D(x2n+1,Sz))]

=φ(D(z,Sz))−ϕ(0,D(z,Sz))

≤1
4

D(z,Sz),

hence D(z,Sz) = 0, therefore z∈ Sz since Sz is closed. This complete that z is the common fixed

point of S and T.
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