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Abstract. The main goal of this paper is to point out some refinements of the reverse of the Jensen-Mercer
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1. INTRODUCTION

Throughout this paper, for α,β ,a,b ∈ R we always assume −∞≤ α < a < b < β ≤ ∞. Let

f : (α,β )→R be a convex function. Then for each x ∈ (α,β ) there exist f ′− (x) and f ′+ (x) and

f ′− (x) ≤ f ′+ (x) (see [5]). Hence, without any loss of generality we may set f ′ (x) = f ′+ (x) for

any x ∈ (α,β ).

The Jensen-Mercer inequality

(1) f

(
a+b− 1

Pn

n

∑
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)
≤ f (a)+ f (b)− 1
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for convex function f : (α,β )→ R, real numbers x1, . . . ,xn ∈ [a,b] and positive real numbers

p1, . . . , pn, where Pn =
n

∑
i=1

pi, was proved in [4]. In [1], it was proved that it remains valid when

x1, . . . ,xn ∈ [a,b] and p1, . . . , pn ∈ R satisfy the conditions

(2) x1 ≤ x2 ≤ ·· · ≤ xn or x1 ≥ x2 ≥ ·· · ≥ xn

and

(3) 0≤ Pk =
k

∑
i=1

pi ≤ Pn, k = 1, . . . ,n, Pn > 0.

Also, under conditions (2) and (3),
1
Pn

n

∑
i=1

pixi belongs to [a,b], and consequently x = a+ b−

1
Pn

n

∑
i=1

pixi ∈ [a,b].

Furthermore, in [2], under conditions (2) and (3), a reverse of the Jensen-Mercer inequality

was obtained in the following form

0≤ f (a)+ f (b)− 1
Pn

n

∑
i=1

pi f (xi)− f (x)

≤ f ′ (a)(a− x)+ f ′ (b)(b− x)− 1
Pn

n

∑
i=1

pi f ′ (xi)(xi− x) .(4)

Our goal is to establish refinements of the second inequality in (4).

2. MAIN RESULTS

In [3], the following reverse of the discrete Jensen-Steffensen inequality and its refinements

were proved.

Theorem A. Let f : (α,β )→ R be a convex function and suppose that ξ1, . . . ,ξm ∈ [a,b],

w1, . . . ,wm ∈ R satisfy conditions

(5) ξ1 ≤ ξ2 ≤ ·· · ≤ ξm or ξ1 ≥ ξ2 ≥ ·· · ≥ ξm

and

(6) 0≤Wk =
k

∑
i=1

wi ≤Wm, k = 1, . . . ,m, Wm > 0.
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Then

0≤ η− f
(

ξ

)
≤ inf

ξ∈(a,b)

(
f (ξ )−ξ ζ

)
+

1
Wm

m

∑
i=1

wiξi f ′ (ξi)− f
(

ξ

)
≤ 1

Wm

m

∑
i=1

wiξi f ′ (ξi)−ξ ζ ,(7)

where

ξ =
1

Wm

m

∑
i=1

wiξi, η =
1

Wm

m

∑
i=1

wi f (ξi) , ζ =
1

Wm

m

∑
i=1

wi f ′ (ξi) .

Theorem B. Suppose that all the conditions of Theorem A are satisfied and additionally

assume that f is strictly convex and differentiable on (α,β ). Then

0≤ η− f
(

ξ

)
≤ 1

Wm

m

∑
i=1

wiξi f ′ (ξi)+ f
((

f ′
)−1
(

ζ

))
−ζ

(
f ′
)−1
(

ζ

)
− f

(
ξ

)
≤ 1

Wm

m

∑
i=1

wiξi f ′ (ξi)−ξ ζ .(8)

In the following theorems we show how inequalities (7) and (8) can be used to obtain re-

finements of the reverse of the Jensen-Mercer inequality, under different conditions on weights

p1, . . . , pn and arguments x1, . . . ,xn.

Theorem 1. Let f : (α,β )→ R be a convex function and x1, . . . ,xn ∈ [a,b] , p1, . . . , pn ∈ R be

such that conditions (2) and (3) are fulfilled. Then

0≤ f (a)+ f (b)− 1
Pn

n

∑
i=1

pi f (xi)− f (x)

≤ inf
x∈(a,b)

( f (x)− xz)+a f ′ (a)+b f ′ (b)− 1
Pn

n

∑
i=1

pixi f ′ (xi)− f (x)

≤ f ′ (a)(a− x)+ f ′ (b)(b− x)− 1
Pn

n

∑
i=1

pi f ′ (xi)(xi− x) ,(9)

where x = a+b− 1
Pn

n

∑
i=1

pixi and z = f ′ (a)+ f ′ (b)− 1
Pn

n

∑
i=1

pi f ′ (xi).
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Proof. For m = n+2 we define

(10)
ξ1 = a, ξ2 = x1, ξ3 = x2, ... ξm−1 = xn, ξm = b

w1 = 1, w2 =− p1
Pn
, w2 =− p2

Pn
, ... wm−1 =− pn

Pn
, wm = 1

.

It is obvious that ξ1 ≤ ξ2 ≤ ·· · ≤ ξm if x1 ≤ x2 ≤ ·· · ≤ xn or ξ1 ≥ ξ2 ≥ ·· · ≥ ξm if x1 ≥ x2 ≥

·· · ≥ xn and that

0≤Wk =
k

∑
i=1

wi ≤Wm, k = 1,2, . . . ,m, Wm = 1 > 0.

Hence, we can apply Theorem A thus obtaining inequalities (9) . �

In the same way, by applying Theorem B, we prove the following theorem.

Theorem 2. Suppose that all the conditions of Theorem 1 are satisfied and additionally assume

that f is strictly convex and differentiable on (α,β ). Then

0≤ f (a)+ f (b)− 1
Pn

n

∑
i=1

pi f (xi)− f (x)

≤ a f ′ (a)+b f ′ (b)− 1
Pn

n

∑
i=1

pixi f ′ (xi)+ f
((

f ′
)−1

(z)
)
− z
(

f ′
)−1

(z)− f (x)

≤ f ′ (a)(a− x)+ f ′ (b)(b− x)− 1
Pn

n

∑
i=1

pi f ′ (xi)(xi− x) ,(11)

where x = a+b− 1
Pn

n

∑
i=1

pixi and z = f ′ (a)+ f ′ (b)− 1
Pn

n

∑
i=1

pi f ′ (xi).

Theorem 3. Let f : (α,β )→ R be a convex function, p1, . . . , pn positive real numbers and

x1, . . . ,xn ∈ [a,b]. Then inequalities (9) hold.

Proof. When p1, . . . , pn are positive, condition (3) is permutation invariant, that is, in that case

(3) does not depend on the order of p1, . . . , pn. Because of that, we can take any x1, . . . ,xn ∈ [a,b]

and rearrange them in the way that, after substitutions (10), conditions (5) and (6) are fulfilled.

Hence, we can apply Theorem A. �

Analogously, we can apply Theorem B and prove the following theorem.

Theorem 4. Let f : (α,β )→ R be a differentiable strictly convex function, p1, . . . , pn positive

real numbers and x1, . . . ,xn ∈ [a,b]. Then inequalities (11) hold.
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