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Abstract. In this paper, a two species Gilpin-Ayala competition system with infinite delays and single feedback

control variable is studied. The sufficient conditions for permanence are obtained. Our result shows that by

choosing suitable feedback control variable, the extinct species in original system could become permanent.
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1. Introduction

Traditional Lotka-Volterra competition system can be expressed as follows

x′i(t) = xi(t)[bi(t)−
n

∑
j=1

ai j(t)x j(t)], i = 1,2, ...,n. (1)

As we well know,system (1) has been studied extensively,many excellent results of system (1)

are obtained; see [1-6,10,13-14] and the references therein. In 1973, Ayala et al. proposed the
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following competition system by experiment.

x′1(t) = r1x1(t)
[
1− (x1(t)

k1
)θ1−α12

x2(t)
k1

]
,

x′2(t) = r2x2(t)
[
1−α21

x1(t)
k2
− (x2(t)

k2
)θ2
]
.

(2)

Gilpin-Ayala competition system also has been studied from different aspects by many re-

searhers; see [7-12,15-16] and the references therein. Chen [9] proposed the following system

x′1(t) = r1x1(t)
[
1− (x1(t)

k1
)θ1−α12

∫ t
−∞

x2(s)
k1

dh2(t− s)
]
,

x′2(t) = r2x2(t)
[
1−α21

∫ t
−∞

x1(s)
k2

dh1(t− s)− (x2(t)
k2

)θ2
]
.

(3)

and systematically discussed the stability of system (3). Wang [15] studied system (3). We

assumed the following inequalities

(H1) : k1 > α12k2,k2 ≤ α21k1;θ1 ≥ 1,θ2 ≤ 1;

hold,and proved the extinction of the system,that is,for any solution (x1(t),x2(t))T of system

(3), one has lim
t→+∞

x2(t) = 0, lim
t→+∞

x1(t) = k1.

On the other hand, ecosystem in the real world are continuously disturbed by unpredictable

forces which can result in changes in the biological parameters such as survival rates. In the

language of control variables,we call the disturbance functions as control variables. In some

cases, one may choose a single control strategy,and such a strategy has influence on both

species.For instance, in the medical system, when we take chemotherapeutic drugs for can-

cer patients,cancer cells will decrease rapidly, but at the same time, drugs do harm to normal

cells and body’s immune function; see [17] and the references therein.

Above analysis motivated us to propose the following two species competitive system with

single feedback control variable

x′1(t) = r1x1(t)
(
1− (x1(t)

k1
)θ1−α12

∫ t
−∞

x2(s)
k1

dh2(t− s)− c1
∫ t
−∞

u(s)dk1(t− s)
)
,

x′2(t) = r2x2(t)
(
1−α21

∫ t
−∞

x1(s)
k2

dh1(t− s)− (x2(t)
k2

)θ2 + c2
∫ t
−∞

u(s)dk2(t− s)
)
,

u′(t) = f − eu(t)+d1
∫ t
−∞

x1(s)dh3(t− s)−d2
∫ t
−∞

x2(s)dh4(t− s).

(4)

here the coefficients ri,ki,θi,αi j,ci,di, f ,e,(i, j = 1,2, i 6= j) are all positive constants. The

delay kernels: hi(s) : [0,∞)→ R,(i = 1,2,3,4), ki(s) : [0,∞)→ R,(i = 1,2) are non-increasing
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functions of bounded variation such that∫
∞

0
dhi(s) =−1 and

∫
∞

0
dki(s) =−1.

we shall consider system (4) together with the initial conditions

xi(s) = φi(s)> 0,s ∈ (−∞,0], i = 1,2.

u(s) = ψ(s)> 0,s ∈ (−∞,0].
(5)

here φi,ψ ∈ BC+ =
{

φ ∈
(
C(−∞,0], [0,∞)

)
: φ(0)> 0 and φ is bounded

}
,(i = 1,2).

Now,we further assume the coefficients of the system (4) satisfy the inequalities:

(H2) : 1− α12k2

k1
(1+

c2( f +d1k1)

e
)

1
θ2 > c1(

f +d1k1

e
);

c2

e
( f −d2k2((1+

c2( f +d1k1)

e
)

1
θ2 ))>

α21k1

k2
−1.

It is well known that by the fundamental theory of functional differential equations [18],system

(4) has a unique solution (x1(t),x2(t),u(t))T satisfying the initial condition (5).We can easily

prove xi(t) > 0, i = 1,2,u(t) > 0 in maximal interval of existence of the solution.In this paper,

the solution of system (4) satisfying the initial conditions (5) is said to be positive.

The aim of this paper is, by further developing the analysis technique of Francisco Montes

de Oca and Miguel Vivas and using the differential inequality theory,to obtain a set of sufficient

conditions to ensure the permanence of the system (4).Our result will show that (5), (H1) and

(H2) will ensure the permanence of the system (4).This means that for system (3), feedback

control is an effective method to avoid the extinction of the species.

2. Preliminaries

In this section, we shall state several lemmas which will be useful in the proving of main

results.

Lemma 2.1. Let x : R→ R be a bounded nonnegative continuous function,and let h :
[
0,+∞

)
→

R be a non-increasing function of bounded variation such that
∫

∞

0 dh(s) =−1, then we have

liminf
t→+∞

x(t)≤ liminf
t→+∞

∫ t

−∞

x(t)dh(t− s)≤ limsup
t→+∞

∫ t

−∞

x(t)dh(t− s)≤ limsup
t→+∞

x(t).
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Proof. Lemma2.1 can be regard as a generalized version of Lemma3 of Montes de Oca and

Zeeman [4] and can be proved in a similar way.

Lemma 2.2. If a > 0,b > 0 and x′ ≥ x(b−axα), where α is a positive constant, when t ≥

0,x(0) > 0, we have liminf
t→+∞

x(t) ≥ (b
a)

1
α ; If a > 0,b > 0and x′ ≤ x(b−axα), where α is a

positive constant,when t ≥ 0,x(0)> 0, we have limsup
t→+∞

x(t)≤ (b
a)

1
α .

Lemma 2.3. If a > 0,b > 0 and x′ ≥ b−ax, when t ≥ 0,x(0) > 0, we have liminf
t→+∞

x(t) ≥ b
a ; If

a > 0,b > 0and x′ ≤ b−ax, when t ≥ 0,x(0)> 0, we have limsup
t→+∞

x(t)≤ b
a .

Lemma 2.2 and Lemma 2.3 are direct corollary of Lemma 2.2 of Chen [10].

3. Permanence

In this section, we discuss the permanence of system (4).

Theorem 3.1. Let (x1(t),x2(t),u(t))T is any solution of (4) and (5). Assume that (H1) and

(H2) hold. Then system (4) is permanent.

Proof. Let (x1(t),x2(t),u(t))T be any solution of (4) and (5). From the first equation of system

(4) it follows that

x′1(t)≤ r1x1(t)
(
1− (

x1(t)
k1

)θ1
)
. (6)

Thus, as a direct corollary of Lemma2.2, one has

limsup
t→+∞

x1(t)≤ k1
def
= x1. (7)

From Lemma 2.1, we have

limsup
t→+∞

∫ t

−∞

x1(t)dh3(t− s)≤ limsup
t→+∞

x1(t)≤ x1.

For any small positive constant ε > 0, it follows from(7) that there exists a T1 > 0 such that for

t > T1, ∫ t

−∞

x1(t)dh3(t− s)≤ x1 + ε. (8)
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(8) together with the third equation of system (4) leads to

u′(t)≤ f − eu(t)+d1(x1 + ε). (9)

From Lemma 2.3, one has

limsup
t→+∞

u(t)≤ f +d1(x1 + ε)

e
.

Setting ε → 0 in above inequality leads to

limsup
t→+∞

u(t)≤ f +d1x1

e
def
= u. (10)

From Lemma 2.1, we have

limsup
t→+∞

∫ t

−∞

u(t)dk2(t− s)≤ limsup
t→+∞

u(t)≤ u. (11)

For above ε > 0, it follows from (11) that there exists a T2 > T1 > 0 such that for t > T2,∫ t

−∞

u(t)dk2(t− s)u≤ u+ ε. (12)

(12) together with the second equation of system (1.4) leads to

x′2(t)≤ r2x2(t)
(
1− (

x2(t)
k2

)θ2 + c2(u+ ε)
)
. (13)

From Lemma 2.2, one has

limsup
t→+∞

x2(t)≤ (1+ c2(u+ ε))
1

θ2 · k2.

Setting ε → 0 in above inequality leads to

limsup
t→+∞

x2(t)≤ (1+ c2u)
1

θ2 · k2
def
= x2. (14)

From Lemma 2.1, we have

limsup
t→+∞

∫ t
−∞

x2(s)dh2(t− s)≤ limsup
t→+∞

x2(t)≤ x2,

limsup
t→+∞

∫ t
−∞

x2(s)dh4(t− s)≤ limsup
t→+∞

x2(t)≤ x2,

limsup
t→+∞

∫ t
−∞

u(t)dk1(t− s)≤ limsup
t→+∞

u(t)≤ u.

(15)

For any small positive constant ε > 0, from (H1) and (H2), without loss of generality, we may

choose ε small enough such that

1− α12

k1
((1+

c2( f +d1k1)

e
)

1
θ2 · k2 + ε)> c1(

f +d1k1

e
+ ε),
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f − (d2((1+
c2( f +d1k1)

e
)

1
θ2 · k2 + ε))> 0.

hold together. That is, we can take ε small enough such that

1− α12
k1
(x2 + ε)− c1(u+ ε)> 0,

f −d2(x2 + ε)> 0.
(16)

hold together. For above ε > 0, from (15) it follows that there exists a T3 > T2 > T1 > 0 such

that for t > T3, ∫ t
−∞

x2(s)dh2(t− s)≤ x2 + ε,∫ t
−∞

x2(s)dh4(t− s)≤ x2 + ε,∫ t
−∞

u(t)dk1(t− s)≤ u+ ε.

(17)

(17) together with the first and third equation of system (4) leads to

x′1(t)≥ r1x1(t)
(
1− (x1(t)

k1
)θ1− α12

k1
(x2 + ε)− c1(u+ ε)

)
,

u′(t)≥ f − eu(t)−d2(x2 + ε).
(18)

By applying Lemma 2.2 and Lemma 2.3 to (18), one obtains

liminf
t→+∞

x1(t)≥ (1− α12
k1
(x2 + ε)− c1(u+ ε))

1
θ1 · k1,

liminf
t→+∞

u(t)≥ f−d2(x2+ε)
e .

(19)

Setting ε → 0 in above inequalities leads to

liminf
t→+∞

x1(t)≥ (1− α12
k1

x2− c1u)
1

θ1 · k1
def
= x1,

liminf
t→+∞

u(t)≥ f−d2x2
e

def
= u.

(20)

From Lemma 2.1, we have

limsup
t→+∞

∫ t
−∞

x1(s)dh1(t− s)≤ limsup
t→+∞

x1(t)≤ x1,

limsup
t→+∞

∫ t
−∞

u(t)dk2(t− s)≥ liminf
t→+∞

u(t)≥ u.
(21)

For any small positive constant ε > 0, from (H1),(H2), without loss of generality, we may

choose ε small enough such that

( f −d2k2((1+
c2( f+d1k1)

e )
1

θ2 ))

e
> 0,

1− α21(k1 + ε)

k2
+ c2(

( f −d2k2((1+
c2( f+d1k1)

e )
1

θ2 ))

e
− ε)> 0.
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hold together. That is, we can take ε small enough such that

ε <
1
2

u,

1− α21(x1 + ε)

k2
+ c2(u− ε)> 0.

hold together.For above ε > 0, it follows from (21) that there exists a T4 > T3 > T2 > T1 > 0

such that for t > T4, ∫ t
−∞

x1(s)dh1(t− s)≤ (x1 + ε),∫ t
−∞

u(t)dk2(t− s)≥ (u− ε).
(22)

(22) together with the second equation of system (1.4) leads to

x′2(t)≥ r2x2(t)
(
1− α21

k2
(x1 + ε)+ c2(u− ε)− (

x2(t)
k2

)θ2
)
. (23)

Again,by applying Lemma 2.2 to (23), one obtains

liminf
t→+∞

x2(t)≥ (1− α21(x1 + ε)

k2
+ c2(u− ε))

1
θ2 · k2 > 0.

Setting ε → 0 in above inequality leads to

liminf
t→+∞

x2(t)≥ (1− α21x1

k2
+ c2u)

1
θ2 · k2

def
= x2. (24)

Now, let α = 1
2min{xi,u, i = 1,2},β = 2max{xi,u, i = 1,2},then α ,β is independent of any

positive solution of system (4), also from (7), (10), (14) and (24) it immediately follows that

0 < α ≤ liminf
t→+∞

xi(t)≤ limsup
t→+∞

xi(t)≤ β <+∞,

0 < α ≤ liminf
t→+∞

u(t)≤ limsup
t→+∞

u(t)≤ β <+∞.

Above inequalities shows that system (4) is permanent.The proof of the theorem is complete.
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