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Abstract. In this paper, a delay differential equation model of the growth of two-species competitive plankton

with one toxin producing phytoplankton is studied in this paper. Under some suitable assumption, we prove that

one of the components will be driven to extinction while the other one will stabilize at a certain solution of a

Logistic equation. Our results supplement one of the main results in [Dynamic behaviors of a delay differential

equation model of plankton allelopathy, J. Comput. Appl. Math. 206 (2007), 733-754].
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1. Introduction

During the last two decades, competitive system with the effect of toxic substances become

one of the important research topic, many excellent results have been obtained, see [1]-[21] and

the references cited therein.
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Smith [1] proposed the following two species competitive system:

ẋ1(t) = x1(t)[K1−α1x1(t)−β12x2(t)− γ1x1(t)x2(t)],

ẋ2(t) = x2(t)[K2−α2x2(t)−β21x2(t)− γ2x1(t)x2(t)],
(1.1)

where x1(t) and x2(t) denote the population density of two competing species at time t for a

common pool of resources. The terms γ1x1(t)x2(t) and γ2x1(t)x2(t) denote the effect of toxic

substance, here the author made the assumption that each species produces a substance toxic

to the other, but only when the other is present. By constructing a suitable Lyapunov function,

Chattopadhyay [2] obtained a set of sufficient conditions which guarantee the global attractivity

of the positive equilibrium of above system.

Mukhopadhyay et al. [3] argued that the production of the toxic substance allelopathic to the

competing species will not be instantaneous, but delayed by different discrete time lags required

for the maturity of both species, and they modified system (1.2) to the following system:

ẋ1(t) = x1(t)[K1−α1x1(t)−β12x2(t)− γ1x1(t)x2(t− τ1)],

ẋ2(t) = x2(t)[K2−α2x2(t)−β21x2(t)− γ2x1(t− τ2)x2(t)],
(1.3)

where τi > 0, i = 1,2 are the time required for the maturity of the first species and second

species, respectively. By using an iterative method, Li et al. [4] investigated the global stability

of the interior equilibrium point of the system, they showed that toxic substances are harmless

for the stability of the interior equilibrium point.

Recently, Jin and Ma [24] argued that the environmental fluctuation is important in an ecosys-

tem, and more realistic models require the inclusion of the effect of environmental changing,

especially environmental parameters which are time-dependent periodic changing (e.g., season-

al changes, food supplies, etc.). They proposed the following two-species competition model:

ẋ1(t) = x1(t)
[
r1(t)−

2
∑
j=1

a1 j(t)
0∫

−T1 j

K1 j(s)x j(t + s)ds

−b1(t)x1(t)
0∫
−τ2

f2(s)x2(t + s)ds
]
,

ẋ2(t) = x2(t)
[
r2(t)−

2
∑
j=1

a2 j(t)
0∫

−T2 j

K1 j(s)x j(t + s)ds

−b2(t)x2(t)
0∫
−τ1

f1(s)x1(t + s)ds
]
.

(1.4)
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By using the coincidence degree theory, sufficient conditions which guarantee the existence of

positive periodic solutions of system (1.4) are obtained.

Stimulated by the works of [5], Chen et al. [6] studied the extinction property of the following

two dimensional system:

ẋ1(t) = x1(t)
[
r1(t)−a11(t)x1(t)−a12(t)

0∫
−T12

K12(s)x2(t + s)ds

−b12(t)x1(t)
0∫

−τ12

f12(s)x2(t + s)ds
]
,

ẋ2(t) = x2(t)
[
r2(t)−a21(t)

0∫
−T21

K21(s)x1(t + s)ds−a22(t)x2(t)

−b21(t)x2(t)
0∫

−τ21

f21(s)x1(t + s)ds
]
,

(1.5)

where ri(t),ai j(t),bi j(t)(i 6= j), i, j = 1,2 are continuous and bounded above and below by

positive constants on [0,+∞); Ti j,τi j are positive constants, Ki j ∈ C([−Ti j,0],(0,+∞)) and
0∫
−Ti j

Ki j(s)ds = 1, fi j ∈ C([−τi j,0],(0,+∞)) and
0∫
−τi j

fi j(s)ds = 1(i, j = 1,2, i 6= j). the authors

of [6] showed that if

rl
1al

21 > au
11ru

2, rl
1al

22 ≥ ru
2au

12 and rl
1bl

21 ≥ ru
2bu

12, (1.6)

holds, the second species will be driven to extinction while the first one will stabilize at a certain

solution of a logistic equation.

Recently, Solé et al. [14] considered a Lotka-Volterra type of model for two interacting

phytoplankton species, where one species could produce toxic, while the other one is non-toxic

produce. The model takes the form:

dx1

dt
= x1

(
b1−a11x1− γx1x2

2

)
,

dx2

dt
= x2

(
b2−a22x2

)
.

(1.7)

Noting that in system (1.7), the solutions of the system could be expressed in a explicit form,

and the dynamic behaviors of the system could be discussed thoroughly. Bandyopadhyay [15]

argued that it maybe better to incorporate the inter-species competition, and he proposed the
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following two species competition model:

dx1

dt
= x1

(
b1−a11x1−a12x2− γx1x2

2

)
,

dx2

dt
= x2

(
b2−a21x1−a22x2

)
.

(1.8)

His study implies that the toxic substance may change the local stability property of the positive

equilibrium. Lin et al. [21] further studied the non-autonomous case of system (1.8), sufficient

conditions which ensure the permanence and global attractivity of the system were obtained.

Stimulated by the works of [6, 14, 15, 21], we propose the following two species competitive

plankton with one toxin producing phytoplankton:

ẋ1(t) = x1(t)
[
r1(t)−a11(t)x1(t)−a12(t)

0∫
−T12

K12(s)x2(t + s)ds

−b12(t)x1(t)
0∫

−τ12

f12(s)x2(t + s)ds
]
,

ẋ2(t) = x2(t)
[
r2(t)−a21(t)

0∫
−T21

K21(s)x1(t + s)ds−a22(t)x2(t)
]
.

(1.9)

Throughout this paper, it is assumed that:

(H1) ri(t),ai j(t),(i 6= j), i, j = 1,2,b12(t) are continuous and bounded above and below by

positive constants on [0,+∞);

(H2) Ti j,τ12 are positive constants, Ki j ∈C([−Ti j,0],(0,+∞)),

0∫
−Ti j

Ki j(s)ds = 1, f12 ∈C([−τ12,0],(0,+∞))

and
0∫

−τ12

f12(s)ds = 1.

We consider (1.9) together with the initial conditions

xi(θ) = φi(θ)≥ 0, θ ∈ [−τ,0];φi(0)> 0, (1.10)

where τ = max
i, j
{Ti j,τ12}, φi are continuous on [−τ,0]. It is not difficult to see that solutions of

(1.9)-(1.10) are well defined for all t ≥ 0 and satisfy

xi(t)> 0 for t ≥ 0, i = 1,2, ....,n.
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Throughout this paper, we shall use the following notations:

gl = min
t≥0

g(t), gu = max
t≥0

g(t),

where g is a continuous bounded function defined on [0,+∞);

Comparing system (1.9) with (1.5), one could easily see that system (1.9) is the special case

of system (1.5)(with b21(t) ≡ 0). Hence, it is nature for One to conjecture that the results of

[6] could be applied directly to system (1.9). Indeed, as far as the permanence and stability

property of the system is concerned, the results of [6] could be applied to system (1.9) directly.

However, since b21(t)≡ 0,bu
12 > 0, the inequality

rl
1bl

21 ≥ ru
2bu

12 (1.11)

in (1.6) no longer holds. This means that the extinction result of [6] can no longer be applied

to system (1.9). To investigate the extinction property of the system (1.9), one needs to develop

some new analysis technique.

The aim of this paper is, by developing the analysis technique of Chen et al.[6] and Montes De

Oca and Vivas[22], to investigate the extinction property of the system (1.9). The organization

of this paper is as follows. We state and prove the main results in the next section and we end

this paper by a briefly discussion.

2. Main results

Lemma 2.1. [6] If a > 0,b > 0 and ẋ(t)≤ (≥)x(t)(b−ax(t)), x(t0)> 0, we have

limsup
t→+∞

x(t)≤ b
a
(liminf

t→+∞
x(t)≥ b

a
).

Lemma 2.2. Let col(x1(t),x2(t)) be any solution of system (1.9) with initial conditions (1.10),

then

limsup
t→∞

xi(t)≤ ru
i /al

ii
def
= Mi, i = 1,2.

Proof. From system (1.9) one has

ẋi(t)≤ xi(t)
[
ri(t)−aii(t)xi(t)

]
, i = 1,2.
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By applying Lemma 2.1, it immediately follows

limsup
t→+∞

xi(t)≤Mi, i = 1,2.

This ends the proof of Lemma 2.2.

Lemma 2.3. (Fluctuation lemma )([22, Lemma 4]) Let x(t) be a bounded differentiable func-

tion on (α,∞), then there exist sequences τn→ ∞,σn→ ∞ such that

(a) ẋ(τn)→ 0 and x(τn)→ limsup
t→∞

x(t) = x as n→ ∞,

(b) ẋ(σn)→ 0 and x(σn)→ liminf
t→∞

x(t) = x as n→ ∞.

Lemma 2.4 ([22, Lemma 7]). There exists a unique solution x∗1(t) of the logistic equation

ẋ1(t) = x1(t)
[
r1(t)−a11(t)x1(t)

]
(2.1)

such that δ ≤ x∗1(t)≤ ∆ on (−∞,∞), where ∆ and δ are any numbers satisfying the inequalities

0 < δ < rl
1/au

11 and ru
1/al

11 < ∆.

Lemma 2.5. Let col(x1(t),x2(t)) be any solution of system (1.9) with initial conditions (1.10),

assume that

rl
1al

21 > au
11ru

2, rl
1al

22 > ru
2au

12 (2.2)

hold, then there exists α > 0 such that x1(t)≥ α for all t ≥ 0.

Proof. The proof of the Lemma 2.5 is similarly to the proof of Lemma 6 of Montes De Oca

and Vivas[22] and we omit the detail here.

Our main results are the following Theorem 2.1-2.6.

Theorem 2.1. In addition to (2.2), further assume that the following inequality

bu
12 < min

{rl
1−

au
11

al
21

ru
2

ru
1

al
11

ru
2

al
22

,
rl

1−
au

12
al

22
ru

2

ru
1

al
11

ru
2

al
22

}
(2.3)

holds, then the species x2 will be driven to extinction, that is, for any positive solution col(x1(t),x2(t))

of system (1.9), x2(t)→ 0 as t→+∞.
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Proof. It follows from (2.3) that one could choose enough small positive constant ε1 > 0 such

that

bu
12 < min

{ rl
1−

au
11

al
21

ru
2( ru

1
al

11
+ ε1

)( ru
2

al
22
+ ε1

) , rl
1−

au
12

al
22

ru
2( ru

1
al

11
+ ε1

)( ru
2

al
22
+ ε1

)
}
. (2.4)

(2.4) is equivalent to
4
ru

2
al

21−au
11 > 0, au

12−
4
ru

2
al

22 < 0. (2.5)

where 4 def
= rl

1− bu
12
( ru

1
al

11
+ ε1

)( ru
2

al
22
+ ε1

)
. Let x1 = liminft→∞ x1(t) and x2 = limsupt→∞ x2(t),

from Lemma 2.5 we know that x1 ≥ α > 0, obviously x2 ≥ 0. It follows from Lemma 2.2 that

xi(t), i = 1,2 satisfies

x1 <
ru

1

al
11

+ ε1,x2 <
ru

2

al
22

+ ε1. (2.6)

To end the proof of Theorem 2.1, it suffices to show that x2 = 0. In order to get a contra-

diction, suppose that x2 > 0. According to Fluctuation lemma, there exists sequences τn →

∞,σn→∞ such that ẋ1(τn)→ 0, ẋ2(σn)→ 0,x1(τn)→ x1 and x2(σn)→ x2. Since the functions∫ 0
−T12

K12(s)x2(t + s)ds,
∫ 0
−τ12

f12(s)x2(t + s)ds and
∫ 0
−T21

K21(s)x1(t + s)ds are bounded, we can

assume that ∫ 0

−T12

K12(s)x2(τn + s)ds→ α1,∫ 0

−τ12

f12(s)x2(τn + s)ds→ α2,∫ 0

−T21

K21(s)x1(σn + s)ds→ β1.

It’s clear that αi ≤ x2,β1 ≥ x1, i = 1,2. Therefore, it follows from (1.9) that

0 ≥ x1[r
l
1−au

11x1−au
12x2−bu

12x1x2],

0 ≤ x2[ru
2−al

21x1−al
22x2],

Since x1 ≥ α > 0 and x2 > 0, it follows

rl
1 ≤ au

11x1 +au
12x2 +bu

12x1x2, (2.7)

ru
2 ≥ al

21x1 +al
22x2. (2.8)
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Now, by applying inequalities (2.6) to (2.7), we get

rl
1−bu

12
( ru

1

al
11

+ ε1
)( ru

2

al
22

+ ε1
)
≤ au

11x1 +au
12x2,

or

4≤ au
11x1 +au

12x2. (2.9)

Multiplying (2.8) by −4/ru
2 leads to

−4 ≤ −4
ru

2
al

21x1−
4
ru

2
al

22x2. (2.10)

Adding (2.10) to (2.9), it follows

0≤

(
au

11−
4
ru

2
al

21

)
x1 +

(
au

12−
4
ru

2
al

22

)
x2,

that is (
au

12−
4
ru

2
al

22

)
x2 ≥

(
4
ru

2
al

21−au
11

)
x1. (2.11)

From the first inequality of (2.5) and x1 ≥ α > 0, we get(
4
ru

2
al

21−au
11

)
x1 > 0,

therefore, (2.11) implies that (
au

12−
4
ru

2
al

22

)
x2 > 0. (2.12)

(2.12) together with (2.5) leads to x2 < 0, which is a contradiction. This completes the proof of

Theorem 2.1.

Theorem 2.2. In addition to (2.2), further assume that the following inequality

bu
12 <

(
rl

1
ru

2
−

au
11

al
21

)
al

21al
22

ru
2

(2.13)

holds, then the species x2 will be driven to extinction, that is, for any positive solution col(x1(t),x2(t))

of system (1.9), x2(t)→ 0 as t→+∞.
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Proof. It follows from (2.13) that one could choose enough small positive constant ε2 > 0

such that

bu
12

( ru
2

al
22

+ ε2

)
<

rl
1al

21
ru

2
−au

11. (2.14)

Let x1 = liminft→∞ x1(t) and x2 = limsupt→∞ x2(t), similarly to the analysis of Theorem 2.1,

we can show that (2.6)-(2.8) hold. Now, by applying the second inequality in (2.6) to (2.7), we

get

rl
1 ≤

(
au

11 +bu
12(

ru
2

al
22

+ ε2)
)

x1 +au
12x2, (2.15)

Multiplying (2.8) by −rl
1/ru

2 leads to

−rl
1 ≤ −

rl
1al

21
ru

2
x1−

rl
1al

22
ru

2
x2. (2.16)

Adding (2.15) to (2.16), it follows

0≤

(
au

11 +bu
12(

ru
2

al
22

+ ε2)−
rl

1al
21

ru
2

)
x1 +

(
au

12−
rl

1al
22

ru
2

)
x2,

that is (
au

12−
rl

1al
22

ru
2

)
x2 ≥

(
rl

1al
21

ru
2
−au

11−bu
12(

ru
2

al
22

+ ε2)

)
x1 (2.17)

From (2.14) and x1 ≥ α > 0, we get(
rl

1al
21

ru
2
−au

11−bu
12(

ru
2

al
22

+ ε2)

)
x1 > 0,

therefore, (2.17) implies that (
au

12−
rl

1al
22

ru
2

)
x2 > 0. (2.18)

(2.18) together with the second inequality of (2.2) leads to x2 < 0, which is a contradiction.

This completes the proof of Theorem 2.2.

Theorem 2.3. In addition to (2.2), further assume that the following inequality

bu
12 <

(
rl

1
ru

2
−

au
12

al
22

)
al

22al
11

ru
1

(2.19)

holds, then the species x2 will be driven to extinction, that is, for any positive solution col(x1(t),x2(t))

of system (1.9), x2(t)→ 0 as t→+∞.
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Proof. It follows from (2.19) that one could choose enough small positive constant ε3 > 0

such that

bu
12

( ru
1

al
11

+ ε3

)
<

rl
1al

22
ru

2
−au

12. (2.20)

Let x1 = liminft→∞ x1(t) and x2 = limsupt→∞ x2(t), similarly to the analysis of Theorem 2.1,

we can show that (2.6)-(2.8) hold. Now, by applying the first inequality in (2.6) to (2.7), we get

rl
1 ≤ au

11x1 +
(

au
12 +bu

12(
ru

1

al
11

+ ε3)
)

x2, (2.21)

Multiplying (2.8) by −rl
1/ru

2 leads to

−rl
1 ≤ −

rl
1al

21
ru

2
x1−

rl
1al

22
ru

2
x2. (2.22)

Adding (2.21) to (2.22), it follows

0≤

(
au

11−
rl

1al
21

ru
2

)
x1 +

(
au

12 +bu
12(

ru
1

al
11

+ ε3)−
rl

1al
22

ru
2

)
x2,

that is (
au

12 +bu
12(

ru
1

al
11

+ ε3)−
rl

1al
22

ru
2

)
x2 ≥

(
rl

1al
21

ru
2
−au

11

)
x1 (2.23)

From the first inequality of (2.2) and x1 ≥ α > 0, we get(
rl

1al
21

ru
2
−au

11

)
x1 > 0,

therefore, (2.23) implies that(
au

12 +bu
12(

ru
1

al
11

+ ε3)−
rl

1al
22

ru
2

)
x2 > 0. (2.24)

(2.18) together with the second inequality of (2.2) leads to x2 < 0, which is a contradiction.

This completes the proof of Theorem 2.3.

Theorem 2.4. Assume that the conditions of Theorem 2.1 or 2.2 or 2.3 hold, let x(t)= col(x1(t),x2(t))

be any positive solution of system (1.9), then the species x2 will be driven to extinction, that is,

x2(t)→ 0 as t→+∞, and x1(t)→ x∗1(t) as t→+∞, where x∗1(t) is defined by Lemma 2.4.

Proof. By applying Lemma 2.3-2.5, the proof of Theorem 2.4 is similar to that of the proof of

Theorem 4.1 in [6]. We omit the detail here.
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Now let’s consider the following system:

ẋ1(t) = x1(t)
[
r1(t)−a11(t)x1(t)−a12(t)

∫ 0
−∞

K12(s)x2(t + s)ds

−b12(t)x1(t)
∫ 0
−∞

f12(s)x2(t + s)ds
]
,

ẋ2(t) = x2(t)
[
r2(t)−a21(t)

∫ 0
−∞

K21(s)x1(t + s)ds−a22(t)x2(t)
] (2.25)

together with the initial conditions

xi(θ) = φi(θ)≥ 0, θ ∈ (−∞,0];φi(0)> 0, i = 1,2, (2.26)

where φi are continuous on (−∞,0]. We introduce a condition

(H
′
2) Ki j ∈C((−∞,0],(0,+∞)) and

0∫
−∞

Ki j(s)ds = 1, i 6= j, i, j = 1,2; f12 ∈C((−∞,0],(0,+∞))

and
0∫
−∞

f12(s)ds = 1.

Theorem 2.5. In addition to (H1) and (H
′
2), assume that the conditions of Theorem 2.1 or 2.2

or 2.3 hold, let col(x1(t),x2(t)) be any solution of system (2.25) with initial conditions (2.26),

then limt→∞ x2(t) = 0 and limt→∞

[
x1(t)− x∗1(t)

]
= 0, where x∗1(t) is defined by Lemma 2.4.

Now let’s consider following system:

ẋ1(t) = x1(t)
[
r1(t)−a11(t)x1(t)−a12(t)x2(t− τ12(t))

−b12(t)x1(t)x2(t−η12(t))
]
,

ẋ2(t) = x2(t)
[
r2(t)−a21(t)x1(t− τ21(t))−a22(t)x2(t)

] (2.27)

together with the initial conditions

xi(θ) = φi(θ)≥ 0, θ ∈ [−τ,0];φi(0)> 0, i = 1,2, (2.28)

where τi j(t),ηi j(t), i, j = 1,2 are nonnegative continuous bounded functions, τ =max
t
{τi j(t),ηi j(t), i, j =

1,2}, φi are continuous on [−τ,0].

Theorem 2.6. In addition to (H1), assume that the conditions of Theorem 2.1 or 2.2 or 2.3

hold, let col(x1(t),x2(t)) be any solution of system (2.27) with initial condition (2.28), then

limt→∞ x2(t) = 0 and limt→∞

[
x1(t)− x∗1(t)

]
= 0, where x∗1(t) is defined by Lemma 2.4.

The proof of Theorem 2.5 and 2.6 are similarly to that of the proof of Theorem 2.4, we omit

the detail here.
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3. Conclusion

Chen et al.[6] proposed a delay differential equation model of plankton allelopathy, which is

described by system (1.5). Using a fluctuation theorem, sufficient conditions which guarantee

one of the components will be driven to extinction while the other will stabilize at a certain

solution of a logistic equation is obtained. In this paper, we assume that one species is non-

toxic phytoplankton while the other one is toxic liberating phytoplankton, this results in model

(1.9). Though system (1.9) is the special case of system (1.5), the results obtained in [6] which

concerned with the extinction of the system could not be applied to the system (1.9) directly.

By developing some new analysis technique, we are able to establish some sufficient conditions

which ensure the extinction of one species and the global attractivity of the other species. Our

results indicate that if the second species in the system without toxic substance is extinction

(this is ensured by condition (2.2)), then although the second species could emit the toxic to im-

prove their chance of living, if the toxic rate is enough low such that inequality (2.2) or (2.13)

or (2.19) holds, then second species is still be driven to extinction.
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