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Abstract. In this paper, by using Mawhins continuation theorem of coincidence degree theory and some analytical

approaches, we establish the existence of four positive almost periodic solutions for an impulsive non-autonomous

two species almost periodic Lotka-Volterra predator-prey system with time delay and harvesting terms. Further-

more, our results improve the main results of paper [1]. An example is given to illustrate the effectiveness of our

results.
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1. Introduction

In [1], the authors proposed a non-autonomous two species Lotka-Volterra predator-prey

system with harvesting terms model:

dx(t)
dt = x(t)

(
a1(t)−b1(t)x(t)− c1(t)y(t)

)
−h1(t),

dy(t)
dt = y(t)

(
a2(t)−b2(t)y(t)+ c2(t)x(t)

)
−h2(t).

(1)
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Considering the periodicity of the environment(e.g, seasonal effects of weather, food sup-

plies, mating habits,etc), under the assumptions of periodicity of the parameters of (1), using

Mawhin’s continuation theorem of coincidence degree theory, the authors of [1] established the

four positive periodic solutions to (1). However, it is more realistic to consider almost peri-

odic systems than periodic systems. Also, to the best of our knowledge, there are very few

published letters considering the almost periodic solutions for non-autonomous Lotka-Volterra

predator-prey system with impulse and time delay by using Mawhins continuation theorem of

coincidence degree theory.

In fact, the ecological system is often deeply perturbed by activities of human explortation

such as planting and harvesting. To accurately describe the system, one needs to use the im-

pulsive differential equations. There are many papers to investigate the impulsive systems and

many excellent results are obtained. See, for example, [2-7] and the references cited therein).

Also, time delay is an important factor of mathematical models in ecology. The models with

delay and impulsive effect have been investigated, see the papers [8-12] and the references cited

therein.

Motivated by above, in this paper, we are concerned with the following impulsive non-

autonomous two species Lotka-Volterra predator-prey system with time delay and harvesting

terms model:

dx(t)
dt = x(t)

(
a1(t)−b1(t)x(t)− c1(t)y(t− τ2(t))

)
−h1(t), t 6= tk,

dy(t)
dt = y(t)

(
a2(t)−b2(t)y(t)+ c2(t)x(t− τ1(t))

)
−h2(t), t 6= tk,

x(t+k ) = (1+Γ1k)x(tk), t = tk,

y(t+k ) = (1+Γ2k)y(tk), t = tk,

(2)

where x(t) and y(t) denote the densities of prey and predator species respectively; a1(t), b1(t),

h1(t) stand for the prey species birth rate, death rate and harvesting rate, respectively; a2(t),

b2(t), h2(t) stand for the predator species birth rate, death rate and harvesting rate, respec-

tively; c1(t) represent the predator species predation rate on the prey species; c2(t) stands for

the transformation rate between the prey species and the predator species; ai(t), bi(t), ci(t),

hi(t)(i = 1,2) are all bounded and positive continuous almost periodic functions, the time delay
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τ1(t) and τ2(t) are all nonnegative continuous almost periodic functions; Γik >−1(i = 1,2) are

all constants and 0 = t0 < t1 < t2 < ...tk < tk+1 < ..., are impulse points with lim
k→+∞

tk =+∞.

Our main purpose of this paper is by using Mawhins continuation theorem of coincidence

degree theory to establish the existence of four positive almost periodic solutions for system

(2). For the work concerning the existence of positive almost periodic solutions of almost

periodic population models which was done by using coincidence degree theory, we refer the

reader to [13-15].

The organization of this paper is as follows. In Section2, we state some definitions lemmas

which are useful in later sections and make some preparations. In Section3, using Mawhins con-

tinuation theorem of coincidence degree theory and some analytical approaches, we establish

sufficient conditions for the existence of four positive almost periodic solutions to system(2).

2. Preliminaries

In this section, we give a short introduction to some referred definitions and lemmas that will

come into play later on.

AP(R) = { f (t) : f (t) is a continuous, real valued, almost periodic function on R}. Suppose

that f (t,φ) is almost periodic in t, uniformly with respect to φ ∈C([−σ ,0],R). T ( f ,ε,S) will

denote the set of ε− almost periods with respect to S ⊂ C([−σ ,0],R), l(ε,S) the inclusion

interval, Λ( f ) the set of Fourier exponents, mod(f) the module of f, and m( f ) the mean value.

Let PC(R,Rn)={ϕ : R→Rn,ϕ is a piecewise continuous function with points of discontinuity

of the first kind at tk,k = 1,2, ..., at which ϕ(t−k ) and ϕ(t+k ) exist and ϕ(t−k ) = ϕ(tk)}.

Definition 2.1. [16] The family of sequences {t j
k = tk+ j−tk,k, j ∈ Z} is said to be equipotential-

ly almost periodic if for arbitrarye ε > 0, there exists a relatively dense set ε− almost periods,

that are common for any sequences.

Definition 2.2. [16] The function ϕ ∈ PC(R,R) is said to be almost periodic, if the following

conditions hold:

(1) the set of sequences {t j
k = tk+ j− tk,k, j ∈ Z} is equipotentially almost periodic;
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(2) for any ε > 0 there exists a real number δ = δ (ε) > 0 such that if the points t1 and t2

belong to the same interval of continuity of ϕ(t) and |t1− t2|< δ , then |ϕ(t1)−ϕ(t2)|< ε;

(3) for any ε > 0 there exists a relatively dense set T of ε− almost periodic such that if τ ∈ T,

then |ϕ(t + τ)−ϕ(t)|< ε for all t ∈ R which satisfy the condition |t− tk|> ε,k ∈ Z.

Lemma 2.1. [13] If f (t) ∈ AP(R), then there exists t0 ∈ R such that f (t0) = m( f ).

Lemma 2.2. [17] Assume that f (t) ∈ AP(R). Then f (t) is bounded on R.

Lemma 2.3. [13] Assume that x(t) ∈ AP(R)∩C1(R,R), then there exist two point sequences

{ξk}∞
k=1, {ηk}∞

k=1, such that x
′
(ξk) = x

′
(ηk) = 0, lim

k→+∞
ξk =+∞ and lim

k→+∞
ηk =−∞.

Lemma 2.4. [13] Assume that x(t) ∈ AP(R)∩C1(R,R), then x(t) falls into one of the following

four cases:

(i) there are ξ ,η ∈ R such that x(ξ ) = sup
t∈R

x(t) and x(η) = inf
t∈R

x(t). In this case, x
′
(ξ ) =

x
′
(η) = 0.

(ii) there are no ξ ,η ∈ R such that x(ξ ) = sup
t∈R

x(t) and x(η) = inf
t∈R

x(t). In this case, for any

ε > 0, there exist two points ξ ,η ∈ R such that x
′
(ξ ) = x

′
(η) = 0, x(ξ ) > sup

t∈R
x(t)− ε and

x(η)< inf
t∈R

x(t)+ ε .

(iii) there is a ξ ∈ R such that x(ξ ) = sup
t∈R

x(t) and there is no η ∈ R such that x(η) = inf
t∈R

x(t).

In this case, x
′
(ξ ) = 0 and for any ε > 0, there exist an η such that x

′
(η) = 0 and x(η) <

inf
t∈R

x(t)+ ε .

(iv) there is an η ∈ R such that x(η) = inf
t∈R

x(t) and there is no ξ ∈ R such that x(ξ ) =

sup
t∈R

x(t). In this case, x
′
(η) = 0 and for any ε > 0, there exist a ξ such that x

′
(ξ ) = 0 and

x(ξ )> sup
t∈R

x(t)− ε .

Consider the following system

dx(t)
dt = x(t)

(
a1(t)−b1(t)x(t)− c1(t)y(t− τ2(t))

)
−h1(t),

dy(t)
dt = y(t)

(
a2(t)−b2(t)y(t)+ c2(t)x(t− τ1(t))

)
−h2(t),

(3)

where

b1(t) = b1(t) ∏
0<tk<t

(1+Γ1k), c1(t) = c1(t) ∏
0<tk<t

(1+Γ2k),
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h1(t) = h1(t) ∏
0<tk<t

(1+Γ1k)
−1, b2(t) = b2(t) ∏

0<tk<t
(1+Γ2k),

c2(t) = c2(t) ∏
0<tk<t

(1+Γ1k), h2(t) = h2(t) ∏
0<tk<t

(1+Γ2k)
−1.

Lemma 2.5. For systems (2) and (3), the following results hold:

(1) if (x(t),y(t))T is a solution of (2), then

(x(t),y(t))T =
(

∏
0<tk<t

(1+Γ1k)
−1x(t), ∏

0<tk<t
(1+Γ2k)

−1y(t)
)T

is a solution of (3).

(2) if (x(t),y(t))T is a solution of (3), then

(x(t),y(t))T =
(

∏
0<tk<t

(1+Γ1k)x(t), ∏
0<tk<t

(1+Γ2k)y(t)
)T

is a solution of (2).

Proof. (1) Suppose that (x(t),y(t))T is a solution of (2). Let

x(t) = ∏
0<tk<t

(1+Γ1k)
−1x(t), y(t) = ∏

0<tk<t
(1+Γ2k)

−1y(t),

we first show that x(t),y(t) are continuous. Since x(t),y(t) are continuous on each interval

(tk, tk+1], it is sufficient to check the continuity of x(t),y(t) at the impulse points tk,k ∈ Z+.

Since

x(t+k ) = ∏
0<ts≤tk

(1+Γ1s)
−1x(t+k ) = (1+Γ1k)

−1
∏

0<ts<tk

((1+Γ1s)
−1(1+Γ1k)x(tk) = x(tk)

and

x(t−k ) = ∏
0<ts<t−k

(1+Γ1s)
−1x(t−k ) = ∏

0<ts<tk

(1+Γ1s)
−1x(tk) = x(tk),

thus x(tk) is continuous on [0,+∞). Using the same method, we get y(tk) is continuous on

[0,+∞). By substituting

x(t) = ∏
0<tk<t

(1+Γ1k)x(t), y(t) = ∏
0<tk<t

(1+Γ2k)y(t)

into the equation of system (2), we obtain

dx(t)
dt

= x(t)
(

a1(t)−b1(t)x(t)− c1(t)y(t− τ2(t))
)
−h1(t),
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dy(t)
dt

= y(t)
(

a2(t)−b2(t)y(t)+ c2(t)x(t− τ1(t))
)
−h2(t).

Therefore, (x(t),y(t))T is a solution of (3).

(2) Suppose that (x(t),y(t))T is a solution of (3). Let

x(t) = ∏
0<tk<t

(1+Γ1k)x(t), y(t) = ∏
0<tk<t

(1+Γ2k)y(t),

then for any t 6= tk,k ∈ Z+, by substituting

x(t) = ∏
0<tk<t

(1+Γ1k)
−1x(t), y(t) = ∏

0<tk<t
(1+Γ2k)

−1y(t)

into the equation of system (2.1), we obtain

dx(t)
dt

= x(t)
(

a1(t)−b1(t)x(t)− c1(t)y(t− τ2(t))
)
−h1(t),

dy(t)
dt

= y(t)
(

a2(t)−b2(t)y(t)+ c2(t)x(t− τ1(t))
)
−h2(t),

and for t = tk,k ∈ Z+, we obtain

x(t+k ) = lim
t→tk+

∏
0<tk<t

(1+Γ1k)x(t) = ∏
0<ts≤tk

(1+Γ1s)x(tk)

= (1+Γ1k) ∏
0<ts<tk

(1+Γ1s)x(tk) = (1+Γ1k)x(tk).

Similarly, we have

y(t+k ) = (1+Γ2k)y(tk).

Therefore, (x(t),y(t))T is a solution of (2).

Lemma 2.6. [1] Let x > 0,y > 0,z > 0 and x > 2
√

yz, for the functions f (x,y,z) = x+
√

x2−4yz
2z

and g(x,y,z) = x−
√

x2−4yz
2z , the following assertions hold.

(1) f (x,y,z) and g(x,y,z) are monotonically increasing and monotonically decreasing on the

variable x ∈ (0,+∞), respectively.

(2) f (x,y,z) and g(x,y,z) are monotonically decreasing and monotonically increasing on the

variable y ∈ (0,+∞), respectively.

(3) f (x,y,z) and g(x,y,z) are monotonically decreasing and monotonically increasing on the

variable z ∈ (0,+∞), respectively.
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For the sake of convenience, we denote f l = inf
t∈[0,ω]

f (t), f M = sup
t∈[0,ω]

f (t) here f (t) is a con-

tinuous almost periodic function.

Throughout this paper, we need the following assumptions:

(H1) al
1− cM

1 H1 > 2
√

b
M
1 h

M
1 , al

2 > 2
√

b
M
2 h

M
2 ,

where

H1 =
aM

2 + cM
2 l+1

b
l
2

.

(H2) The set of sequences {t j
k = tk+ j− tk,k, j ∈ Z} is uniformly almost periodic.

(H3) ∏
0<tk<t

(1+Γik),(i = 1,2) is almost periodic.

For simplicity, we need to introduce some notations as follows:

l±1 =
aM

1 ±
√

(aM
1 )2−4b

l
1h

l
1

2b
l
1

, A± =
(al

1− cM
1 H1)±

√
(al

1− cM
1 H1)2−4b

M
1 h

M
1

2b
M
1

,

l±2 =
al

2±
√

(al
2)

2−4b
M
2 h

M
2

2b
M
2

, H2 =
hl

2
aM

2 + cM
2 l+1

.

Lemma 2.7. For the following equation

a1(t)−b1(t)eu1(t)−h1(t)e−u1(t) = 0,

a2(t)−b2(t)eu2(t)−h2(t)e−u2(t) = 0,

by the assumption H1 and lemma 2.6, we have the following inequalitie

ln l−1 < lnu−1 < lnA− < lnA+ < lnu+1 < ln l+1 .

Since

l+2 =
al

2 +

√
(al

2)
2−4b

M
2 h

M
2

2b
M
2

<
al

2

b
M
2

<
aM

2

b
l
2

<
aM

2 + cM
2 l+1

b
l
2

= H1,

l−2 =
al

2−
√
(al

2)
2−4bM

2 hM
2

2bM
2

=
2hM

2

al
2 +

√
(al

2)
2−4b

M
2 h

M
2

>
hM

2

al
2
>

hl
2

aM
2

>
hl

2
aM

2 + cM
2 l+1

= H2,

similarly, we have u+2 < H1 and u−2 < l−2 .

Then, we have

lnH2 < lnu−2 < ln l−2 < ln l+2 < lnu+2 < lnH1,
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where

u±1 =
a1(t)±

√
(a1(t))2−4b1(t)h1(t)

2b1(t)
,u±2 =

a2(t)±
√
(a2(t))2−4b2(t)h2(t)

2b2(t)
.

3. Main results

In this section, by using Mawhins continuation theorem, we will show a theorem about four

positive almost periodic solutions for system (2).

Let X and Z be real normed vector spaces. Let L: DomL ⊂ X → Z be a linear mapping and

N : X× [0,1]→ Z be a continuous mapping. The mapping L will be called a Fredholm mapping

of index zero if dim KerL = codimImL < +∞ and ImL is closed in Z. If L is a Fredholm

mapping of index zero, then there exist continuous projectors P : X → X and Q : Z → Z such

that ImP = KerL and KerQ = ImL = Im(I−Q), and X = KerL⊕KerP, Z = ImL⊕ ImQ. It

follows that L|DomL
⋂

kerP : (I−P)X→ ImL is invertible and its inverse is denoted by Kp. If Ω is

a bounded open subset of X , the mapping N is called L− compact on Ω× [0,1], if QN(Ω× [0,1])

is bounded and Kp(I−Q)N : Ω× [0,1]→ X is compact. Because ImQ is isomorphic to KerL,

there exists an isomorphismJ:ImQ→ KerL.

Lemma 3.1. [18] Let L be a Fredholm mapping of index zero and let N be L−compact on

Ω× [0,1] Assume that:

(a) for each λ ∈ (0,1), every solution x of Lx = λN(x,λ ) is such that x /∈ ∂Ω∩DomL

(b) QN(x,0)x 6= 0 for each x ∈ ∂Ω∩KerL;

(c) deg(JQN(x,0),Ω∩KerL,0) 6= 0.

Then Lx = N(x,1) has at least one solution in Ω
⋂

DomL.

In what follows, we always assume that (H3) holds. Consider X = Z =V1
⊕

V2, V1 = {z(t) =

(z1(t),z2(t))T : zi(t)∈AP(R),mod(zi(t))⊆mod(Fi),∀µ ∈Λ(zi(t)) satisfies |µ| ≥α,(i= 1,2)},

satisfies that V1 ∪ {ai(t),bi(t),ci(t),τi(t), hi(t),(i = 1,2)} is equipotentially almost periodic.

V2 = {z(t)≡ (c1,c2) ∈ R2} where

F1(t,ϕ1,ϕ2) = a1(t)−b1(t)eϕ1(0)− c1(t)eϕ2(−τ2(t))−h1(t)e−ϕ1(0),
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F2(t,ϕ1,ϕ2) = a2(t)−b2(t)eϕ2(0)+ c2(t)eϕ1(−τ1(t))−h2(t)e−ϕ2(0),

in which ϕi ∈C([−τ,0),R), i = 1,2,τ = maxsup
t∈R
{τ1(t),τ2(t)} and α is given positive constant.

Define

‖z‖= sup
t∈R
|z1(t)|+ sup

t∈R
|z2(t)| f or all z ∈ X = Z.

Similar to the proofs of Lemma 3.1, Lemma 3.2 in [14] and Lemma 3.3 in [15], one can easily

prove the following three lemmas, respectively.

Lemma 3.2. X and Z are Banach spaces equipped with the norm ‖.‖.

Lemma 3.3. Let L : X → Z,Lx = x
′
= (x

′
1,x

′
2)

T , then L is a Fredholm mapping of index zero.

Lemma 3.4. Let N : X × [0,1] → Z, N(x(t),λ ) = (N(x1(t),λ ),N(x2(t),λ ))T = (Gx
1,G

x
2)

T ,

where

Gx
1 = N(x1(t),λ ) = a1(t)−b1(t)ex1(t)−λc1(t)ex2(t−τ2(t))−h1(t)e−x1(t),

Gx
2 = N(x2(t),λ ) = a2(t)−b2(t)ex2(t)+λc2(t)ex1(t−τ1(t))−h2(t)e−x2(t)

and

P : X → X ,Px =
(

m(x1),m(x2)
)T

, Q : Z→ Z,Qz =
(

m(z1),m(z2)
)T

.

Then N is L−compact on Ω, where Ω is an open bounded subset of X.

Theorem 3.1. Assume that (H1)− (H3) hold, then system (2) has at least four positive almost

periodic solutions.

Proof. By making the substitutions x(t) = exp(u1(t)),y(t) = exp(u2(t)), then system (3) is

reformulated as

u
′
1(t) = a1(t)−b1(t)eu1(t)− c1(t)eu2(t−τ2(t))−h1(t)e−u1(t),

u
′
2(t) = a2(t)−b2(t)eu2(t)+ c2(t)eu1(t−τ1(t))−h2(t)e−u2(t).

(4)

Then if there exists almost periodic solution (u1(t),u2(t))T of (4), We can get at least one

positive almost periodic solutions (x(t),y(t))T of (3).
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In order to use Lemma 3.1, we have to find at least four appropriate open bounded subsets X .

Corresponding to the operator equation Lx = λN(x,λ ),λ ∈ (0,1), we have

u
′
1(t) = λ

(
a1(t)−b1(t)eu1(t)−λc1(t)eu2(t−τ2(t))−h1(t)e−u1(t)

)
,

u
′
2(t) = λ

(
a2(t)−b2(t)eu2(t)+λc2(t)eu1(t−τ1(t))−h2(t)e−u2(t)

)
.

(5)

Assume that u = (u1,u2)
T ∈ X is an almost periodic solution of system (5) for some λ ∈

(0,1). Then by Lemma 2.4, for any ε > 0 and a∈ R there exist ξi,ηi ∈ [a,a+ l(ε)]∩T (u,ε), i =

1,2 such that ui(ξi) > uM
i − ε,ui(ηi) < ul

i + ε and u
′
i(ξi) = u

′
i(ηi) = 0. From this and (5), we

have

a1(ξ1)−b1(ξ1)eu1(ξ1)−λc1(ξ1)eu2(ξ1−τ2(ξ1))−h1(ξ1)e−u1(ξ1) = 0,(a),

a2(ξ2)−b2(ξ2)eu2(ξ2)+λc2(ξ2)eu1(ξ2−τ1(ξ2))−h2(ξ2)e−u2(ξ2) = 0,(b)
(6)

and

a1(η1)−b1(η1)eu1(η1)−λc1(η1)eu2(η1−τ2(η1))−h1(η1)e−u1(η1) = 0,(a),

a2(η2)−b2(η2)eu2(η2)+λc2(η2)eu1(η2−τ1(η2))−h2(η2)e−u2(η2) = 0.(b).
(7)

According to equation (a) of (6), we have

a1(ξ1)−b1(ξ1)eu1(ξ1)−h1(ξ1)e−u1(ξ1) = λc1(ξ1)eu2(ξ1−τ2(ξ1)) > 0.

It follows that

b
l
1e2u1(ξ1)−aM

1 eu1(ξ1)+h
l
1 ≤ b1(ξ1)e2u1(ξ1)−a1(ξ1)eu1(ξ1)+h1(ξ1)< 0,

namely,

b
l
1e2u1(ξ1)−aM

1 eu1(ξ1)+h
l
1 < 0,

which implies that

ln
aM

1 −
√

(aM
1 )2−4b

l
1h

l
1

2b
l
1

< u1(ξ1)< ln
aM

1 +

√
(aM

1 )2−4b
l
1h

l
1

2b
l
1

,

namely,

ln l−1 < u1(ξ1)< ln l+1 . (8)

Similarly, from the equation (a) of (7), we obtain

ln l−1 < u1(η1)< ln l+1 . (9)
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From the equation (b) of (6), we obtain

b
M
2 e2u2(ξ2)+h

M
2 ≥ b2(ξ2)e2u2(ξ2)+h2(ξ2)

= [a2(ξ2)+λc2(ξ2)eu1(ξ2−τ1(ξ2))]eu2(ξ2)

> a2(ξ2)eu2(ξ2)

≥ al
2eu2(ξ2).

It follows that

b
M
2 e2u2(ξ2)−al

2eu2(ξ2)+h
M
2 > 0,

which implies that

u2(ξ2)>
al

2 +

√
(al

2)
2−4b

M
2 h

M
2

2b
M
2

, u2(ξ2)<
al

2−
√
(al

2)
2−4b

M
2 h

M
2

2b
M
2

,

namely,

u2(ξ2)> ln l+2 or u2(ξ2)< ln l−2 . (10)

Similarly, from the equation (b) of (7), we obtain

u2(η2)> ln l+2 or u2(η2)< ln l−2 . (11)

Moreover, from the equation (b) of (6), we have

b
l
2eu2(ξ2) ≤ b2(ξ2)eu2(ξ2)

< b2(ξ2)eu2(ξ2)+h2(ξ2)e−u2(ξ2) = a2(ξ2)+λc2(ξ2)eu1(ξ2−τ1(ξ2))

< aM
2 + cM

2 l+1 ,

which implies that

u2(ξ2)< ln
aM

2 + cM
2 l+1

bl
2

= lnH1. (12)
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Similarly, from the equation (b) of (7), we obtain

h
l
2e−u2(η2) ≤ h2(η2)e−u2(η2)

< b2(η2)eu2(η2)+h2(η2)e−u2(η2) = a2(η2)+λc2(η2)eu1(η2−τ1(η2))

< aM
2 + cM

2 l+1 ,

which implies that

u2(η2)> ln
hl

2
aM

2 + cM
2 l+1

= lnH2. (13)

It follows from (10)− (13) and Lemma 2.7, we get

lnH2 < u2(η2)< u2(ξ2)< ln l−2 or ln l+2 < u2(η2)< u2(ξ2)< lnH1. (14)

According to equation (a) of (6), we have

b
M
1 eu1(ξ1)+h

M
1 e−u1(ξ1)+ cM

1 H1 > b1(ξ1)eu1(ξ1)+h1(ξ1)e−u1(ξ1)+λc1(ξ1)eu2(ξ1−τ2(ξ1))

= a1(ξ1)≥ al
1.

Hence, we have b
M
1 e2u1(ξ1)− (al

1− cM
1 H1)eu1(ξ1)+h

M
1 > 0, which implies that

u1(ξ1)>
(al

1− cM
1 H1)+

√
(al

1− cM
1 H1)2−4b

M
1 h

M
1

2b
M
1

,

or

u1(ξ1)<
(al

1− cM
1 H1)−

√
(al

1− cM
1 H1)2−4b

M
1 h

M
1

2b
M
1

,

namely,

u1(ξ1)> lnA+ or u1(ξ1)< lnA−. (15)

Similarly, from the equation (a) of (7), we obtain

u1(η1)> lnA+ or u1(η1)< lnA−. (16)

It follows from (8),(9),(15),(16) and Lemma 2.7, we get

ln l−1 < u1(η1)< u1(ξ1)< lnA− or lnA+ < u1(η1)< u1(ξ1)< ln l+1 . (17)
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By (14) and (17), we have for all t ∈ R

ln l−1 < u1(t)< lnA− or lnA+ < u1(t)< ln l+1 , (18)

and

lnH2 < u2(t)< ln l−2 or ln l+2 < u2(t)< lnH1. (19)

Clearly, ln l±1 , ln l±2 , lnA±, lnH1 and lnH2 are independent of λ . We denote

Ω1 = {u = (u1,u2)
T ∈ X |u1(t) ∈ (ln l−1 , lnA−),u2(t) ∈ (lnH2, ln l−2 )},

Ω2 = {u = (u1,u2)
T ∈ X |u1(t) ∈ (ln l−1 , lnA−),u2(t) ∈ (ln l+2 , lnH1)},

Ω3 = {u = (u1,u2)
T ∈ X |u1(t) ∈ (lnA+, ln l+1 ),u2(t) ∈ (lnH2, ln l−2 )},

Ω4 = {u = (u1,u2)
T ∈ X |u1(t) ∈ (lnA+, ln l+1 ),u2(t) ∈ (ln l+2 , lnH1)}.

Thus Ωk,k = 1,2,3,4 are bounded open subsets of X , Ωi∩Ω j = /0, i 6= j. Thus Ωk satisfies the

requirement (a) in Lemma 3.1.

Now we show that (b) of Lemma 3.1 holds, i.e., we prove when u ∈ ∂Ωi ∩KerL = ∂Ωi ∩

R2,QN(u,0) 6= (0,0)T , i = 1,2,3,4. If it is not true, then when u ∈ ∂Ωi∩KerL = ∂Ωi∩R2, i =

1,2,3,4. constant vector u = (u1,u2)
T with u ∈ ∂Ωi, i = 1,2,3,4 satisfies

m(a1(t)−b1(t)eu1−h1(t)e−u1) = 0

and

m(a2(t)−b2(t)eu2−h2(t)e−u2) = 0.

In view of the mean value theorem of calculous, there exist two points ζ1,ζ2 such that

a1(ζ1)−b1(ζ1)eu1−h1(ζ1)e−u1 = 0,

a2(ζ2)−b2(ζ2)eu2−h2(ζ2)e−u2 = 0.
(20)

From (20), we have
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u±1 = ln
a1(ζ1)±

√
(a1(ζ1))2−4b1(ζ1)h1(ζ1)

2b1(ζ1)
,

u±2 = ln
a2(ζ2)±

√
(a2(ζ2))2−4b2(ζ2)h2(ζ2)

2b2(ζ2)
.

(21)

According to Lemma 2.7, we obtain

ln l−1 < lnu−1 < lnA− < lnA+ < lnu+1 < ln l+1 ,

lnH2 < lnu−2 < ln l−2 < ln l+2 < lnu+2 < lnH1.

(22)

Then u belongs to one of Ωi∩R2, i = 1,2,3,4. This contradicts the fact that u ∈ ∂Ωi∩R2, i =

1,2,3,4. This proves (b) in Lemma 3.1 holds.

Finally, we show that (c) in Lemma 3.1 holds. Note that the system of algebraic equations

a1(ζ1)−b1(ζ1)ex−h1(ζ1)e−x = 0,

a2(ζ2)−b2(ζ2)ey−h2(ζ2)e−y = 0,

has four distinct solutions since H1 holds:

(x∗1,y
∗
1) = (lnx−, lny−), (x∗2,y

∗
2) = (lnx−, lny+),

(x∗3,y
∗
3) = (lnx+, lny−), (x∗4,y

∗
4) = (lnx+, lny+),

where

x± =
a1(ζ1)±

√
(a1(ζ1))2−4b1(ζ1)h1(ζ1)

2b1(ζ1)
,

y± =
a2(ζ2)±

√
(a2(ζ2))2−4b2(ζ2)h2(ζ2)

2b2(ζ2)
.

From (21),(22), we have

(x∗1,y
∗
1) ∈Ω1, (x∗2,y

∗
2) ∈Ω2, (x∗3,y

∗
3) ∈Ω3, (x∗4,y

∗
4) ∈Ω4.
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Since KerL = ImQ, we can take J = I. A direct computation gives, we get

deg{JQN(u,0),Ωi∩KerL,(0,0)T}= sign

∣∣∣∣∣∣∣∣
−b1(ζ1)x∗+

h1(ζ1)

x∗
0

0 −b2(ζ2)y∗+
h2(ζ2)

y∗

∣∣∣∣∣∣∣∣ .
Since

a1(ζ1)−b1(ζ1)x∗−
h1(ζ1)

x∗
= 0,

and

a2(ζ2)−b2(ζ2)y∗−
h2(ζ2)

y∗
= 0,

we find that

deg{JQN(u,0),Ωi∩KerL,(0,0)T}= sign[(a1(ζ1)−2b1(ζ1)x∗)(a2(ζ2)−2b2(ζ2)y∗)],

i = 1,2,3,4. Thus

deg{JQN(u,0),Ω1∩KerL,(0,0)T}= sign[(a1(ζ1)−2b1(ζ1)x−)(a2(ζ2)−2b2(ζ2)y−)] = 1,

deg{JQN(u,0),Ω2∩KerL,(0,0)T}= sign[(a1(ζ1)−2b1(ζ1)x−)(a2(ζ2)−2b2(ζ2)y+)] =−1,

deg{JQN(u,0),Ω3∩KerL,(0,0)T}= sign[(a1(ζ1)−2b1(ζ1)x+)(a2(ζ2)−2b2(ζ2)y−)] =−1,

deg{JQN(u,0),Ω4∩KerL,(0,0)T}= sign[(a1(ζ1)−2b1(ζ1)x+)(a2(ζ2)−2b2(ζ2)y+)] = 1,

namely,

deg{JQN(u,0),Ωi∩KerL,(0,0)T} 6= 0, i = 1,2,3,4.

So far, we have proved that Ωk,k = 1,2,3,4 satisfies all the assumptions in Lemma 3.1. Hence,

system (4) has at least 4 different almost periodic solutions. So, system (3) has at least 4

different positive almost periodic solutions. If (x(t),y(t))T is an almost periodic solution of

system (3), by using Lemma 2.5, we know that(
x(t) = ∏

0<tk<t
(1+Γ1k)x(t),y(t) = ∏

0<tk<t
(1+Γ2k)y(t)

)T

is a solution of system (2). Therefore, system (2) has at least 4 different positive almost periodic

solutions. This completes the proof of Theorem 3.1.
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Consider the following non-autonomous Lotka-Volterra predator-prey system with harvesting

terms

dx(t)
dt = x(t)

(
a1(t)−b1(t)x(t)− c1(t)y(t− τ2(t))

)
−h1(t),

dy(t)
dt = y(t)

(
a2(t)−b2(t)y(t)+ c2(t)x(t− τ1(t))

)
−h2(t).

(23)

Similar to the proof of Theorem 3.1, one can easily obtain

Corollary 3.1. Assume that the following condition holds (H
′
1) al

1− cM
1 H1 > 2

√
bM

1 hM
1 ,al

2 >

2
√

bM
2 hM

2 . Then system(23) has at least 4 different positive almost periodic solutions. Since

condition unrelated to delays, thus, if τi(t)≡ 0(i= 1,2,), our results also supplement the results

of Zhao and Ye (see[17]).

4. An example

Consider the following two species non-autonomous Lotka-Volterra predator-prey with with

impulsive and harvesting terms:

x
′
(t) = x(t)

(
3+ sin

√
2t− 8+2cos t

17
x(t)− 2+ sin t

90
y(t−5|sin t|)

)
− 153+17cos

√
5t

400
, t 6= tk,

y
′
(t) = x(t)

(
3+ cos

√
3t− 5+ sin t

9
y(t)+

4+2sin t
17

x(t−2|sin t|)
)
− 18+9cos

√
5t

50
, t 6= tk,

x(t+k ) = (1+(−0.15))x1(tk), t = tk,

x(t+k ) = (1+(−0.1))x2(tk), t = tk.
(24)

In this case, a1(t) = 3+sin
√

2t, b1(t) =
8+2cos t

17
, c1(t) =

2+ sin t
90

, h1(t) =
153+17cos

√
5t

400
,

a2(t)= 3+cos
√

3t, b2(t)=
5+ sin t

9
, c2(t)=

4+2sin t
17

, h2(t)=
18+9cos

√
5t

50
, τ1(t)= 2|sin t|,

τ2(t) = 5|sin t|. Then, we have b1(t) = b1(t) ∏
0<tk<t

(1+Γ1k) =
8+2cos t

17
× (1+(−0.15)) =

4+ cos t
10

, c1(t) = c1(t) ∏
0<tk<t

(1 + Γ2k) =
2+ sin t

90
× (1 + (−0.1)) =

2+ sin t
100

, h1(t) = h1(t)

∏0<tk<t(1+Γ1k)
−1 =

153+17cos
√

5t
400

(1+(−0.15))−1 =
9+ cos

√
5t

20
, b2(t)= b2(t) ∏0<tk<t(1+

Γ2k)=
5+ sin t

9
×(1+(−0.1))=

5+ sin t
10

, c2(t)= c2(t) ∏
0<tk<t

(1+Γ1k)=
4+2sin t

17
(1+(−0.15))
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=
2+ sin t

10
, h2(t) = h2(t) ∏

0<tk<t
(1+Γ2k)

−1 =
18+9cos

√
5t

50
(1+(−0.1))−1 =

2+ cos
√

5t
5

.

Since

l+1 =
aM

1 +

√
(aM

1 )2−4b
l
1h

l
1

2b
l
1

=
4+

√
42−4× 3

10
× 8

20

2× 3
10

=
20+2

√
97

3
,

H1 =
aM

2 + cM
2 l+1

b
l
2

=
4+

3
10
× 20+2

√
97

3
4

10

= 15+
√

97
2

,

2
√

b
M
1 h

M
1 = 2

√
5

10
× 10

20
= 1, 2

√
b

M
2 h

M
2 = 2

√
6

10
× 3

5
=

6
5
,

we have

al
1− cM

1 H1 = 2− 3
100

(15+
√

97
2

)>
7
5
> 1 = 2

√
b

M
1 h

M
1 ,

2 = al
2 > 2

√
b

M
2 h

M
2 =

6
5
.

Hence, all conditions of Theorem 3.1 are satisfied, then, system (24) has at least four positive

almost periodic solutions.

5. Discussions and conclusion

On the existence of four positive almost periodic solutions for an impulsive Lotka-Volterra

predator-prey system with time delay and harvesting terms, to the best of our knowledge, the

aspect results have not yet appeared in the related literature. Since both delay and harvesting

systems are very important in implementations and applications, while it is troublesome to

study the existence of positive almost periodic solutions for impulsive system , respectively,

it is meaningful to study almost periodic solutions for an impulsive Lotka-Volterra predator-

prey system with time delay and harvesting terms. In this paper, some sufficient conditions are

derived to guarantee the existence of four positive almost periodic solutions for an impulsive

Lotka-Volterra predator-prey system with time delay and harvesting terms.
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