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Abstract. In this paper, we prove some inequalities for rational functions with prescribed poles and restricted

zeros. Our results generalize many well known inequalities available in literature.

Keywords: rational functions; inequalities; moduli; zeros.

2010 AMS Subject Classification: 26D07, 26C15.

1. INTRODUCTION

Let Pn represents the class of all complex polynomials p(z) of degree at most n and p′(z)

be the derivative of p(z). Let Dk− and Dk+ denote the regions inside and outside the disk

Tk = {z : |z|= k,k > 0}, respectively. For a function f defined on T1 in complex plane, we write

‖ f‖ := sup
z∈T1

| f (z)|, the chebyshev norm of f on T1,

w(z) :=
n

∏
i=1

(z−ai); B(z) :=
n

∏
i=1

(
1−aiz
z−ai

)
and

Rn := Rn(a1,a2, ...,an) =

{
p(z)
w(z)

: p ∈Pn

}
.
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Then Rn represents the class of all rational functions with a finite limit at infinity and with at

most n poles a1,a2, ...,an outside the unit disk.

Note that B(z) ∈Rn and |B(z)|= 1 for |z|= 1. Throughout this paper, we shall assume that all

poles a1,a2, ...,an lie in D1+.

If p ∈Pn, then we have the well known inequality that relates the norm of a polynomial to that

of its derivative due to Bernstein[4].

‖p′‖ ≤ n‖p‖.(1)

Aziz[1] and Malik[8] have proved the following refinement of inequality (1).

If p ∈Pn and p∗(z) = zn p(1/z), then

‖ |(p∗(z))′|+ |p(z)| ‖= n‖p‖.(2)

The next result was conjectured by Erdös and later proved by Lax[5].

If p ∈Pn and p 6= 0 for z ∈ D1−, then we have

‖p′‖ ≤ n
2
‖p‖.(3)

Furthermore, Li , Mohapatra, Rodriguez[7](see also [2], [6]) obtained inequalities similar

to inequalities (1) and (3) for rational functions.They replaced polynomial p(z) by a rational

function r(z) with prescribed poles a1,a2, ...,an and zn by a Blaschke product B(z).In fact, they

proved following generalization of inequality (3).

Theorem 1.1. Suppose r ∈Rn and all zeros of r lie in T1∪D1+, then for z ∈ T1

|r′(z)| ≤ 1
2
|B′(z)|.‖r(z)‖.(4)

Equality in (4) holds for r(z) = αB(z)+β with |α|= |β |= 1.

Aziz and Zargar[3] proved the following generalization of Theorem (1.1). In fact they proved:

Theorem 1.2. If r ∈Rn, and all zeros of r lie in Tk∪Dk+, then for z ∈ T1 , we have

|r′(z)| ≤ 1
2

{
|B′(z)|− n(k−1)

(k+1)
|r(z)|2

‖r‖2

}
‖r(z)‖.(5)
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Equality in (5) holds for r(z) =
( z+k

z−a

)n
, where k ≥ 1 and B(z) =

(1−az
z−a

)n
evaluated at z = 1.

Recently B. A. Zargar , M. H. Gulzar, Rubia Akhter[9] considered the moduli of all zeros of

r(z) instead of considering maximum modulus of zeros of r(z) and proved the following result:

Theorem 1.3. Suppose r(z) = p(z)
w(z) ∈Rn and all zeros of r lie in Tk ∪Dk+, where k ≥ 1, then

for z ∈ T1, we have

|r′(z)| ≤ 1
2

{
|B′(z)|+2

(
m

∑
j=1

1
1+ |b j|

− n
2

)
|r(z)|2

‖r‖2

}
‖r‖.(6)

Equality in (6) holds for r(z) = (z+k)m

(z−a)n , where k ≥ 1 and B(z) =
(1−az

z−a

)n
evaluated at z = 1.

In the same paper, they also proved the following refinement of Theorem (1.2).

Theorem 1.4. Suppose r(z) = p(z)
w(z) ∈ Rn, where r has exactly n poles at a1,a2, ...,an and all

zeros of r lie in Tk∪Dk+ , k ≥ 1, then for z ∈ T1, we have

|r′(z)| ≤ 1
2

{
|B′(z)|− n(k+1)−2m

(k+1)
|r(z)|2

‖r(z)‖2

}
‖r(z)‖.(7)

Equality in (7) holds for r(z) = (z+k)m

(z−a)n , where k ≥ 1 and B(z) =
(1−az

z−a

)n
evaluated at z = 1.

2. PRELIMINARIES

For the proof of main results, we need following Lemmas. The first Lemma is due to Aziz

and Zargar[3].

Lemma 2.1. If z ∈ T1, then

Re
(

zw′(z)
w(z)

)
=

n−|B′(z)|
2

.

The following Lemma is due to Li, Mohapatra, Rodriguez[7].

Lemma 2.2. If r ∈Rn and r∗(z) = B(z)r(1
z ), then for z ∈ T1, we have

|(r∗(z))′|+ |r′(z)| ≤ |B′(z)|‖r‖.

Lemma 2.3. Let r ∈Rn and all zeros of r lie in Tk∪Dk+, k≥ 1, with a zero of multiplicity s at

origin, then for z ∈ T1

Re
(

zr′(z)
r(z)

)
≤ |B

′(z)|
2

+

(
m−s

∑
j=1

1
1+ |b j|

− n−2s
2

)
.

where m is the number of zeros of r.
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Proof of Lemma 2.3. Let r(z) = zsh(z)
w(z) ∈Rn, where h(z)is a polynomial of degree m− s having

all its zeros in Tk∪Dk+,k ≥ 1.

This gives

zr′(z)
r(z)

= s+
zh′(z)
h(z)

− zw′(z)
w(z)

.

Equivalently,

Re
(

zr′(z)
r(z)

)
= s+Re

(
zh′(z)
h(z)

)
−Re

(
zw′(z)
w(z)

)
.(8)

Now using the fact that h(z) is a polynomial of degree m− s having all its zeros in Tk ∪Dk+,

k ≥ 1. If b1,b2, ...,bm−s are the zeros of h(z), where |b j| ≥ k > 1, j = 1,2, ...,m− s, (m ≤ n)

then we can write

h(z) =
m−s

∑
j=0

c jz j = cm−s

m−s

∏
j=1

(z−b j), |b j| ≥ k, j = 1,2, ...,m− s.

which implies

Re
(

zh′(z)
h(z)

)
= Re

(
m−s

∑
j=1

z
z−b j

)
.(9)

Using this in inequality (8), we obtain

Re
(

zr′(z)
r(z)

)
= s+Re

(
m−s

∑
j=1

z
z−b j

)
−Re

(
zw′(z)
w(z)

)
.(10)

For z ∈ T1 , this gives with the help of lemma (2.1) that

Re
(

zr′(z)
r(z)

)
= s+Re

(
m−s

∑
j=1

z
z−b j

)
−
(

n−|B′(z)|
2

)

≤ s+
m−s

∑
j=1

1
1+ |b j|

−
(

n−|B′(z)|
2

)

=
|B′(z)|

2
+

(
m−s

∑
j=1

1
1+ |b j|

− n−2s
2

)
.

this completely proves lemma (2.3).
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Lemma 2.4. Suppose r ∈Rn has exactly n poles a1,a2, ...,an and all zeros of r lie in Tk∪Dk+,

k ≥ 1, with a zero of multiplicity s at origin, then for z ∈ T1

Re
(

zr′(z)
r(z)

)
≤ |B

′(z)|
2
− 1

1+ k

(
n(k+1)−2sk−2m

2

)
.

where m indicates the number of zeros of r.

Proof of Lemma 2.4. Let r(z) = zsh(z)
w(z) ∈Rn, where h(z)is a polynomial of degree m− s having

all its zeros in Tk∪Dk+,k ≥ 1.

This gives
zr′(z)
r(z)

= s+
zh′(z)
h(z)

− zw′(z)
w(z)

.

Equivalently,

Re
(

zr′(z)
r(z)

)
= s+Re

(
zh′(z)
h(z)

)
−Re

(
zw′(z)
w(z)

)
.(11)

Since h(z) is a polynomial of degree m− s having all its zeros in Tk∪Dk+, k≥ 1. If b1,b2, ...,bm−s

are the zeros of h(z), where |b j| ≥ k > 1, j = 1,2, ...,m− s, then we can write

h(z) =
m−s

∑
j=0

c jz j = cm−s

m−s

∏
j=1

(z−b j), (m≤ n), |b j| ≥ k > 1, j = 1,2, ...m− s.

This gives

zh′(z)
h(z)

=
m−s

∑
j=1

z
z−b j

.

Which implies

Re
(

zh′(z)
h(z)

)
= Re

(
m−s

∑
j=1

z
z−b j

)
.(12)

Now it can be easily verified that for z ∈ T1 and |b| ≥ k > 1

Re
(

z
z−b

)
≤ 1

1+ k
.

Using this in inequality (12), we get for z ∈ T1

Re
(

zh′(z)
h(z)

)
≤ m− s

1+ k
.(13)
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Inequality (11) in conjuction with Lemma (2.1) and inequality (13) yields for z ∈ T1

Re
(

zr′(z)
r(z)

)
≤ s+

m− s
1+ k

−
(

n−|B′(z)|
2

)
=

sk+m
1+ k

−
(

n−|B′(z)|
2

)
=

1
2

{
|B′(z)|− n(k+1)−2(sk+m)

1+ k

}
.

which completely proves lemma (2.4).

3. MAIN RESULTS

In this paper, we first present the following result which provides the generalization of The-

orem (1.3). In fact we prove:

Theorem 3.1. Suppose r ∈ Rn and all zeros of r lie in Tk ∪Dk+ , k ≥ 1 with s fold zeros at

origin. If r(z) = zsh(z)
w(z) , where h(z) =

m−s
∑
j=0

c jz j, (m≤ n), then for z ∈ T1, we have

|r′(z)| ≤ 1
2

{
|B′(z)|+2

(
m−s

∑
j=1

1
1+ |b j|

− n−2s
2

)
|r(z)|2

‖r‖2

}
‖r‖.(14)

where m indicates the number of zeros of r.

Equality in (14) holds for r(z) = zs(z+k)m−s

(z−a)n where a > 1, k ≥ 1 and B(z) =
(1−az

z−a

)n
evaluated at

z = 1.

Proof of Theorem 3.1. We have

r∗(z) = B(z)r
(

1
z

)
Now

(r∗(z))′ = B′(z)r(
1
z
)−B(z)r(

1
z
)

′
.

1
z2 .

This implies for z ∈ T1,

|(r∗(z))′|=
∣∣|B′(z)|r(z)− z(r′(z))

∣∣ .
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Hence for z ∈ T1 [ see[7], p.529] , we have by using Lemma (2.3)∣∣∣∣z(r∗(z))′r(z)

∣∣∣∣2 = ∣∣∣∣|B′(z)|− z(r′(z))
r(z)

∣∣∣∣2
= |B′(z)|2 +

∣∣∣∣z(r′(z))r(z)

∣∣∣∣2−2|B′(z)|Re
(

z(r′(z))
r(z)

)
≥ |B′(z)|2 +

∣∣∣∣z(r′(z))r(z)

∣∣∣∣2−2|B′(z)|

{
|B′(z)|

2
+

(
m−s

∑
j=1

1
1+ |b j|

− n−2s
2

)}

=

∣∣∣∣zr′(z)
r(z)

∣∣∣∣2−2

(
m−s

∑
j=1

1
1+ |b j|

− n−2s
2

)
|B′(z)|.

This gives for z ∈ T1{
|(r′(z))|2−2

(
m−s

∑
j=1

1
1+ |b j|

− n−2s
2

)
|B′(z)||r(z)|2

} 1
2

≤ |(r∗((z))′|.(15)

By using lemma (2.2), we obtain for z ∈ T1 that

|r′(z)|+

{
|r′(z)|2−2

(
m−s

∑
j=1

1
1+ |b j|

− n−2s
2

)
|B′(z)||r(z)|2

} 1
2

≤ |(r∗(z))′|+ |r′(z)|

≤ |B′(z)|‖r‖.

Equivalently

|(r′(z)|2−2

(
m−s

∑
j=1

1
1+ |b j|

− n−2s
2

)
|B′(z)||r(z)|2 ≤

{
B′(z)|‖r‖− |(r′(z))|

}2

= |B′(z)|2‖r‖2 + |r(z)|2

−2|B′(z)|‖r‖|r(z)|.

that is,

|r′(z)| ≤ 1
2

{
|B′(z)|+2

(
m−s

∑
j=1

1
1+ |b j|

− n−2s
2

)
|r(z)|2

‖r‖2

}
‖r‖.

which is the desired result.

Remark 3.2. By taking s = 0 in Theorem (3.1), it reduces to Theorem (1.3).

If r(z) has exactly n zeros in Tk∪Dk+ , then we get the following result:
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Corollary 3.3. Suppose r ∈Rn and r has all its zeros in Tk ∪Dk+ , k ≥ 1 with s - fold zeros at

origin, then for z ∈ T1

|r′(z)| ≤ 1
2

{
|B′(z)|−

(
n−s

∑
j=1

|b j|−1
|b j|+1

− s

)
|r(z)|2

‖r‖2

}
‖r‖.(16)

Equality in (16) holds for r(z) = zs(z+k)n−s

(z−a)n where a > 1, k ≥ 1 and B(z) =
(1−az

z−a

)n
evaluated at

z = 1.

Now we prove the following result which provides the generalization of Theorem (1.4).

Theorem 3.4. Suppose r ∈Rn, where r has exactly n poles at a1,a2, ...,an and all zeros of r lie

in Tk∪Dk+ , k ≥ 1 with s - fold zeros at origin. If r(z) = zsh(z)
w(z) , where h(z) =

m−s
∑
j=0

c jz j, (m≤ n),

then for z ∈ T1

|r′(z)| ≤ 1
2

{
|B′(z)|− n(k+1)−2(sk+m)

k+1
|r(z)|2

‖r(z)‖2

}
‖r(z)‖.(17)

where m indicates the number of zeros of r.

Equality in (17) holds for r(z) = zs(z+k)n−s

(z−a)n where a > 1, k ≥ 1 and B(z) =
(1−az

z−a

)n
evaluated at

z = 1.

Proof of Theorem 3.4. We have

r∗(z) = B(z)r
(

1
z

)

Now

(r∗(z))′ = B′(z)r(
1
z
)−B(z)r(

1
z
)

′
.

1
z2 .

This implies for z ∈ T1

|(r∗(z))′|=
∣∣|B′(z)|r(z)− z(r′(z))

∣∣ .
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Hence for z ∈ T1 [see[7], p.529] , we have by using Lemma (2.4)

∣∣∣∣z(r∗(z))′r(z)

∣∣∣∣2 = ∣∣∣∣|B′(z)|− z(r′(z))
r(z)

∣∣∣∣2
= |B′(z)|2 +

∣∣∣∣z(r′(z))r(z)

∣∣∣∣2−2|B′(z)|Re
(

z(r′(z))
r(z)

)
≥ |B′(z)|2 +

∣∣∣∣z(r′(z))r(z)

∣∣∣∣2−|B′(z)|{|B′(z)|−(n(k+1)−2(sk+m)

1+ k

)}
=

∣∣∣∣z(r′(z)r(z)

∣∣∣∣2 + n(k+1)−2(sk+m)

1+ k
|B′(z)|.

that is,

{
|r′(z)|2 + n(k+1)−2(sk+m)

1+ k
|r(z)|2|B′(z)|

} 1
2

≤ |(r∗(z))′|.(18)

This gives with the help of lemma (2.2)

|r′(z)|+
{
|r′(z)|2 + n(k+1)−2(sk+m)

k+1
|B′(z)||r(z)|2

} 1
2

≤ |B′(z)|‖r(z)‖.

or equivalently,

|r′(z)|2 + n(k+1)−2(sk+m)

k+1
|B′(z)||r(z)|2 ≤ {|B′(z)|‖r(z)‖− |r′(z)|}2

= |B′(z)|2‖r(z)‖2−2|B′(z)|‖r(z)‖|r′(z)|

+ |r′(z)|2.

which on simplification yields

|r′(z)| ≤ 1
2

{
|B′(z)|− n(k+1)−2(sk+m)

k+1
|r(z)|2

‖r(z)‖2

}
‖r(z)‖.

This completes the proof of theorem 3.4.

Remark 3.5. By taking s = 0 in Theorem (3.4), it reduces to Theorem (1.4) .

If r(z) has exactly n zeros, then we have the following result:
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Corollary 3.6. Suppose r ∈Rn, where r has exactly n poles at a1,a2, ...,an and all zeros of r

lie in Tk∪Dk+ , k ≥ 1 with s fold zeros at origin, then for z ∈ T1

|r′(z)| ≤ 1
2

{
|B′(z)|− n(k−1)−2sk

k+1
|r(z)|2

‖r(z)‖2

}
‖r(z)‖.(19)

Equality in (19) holds for r(z) = zs(z+k)n−s

(z−a)n where a > 1, k ≥ 1 and B(z) =
(1−az

z−a

)n
evaluated at

z = 1.

Remark 3.7. If we take s = 0 in Corollary (3.6), it reduces to Theorem (1.2).

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] A. Aziz, Q. G. Mohammad, Simple proof of a Theorem of Erdös and Lax, Proc. Amer. Math. Soc. 80 (1980),

119-122.

[2] A. Aziz, W. M. Shah, Some refinements of Bernstein type inequalities for rational functions. Glas. Mat.

32(52) (1997), 29-37.

[3] A. Aziz, B. A. Zargar, Some properties of rational functions with prescribed poles, Canad. Math. Bull, 42(4)

(1999), 417-426.

[4] S. N. Bernstein, Sur l’ordre de la meilleure approximation des fonctions continues par des polynômes de
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