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Abstract. Fractional calculus represents a generalization of the ordinary differentiation and integration to non-

integer and complex order. Motivated by this situation, the idea of modeling HBV infection involving constant

vaccination by fractional order differential equations (FODE) arises. We developed a fractional SIRC model, in

which they presented a detailed analysis for the asymptotic stability of disease-free and positive fixed point. First

we show the positive solution of the HBV model in fractional order. However, analytical and closed solutions of

these types of fractional equations cannot generally be obtained. As a consequence, approximate and numerical

techniques are explored. We use the multi-step generalized differential transform method to approximate the

numerical solution. Finally we compare our numerical results with nonstandard numerical method and forth order

Runge-Kutta method.
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Vaccination is a commonly used method for controlling disease, the study of vaccines against

infectious disease has been a boon to mankind. Hepatitis B vaccine provides greater than 90%

protection to infants, children, and adults immunized before being exposed to the virus. The

efficacy of plasma-derived and recombinant hepatitis B vaccine in preventing acute and chron-

ic infection has been demonstrated in controlled clinical trails conducted with adults, children

and infants. In addition, a number of studies have examined various vaccination schedules and

dosages and all have documented short-term vaccine safety [15]. Vaccine can be received by

infants to adults and provides protection for 85%-90% of individuals [20, 14]. The main vacci-

nations include the 3-dose HepB vaccination and the timely Hepatitis B birth-dose (i.e., within

24 h of birth). In 1991, WHO recommended that hepatitis B vaccination should be included in

national immunization system in all countries with an HBsAg carrier prevalence 8% by 1995

and all countries by 1997. By 2002, 154 countries had routine infant immunization with HepB

[11, 9]. Mathematical models, of deterministic type, have often been used to provide deeper

insights into the transmission HBV dynamics and to evaluate control strategies. The modelling

of these systems by fractional-order differential equations has more advantages than classical

integer-order mathematical modeling, in which such effects are neglected. Fractional-order

differential equations are naturally related to systems with memory which exists in most bio-

logical systems. In some situations, the fractional-order differential equations (FODEs) models

seem more consistent with the real phenomena than the integer- order models. This is due

to the fact that fractional derivatives and integrals enable the description of the memory and

hereditary properties inherent in various materials and processes. Hence there is a growing

need to study and use the fractional-order differential and integral equations. Nowadays several

researchers work on the fractional order differential equations because of best presentation of

many phenomena. Fractional calculus represents a generalization of the ordinary differentiation

and integration to non-integer and complex order. For this purpose [7] developed a fractional

SIRC model, in which they presented a detailed analysis for the asymptotic stability of disease-

free and positive fixed point. To our knowledge, no works are contributed to the analysis for

a model of fractional order differential equations (FODEs) of describing the viral dynamics in

the presence of HBV infection with constant vaccination. Motivated by this situation, the idea
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of modeling HBV infection involving constant vaccination by FODE arises. First we show the

positive solution of the HBV model in fractional order. However, analytical and closed solutions

of these types of fractional equations cannot generally be obtained. As a consequence, approx-

imate and numerical techniques are explored. We use the multi-step generalized differential

transform method to approximate the numerical solution. Finally we compare our numerical

results with nonstandard numerical method and forth order Runge-Kutta method.

2. Fractional order systems

Fractional calculus is generalization of integrals and derivatives to a non-integer or even

complex order. Many systems in interdisciplinary fields describe a real object more accurately

than the classical integer methods. There are many definitions of fractional derivatives. The

Riemann-Liouville definition is given as

(1)
dα f (t)

dtα
=

1
Γ(n−α)

dn

dtn

∫ t

α

f (τ)
(t− τ)α−n+1 dτ,

where Γ(.) is the gama function, n is an integer number chosen in such a way that n−1<α < n.

α is order of derivative and a is the lower limit. Upon considering the inital values to be zero,

the Laplace transform of the Riemann C Liouville fractional derevative is defined as

(2) L
{

dα f (t)
dtα

}
(s) = sαL{ f (t)} .

Hence fractional integral operator of order α is represented by the transfer function F(s) =

1/sα .

The Caputo derivative of order α and with the lower limit zero is defined as:

(3)
dα f (t)

dtα
=

1
Γ(n−α)

dn

dtn

∫ t

0

f (τ)
(t− τ)α−n+1 dτ.

In practice the fractional differential equation is hard to be solved in time domain; hence fre-

quency domain techniques/Laplace transform is used. An algorithm for the numerical solution

of differential equation of fractional order has been given by [5].

3. Stability of fractional order system
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The stability analysis is important in control theory. Recently, there has been some advances

in control theory of fractional differential systems for stability. In the fractional order system-

s the delay differential equation order is non-integer which makes it difficult to evaluate the

stability by simply examining its characteristic equation or by finding its dominant roots or by

using other algebraic methods. The stability of fractional order systems using polynomial cri-

teria (e.g., Routh’s or Jury’s type) is not possible due to the fractional powers. A generalization

of the Routh-Hurwitz criterion used for stability analysis for fractional-order systems is pre-

sented in [10]. However, this method is very complicated. Thus there remain only geometrical

methods of complex analysis based on the argument principle (e.g; Nyquist type) which can

be used for the stability check in the BIBO sense (bounded-input bounded-output). These are

the techniques that inform about the number of singularities of the function within a rectifiable

curve by observing the evolution of the function’s argument through this curve. Root locus is

another geometric method that can be used for analysis for fractional order systems. Also, for

linear fractional differential systems of finite dimensions in state- space form, stability can be

investigated. The stability of a linear fractional differential equation either by transforming the

S-plane to the F-plane F = sα or the w-plane (w = s1/v), is explaned in [19].

3.1. Stability using Riemann surfaces

In a general way, the study of the stability of fractional order systems can be carried out by

studying the solutions of the differential equations that characterize them. To carry out this

study it is necessary to remember that a function of the type

(4) ansαn +an−1sα−1 + ...+a0sα0 ,

where αi ∈ R+, is a multivalued function of the complex variable s whose domain can be seen

as a Riemann surface of a number of sheets. The principle sheet is defined by−π < arg(s)< π .

In the case of α ∈ Q+, that is α = 1/v, v being a positive integer, the v sheets of the Riemann

surface are determined by

(5) s = |s|e jφ , (2k+1)π < φ < (2k+3)π,
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k =−1,0, ...,v−2 Correspondingly, the case of k =−1 is the principal sheet. For the conformal

mapping (transformation) w = sα , these sheets become the regions of the plane w defined by:

(6) w = |w|e jθ , α(2k+1)π < θ < α(2k+3)π.

Thus, an equation of the type (4) which in general is not a polynomial, will have an infinite

number of roots, among which only a finite number of roots will be on the principal sheet of the

Riemann surface. It can be said that the roots which are in the secondary sheets of the Riemann

surface are related to solutions that are always monotonically decreasing functions (they go to

zero without oscillations when t → ∞) and only the roots that are in the principal sheet of the

Riemann surface are responsible for a different dynamics: damped oscillation, oscillation of

constant amplitude, oscillation of increasing amplitude. For the case of commensurate-order

systems, whose characteristic equation is a polynomial of the complex variable w = sα the

stability condition is expressed as, |arg(wi)| > απ

2 , where wi are the roots of the characteristic

polynomial in w. For the particular case of α = 1 the well known stability condition for the

linear time-invariant system of integer-order is recovered: |arg(wi)|> π

2 .

4. Mathematical model derivation

To describe the viral dynamics in the presence of HBV infection with constant vaccination,

the total population that is involved in the transmission of the infection is split into four(4)

epidemiological classes: susceptible (S), vaccinated (V ), infected (I), and recovered (R). The

detailed transitions between these four classes is depicted in Figure 1. The class S of suscepti-

bles is increased either by birth or immigration at a rate π . It is decreased by infection following

contact with infected individuals at a time-varying rate β , and diminished by natural death at a

rate µ . Furthermore, it is decreased by vaccination at a rate σ . This term naturally disappears

in the absence of vaccine doses. The model also assumes that the vaccination wanes with time,

leading to the migration of individuals from V to S at a rate ϕ [17, 21]. The class V of vacci-

nated individuals is generated through administration of the first-dose vaccine to the susceptible

class S, either by vaccination of a fraction ω of recruited individuals. Since the vaccine may

not induce complete protection to the infection, the individuals of this class might still become
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infected, but at a lower rate of infectiousness, φβ I, than susceptible individuals, where φ is the

degree of protection induced by vaccination. This partial immunity may be due to the presence

of antibodies which interfere with vaccine-induced seroconversion [3]. This leads to a response

with a lower level of antibody titres and reduces vaccine efficacy [16]. This response could not

entirely be attributed to the presence of antibodies (at the time of vaccination), as in addition

the vaccine may not be sufficiently immunogenic in inducing adequate antibody response after

a single dose [21]. Furthermore, the vaccine may wane with time, and thus vaccinated individ-

uals gradually become susceptible to the disease again [17, 21]. The class V is decreased by

administration of a vaccine (as a second dose) at a rate γ and diminished by natural death. The

class I of infected individuals is generated through infection of susceptible and/or vaccinated

individuals. This class is decreased by recovery from infection at a rate δ and diminished by

natural death. The model assumes that both recovered and vaccinated individuals become per-

manently immune to the disease. This generates a class V of individuals who have complete

protection to the disease.

FIGURE 1. Transfer diagram of the HBV model

Using the above assumptions, the transitions between model classes can now be expressed

by the following differential equations:
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dS
dt = (1−ω)π−βSI− (µ +σ)S+ϕV,
dV
dt = ωπ +σS−φβV I− (µ + γ +ϕ)V,
dI
dt = βSI +φβV I− (µ +δ )I,
dR
dt = γV +δ I−µR,

(7)

where the parameter π is the birth rate for the population, ω is the proportion of recruited

population who receieve vaccine, ϕ is the rate of waning vaccine-induced immunity, β is the

rate of transmission with infected population, δ is the infection period, σ is the vaccination rate,

and µ are the natural mortality, and φ is the vaccine-induced protection. Now we introduce

fractional order into the ODE model by [1]. The new system is described by the following set

of fractional order differential equations:

Dα
t S = (1−ω)π−βSI− (µ +σ)S+ϕV,

Dα
t V = ωπ +σS−φβV I− (µ + γ +ϕ)V,

Dα
t I = βSI +φβV I− (µ +δ )I,

Dα
t R = γV +δ I−µR,

(8)

where Dα
t is the Caputo fractional derivative. Because model (8) monitors the dynamics of

human populations, all the parameters are assumed to be nonnegative. Furthermore, it can be

shown that all state variables of the model are nonnegative for all time t ≥ 0.

4.1. Non-negative solutions

It is important not to worry about negative values when dealing with a model of population

dynamics is concerned. Hence, we prove the positivity of the solutions.

Theorem 4.1. The closed set Ω =
{
(S,V, I,R) ∈ R4

+ : S+V + I +R = 1
}

is positively invariant

with respect to model (5.8).

Proof. Since the class of recovered group (R) does not appear in the first three equations of

(5.8), the analysis will be restricted to the dynamics of the first three equations of (5.8). We also
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note that the equation for the total population is

(9) Dα
t N(t) = π−µN.

The solution to (5.9) is given by grouping and rearranging the variable of interest, thus

Dα
t N(t)+µN = π.

Now assume that f (t) = π , which is a constant function of time, then the equation is giving by

Dα
t N(t)+µN = f (t).

Taking the laplace transform, throughout, the new equation is given by

L {Dα
t N(t)}+L {µN}= L { f (t)}

but

L {Dα
t N(t)}= sα Ñ−

n−1

∑
n=0

s(α−n−1)N(0+),

where
n−1

∑
n=0

s(α−n−1)N(0+)

is the initial condition. Then, L {µN}= µL {N}= µs2Ñ and L { f (t)}= F(s). This implies

that

sα Ñ−
n−1

∑
n=0

s(α−n−1)N(0+)+µs2Ñ = F(s).

Thus, {
sα −µs2} Ñ =

n−1

∑
n=0

s(α−n−1)N(0+)+F(s).

Taking the initial condition to be zero, then

Ñ =
F(s)

sα +µs2 ,

which involves two functions.

Now find the laplace inverse transform of Ñ to get N(t), then let g̃(s) = 1
sα+µs2 and k̃(s) =

F(s). Now, g̃(s) = 1
sα+µs2 =

1
s2

(
1

sα−2+µ

)
= 1

µ

(
s−2

sα−2
µ

+1

)
. Then

g̃(s) =
1
µ

 s−2

1−
(
− sα−2

µ

)
=

1
µ

∞

∑
k=0

(−1)ks−2

(
s−(α−2)

µ

)k

,
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which gives

g̃(s) =
1
µ

∞

∑
k=0

(−1)k

(
s−[k(α−2)+2]

µk

)
but L −1 {s−p}= t p−1

Γ(p) .

Now we let p = k(α−2)+2, and by substitute into the above formula, thus

L −1
{

s−[k(α−2)+2]
}
=

tk(α−2)+2−1

Γ(k(α−2)+2)

implies

g̃(t) =
1
µ

∞

∑
k=0

(
−1
µ

)k tk(α−2)+2−1

Γ(k(α−2)+2)
, µ > 0.

Thus,

g̃(t) =
1
µ

t
∞

∑
k=0

(
− tα−2

µ

)k

Γ(k(α−2)+2)
, µ > 0.

Now assuming z = −tα−2

µ
,u = α−2,v = 2, we have

g̃(t) =
1
µ

t
∞

∑
k=0

zk

Γ(uk+ v)
.

Then, by Mittag-Leffler function. Considering the fact that the Mittag-Leffler function has an

asymptotic behavior [8],

(10) Eu,v(z)∼−
p

∑
k=1

z−k

Γ(v−uk)
+O

(
|z|−1−p) , (

|z| → ∞,
απ

2
< |arg(z)| ≤ π

)
.

Thus, N→ π/µ as t→∞, and hence R = π/µ−S−V − I . This shows that the feasible region

Ω = {(S,V, I,R) : S,V, I,R≥ 0,S+V + I +R = π/µ} ,

is a positively invariant set for the model. Therefore, we restrict our attention to the dynamics

of the model in Ω.

For the proof of the non-negative solution, consider the following Theorem and Corollary.

Theorem 4.2. [Generalized Mean Value Theorem] Let f (x) ∈ C (0,a] and Dα f (x) ∈ C (0,a],

for 0 < α ≤ 1. Then we have

f (x) = f (0+)+
1

Γ(α)
(Dα f )(ξ )(x)α

with 0≤ ξ ≤ x,∀x ∈ (0,a].
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Corollary 4.1. Suppose that f (x)∈C [0,a] and Dα f (x)∈C (0,a] for 0<α ≤ 1. It is clear from

Theorem 4.2 that if Dα f (x) ≥ 0, ∀x ∈ (0,a), then f (x) is non-decreasing and if Dα f (x) ≤ 0,

∀x ∈ (0,a), then f (x) is non-increasing for ∀x ∈ [0,a].

Theorem 4.3. There is a unique solution Ω(t) = (S,V, I,R)T for (8) at t ≥ 0 and the solution

will remain in R4
+.

Proof. The existence and uniqueness of the solution of (8) in (0,∞) can be obtained from [[12],

Theorem 3.1 and Remark 3.2]. Now we need to show that the domain R4
+ is positively invariant.

Since

Dα
t S|S=0 = π(1−ω)+ϕV ≥ 0,

Dα
t V |V=0 = πω +σS≥ 0,

Dα
t I|I=0 = 0,

Dα
t R|R=0 = γV +δ I ≥ 0.

On each hyperplane bounding the nonnegative orthant, the vector field points into R4
+.

For convenience in calculations we consider the following system, which can be obtained

from

Dα
t S = (1−ω)π−βSI− (µ +σ)S+ϕV,

Dα
t V = ωπ +σS−φβV I− (µ + γ +ϕ)V,

Dα
t I = βSI +φβV I− (µ +δ )I,

Dα
t R = γV +δ I−µR,

(11)

with initial conditions

(12) S(0) = S0,V (0) =V0, I(0) = I0,R(0) = R0.

4.2. Disease-free equilibruim (DFE)
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TABLE 1. Description and estimation of fractional order model parameters

Para. Description Value Reference

π Birth rate 0.0121 [18]

µ Natural mortality rate 0.00693 [18]

β rate of transmission with 0.95 -20.49 [6]

acute infection

γ rate of transmission with 0.16 [6]

chronic infection

δ Rate of moving from acute 0.3 [6]

to chronic infection

σ Vaccination rate (1-100%)

φ Vaccine induce protection (90-99%)

ω Proportion of birth without (1-100%)

successful vaccination

ϕ Rate of waning vaccine - induced 0.1 [6]

immunity

We deduced the disease-free equilibruim point by considering the interger system of the given

fractional-order system (8) with α = 1. To evaluate the equilibrium points of the system (8), let

Dα
t (S) = 0,

Dα
t (V ) = 0,

Dα
t (I) = 0,

Dα
t (R) = 0.
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In the absence of infection, the model has a unique disease-free equilibruim E0 = (S0,V0,0,R0)

where

S0 =
[(1−ω)(µ + γ)+ϕ]π

(µ + γ)+µϕ
,

V0 =
(µω +σ)π

(µ + γ)+µϕ
,

R0 =
γ(µω +σ)π

µ[(µ + γ)+µϕ]
.

To analyze the stability of the DFE, the first three equation of the model is linearized around

E0 by setting:

S(t) = S0 + s(t), V (t) =V0 + v(t), I(t) = i(t).

Then, we have:

Dα
t s =−(µ +σ)s− [(1−ω)(µ + γ)+ϕ]βπ

(µ + γ)(µ +σ)+µϕ
i+ϕv,(13)

Dα
t v = σs− (µ + γ +ϕ)v− φ(µω +σ)βπ

(µ + γ)(µ +σ)+µϕ
i,(14)

Dα
t i =

[(1−ω)(µ + γ)+ϕ +φ(µω +σ)]βπ

(µ + γ)(µ +σ)+µϕ
i− (µ +δ )i.(15)

A fundamental matrix of (13)-(15) consists of the solutions X j =
(
s j(t),v j(t), i j(t)

)
, j = 1,2,3

which satisfy the following initial conditions:

X1(0) = (1,0,0), X2(0) = (0,1,0), X3(0) = (0,0,1).

It is easy to see that the set of these solutions is given by:

X1 =


exp[−(µ +σ)t]

0

0

 , X2 =


s∗2(t)

exp[−(µ + γ +ϕ)t]

0

 ,

and

X3 =


s∗3(t),

v∗3(t),

exp
{∫ t

0

(
[(1−ω)(µ+γ)+ϕ+φ(µω+σ)]βπ

(µ+γ)(µ+σ)+µϕ
− (µ +δ )

)
dτ

}
 ,
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where s∗2(0) = s∗3(0) = v∗3(0) = 0. The monodromy matrix is the fundamental matrix M(t) =

[X1(t),X2(t),X3(t)] evaluated at the period T .

Theorem 4.4. The disease-free equilibrium E0 of the system (8) is locally asymptotically stable

if

R0 =
[(1−ω)(µ + γ)+ϕ +φ(µω +σ)]βπ

(µ +δ )[(µ + γ)(µ +σ)+µϕ]
< 1.

Proof. The local stability of E0 is determined by the modulus of the eigenvalues of M(T ). These

eigenvalues are

λ1 = exp[−(µ +σ)T ],

λ2 = exp[−(µ + γ +ϕ)T ]

and

λ3 = exp
{∫ T

0

(
[(1−ω)(µ + γ)+ϕ +φ(µω +σ)]βπ

(µ + γ)(µ +σ)+µϕ
− (µ +δ )

)
dτ

}
.

Since 0 < λ1,λ2 < 1 the equilibrium E0 is locally asymptoticaly stable if λ3 < 1. A simple

calculation shows that λ3 < 1 if and only if

(16)
1
T

∫ T

0
βdτ <

(µ +δ )[(µ + γ)(µ +σ)+µϕ]

[(1−ω)(µ + γ)+ϕ +φ(µω +σ)]π
.

Since β is a periodic function with the period T , then the inequality (16) can be written as

R0 < 1 where

(17) R0 =
[(1−ω)(µ + γ)+ϕ +φ(µω +σ)]βπ

(µ +δ )[(µ + γ)(µ +σ)+µϕ]
.

According to stability conditions in [5, 13] the disease-free equilibrium E0 is locally asymptoti-

cally stable if all of the eigenvalues λi(i = 1,2,3) satisfy |argλi|> α
θ

2 . If 0 < R0 < 1, then the

above three characteristic roots will have negative real parts. Thus the disease-free equilibrium

E0 is locally asymptotically stable. If R0 > 1, then at least one eigenvalue will be positive real

root. Thus, the disease-free equilibrium E0 is unstable. Therefore Theorem 4.4 is complete.

5. Sensitivity of a fractional order system to its R0 ratios

This section focuses on the sensitivity analysis of a fractional order system. Sensitivity anal-

ysis aims to describe how much model output values are affected by changes in model input
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values. Thus, sensitivity analysis can address the change in optimal system performance asso-

ciated with changes in various parameter values, and also how optimal decisions would change

with changes in resource constraint levels or target output requirements. For the computation

of the sensitivity analysis, we employ the normalised forward sensitivity index of a variable to

be the ratio of the relative change in a variable to a change in a parameter [2].

Definition 5.1. Let h = f (x1,x2, ...,xn), be a differentiable function that depends on the pa-

rameters xi, then the normalised forward sensitivity index of xi with respect to parameter, p, is

defined as:

(18) ζ
R0
p =

∂h
∂xi
× xi

h
.

This index measures the relative change in h due to relative changes in xi. The normalized

forward sensitivity indices of R0 relative to its parameters are presented in Table 2.

TABLE 2. Sensitivity indices of fractional order model to R0

Para. Description Sensitivity index

π Birth rate +(ve)

µ Natural mortality rate -(ve)

β rate of transmission with acute infection +(ve)

γ rate of transmission with chronic infection -(ve)

δ Rate of moving from acute to chronic infection -(ve)

σ Vaccination rate -(ve)

φ Vaccine induce protection +(ve)

ω Proportion of birth without successful vaccination +(ve)

ϕ Rate of waning vaccine - induced immunity +(ve)

6. Multi-step generalized differential transform method

We applying the multi-step generalized differential transform method to find the approximate

solution of equations (8), which gives an accurate solution over a longer time frame as compared

to the standard generalized differential transform method. Taking the differential transform of
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equations (8) with respect to time we obtain,

S(k+1) =
Γ(αk+1)

Γ((αk+1)+1)

(
(1−ω)π +ϕV (k)−β

k

∑
i=0

S(k− i)I(i)− (µ +σ)S(k)

)
,

V (k+1) =
Γ(αk+1)

Γ((αk+1)+1)

(
ωπ +σS(k)−φβ

k

∑
i=0

V (k− i)I(i)− (µ + γ +ϕ)V (k)

)
,

I(k+1) =
Γ(αk+1)

Γ((αk+1)+1)

(
β

k

∑
i=0

S(k− i)I(i)+φβ

k

∑
i=0

V (k− i)I(i)− (µ +δ )I(k)

)
,

R(k+1) =
Γ(αk+1)

Γ((αk+1)+1)
(γV (k)+δ I(k)−µR(k)) .

Here S(k),V (k), I(k) and R(k) are thr differential transformation of S(t),V (t), I(t) and R(t). The

differential transform of the initial conditions are S(0) = S0,V (0) =V0, I(0) = I0 and R(0) = R0.

In view of the differential inverse transform, the differential transform series solution for the

system can be obtained as



S(t) = ∑
k
k=0 S(k)tαk,

V (t) = ∑
k
k=0V (k)tαk,

I(t) = ∑
k
k=0 I(k)tαk,

R(t) = ∑
k
k=0 R(k)tαk.

(19)

Now according to the multi-step generalized differential transform method the series solution

for the equations (8) is suggested by

S(t) =



∑
k
k=0 S1(k)tαk t ∈ [0, t1]

∑
k
k=0 S2(k)(t− t1)αk t ∈ [t1, t2]

.

.

.

∑
k
k=0 SM(k)(t− tM−1)

αk t ∈ [tM−1, tM]

(20)
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V (t) =



∑
k
k=0V1(k)tαk t ∈ [0, t1]

∑
k
k=0V2(k)(t− t1)αk t ∈ [t1, t2]

.

.

.

∑
k
k=0VM(k)(t− tM−1)

αk t ∈ [tM−1, tM]

(21)

I(t) =



∑
k
k=0 I1(k)tαk t ∈ [0, t1]

∑
k
k=0 I2(k)(t− t1)αk t ∈ [t1, t2]

.

.

.

∑
k
k=0 IM(k)(t− tM−1)

αk t ∈ [tM−1, tM]

(22)

R(t) =



∑
k
k=0 R1(k)tαk t ∈ [0, t1]

∑
k
k=0 R2(k)(t− t1)αk t ∈ [t1, t2]

.

.

.

∑
k
k=0 RM(k)(t− tM−1)

αk t ∈ [tM−1, tM]

(23)

Here S j(k),Vj(k), I j(k) and R j(k) for j = 1,2, ...,M satisfy the following recurrence relations

S j(k+1) =
Γ(αk+1)

Γ((αk+1)+1)

(
(1−ω)π +ϕVj(k)−β

k

∑
i=0

S j(k− i)I j(i)− (µ +σ)S j(k)

)
,

Vj(k+1) =
Γ(αk+1)

Γ((αk+1)+1)

(
ωπ +σS j(k)−φβ

k

∑
i=0

Vj(k− i)I j(i)− (µ + γ +ϕ)Vj(k)

)
,

I j(k+1) =
Γ(αk+1)

Γ((αk+1)+1)

(
β

k

∑
i=0

S j(k− i)I j(i)+φβ

k

∑
i=0

Vj(k− i)I j(i)− (µ +δ )I j(k)

)
,

R j(k+1) =
Γ(αk+1)

Γ((αk+1)+1)
(
γVj(k)+δ I j(k)−µR j(k)

)
.
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With the initial conditions S j(0) = S j−1,Vj(0) = Vj−1, I j(0) = I j−1 and R j(0) = R j−1. Fi-

nally, we start with initial conditions S(0) = S0,V (0) = V0, I(0) = I0 and R(0) = R0, and use

the recurrence relation given in the above system, we can obtain the multi-step generalized

differential transform solution given in (20)-(23)

7. Numerical methods and simulation

Since most of the fractional-order differential equations do not have exact analytic solutions,

so approximation and numerical techniques must be used. Several analytical and numerical

methods have been proposed to solve the fractional-order differential equations. For the nu-

merical solution, we will study the effect of vaccination on the dynamics of a HBV disease

described by the SVIR model (8) using multi-step generalized differential transform method

according to the different values of the parameters in Table 1.

FIGURE 2. Show the approximate solutions for S(t),V (t), I(t) and R(t) obtained

for value of α = 1 using the multi-step generalized differential transform

method.
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FIGURE 3. Numerical Simulations of the FODEs model (8) for different values

of α , with α = 1,α = 0.85,α = 0.75. The system converges to the stable steady

state E0. The fraction derivative damps the oscilation behavior.

8. Concluding remarks

In this paper we study some fractional order models for HBV transmission with constant vac-

cination. Fractional-order differential equations are generalizations of integer-order differential

equations. As a definition of fractional calculus: limα→1 Dα
t f (t) = D f (t) has been provided.

Fractional-order differential equations can be used to reduce the errors arising from the neglect-

ed parameters in modeling biological systems with memory and systems distributed parameters.

In the presented problem, the susceptible class S(t), the vaccinated class V (t), the infected class

I(t), and the recovered class R(t), have been obtained, the results obtained show that when

α → 1 the solution of the fractional model (8), Dα
t (S),D

α
t (V ),Dα

t (I),D
α
t (R), reduce to the s-

tandard solution S(t),V (t), I(t),R(t). The models possess non-negative solutions, as desired in

any population dynamics. We have obtained a stability condition for equilibrium points and the

threshold parameter R0 is estimated. One should note that although the equilibrium points are

the same for both integer order and fractional order models, the solution of the fractional order

model tends to the fixed point over a longer period of time.
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The transformation of a classical model into a fractional-order makes it very sensitive to the

order of differentiation α : a small change in α may result in a big change in the final result.

Numerical solutions of these models are given and the simulations have been used to ver-

ify the theoretical analysis. The results show that the solution continuously depends on the

time-fractional derivative and on the values of the parameters described in Table 1. These fig-

ures show the effect of the constant-vaccination coverage on the disease free initial population

groups. In figure 2, the population of the susceptible class decreases with time while that of

the recovered class gradually increases due to inclusion of vaccinated-susceptible class. The

entire population generally remains disease free with all the time and the endemic equilibrium

remains stable.

From the numerical results in Figure 3, it is clear that the approximate solutions depend con-

tinuously on the fractional derivative α . The stability of the numerical scheme was established

theoretically, under the assumption that the nonlinear source term satisfies a Lipschitz condi-

tion and the drift coefficient decreases monotonically. The approximate solutions obtained by

multi-step generalized differential transform method are highly accurate and valid for a long

time in the integer case. This method is very applicable and also this is a good approach for the

solutions of differential equations of such order.
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