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Abstract. This paper is concerned with an almost periodic predator-prey system with impulsive non-autonomous

Lotka-Volterra functional response and harvesting terms. By using Mawhins continuation theorem of coincidence

degree theory and some analytical approaches, we establish the existence of eight positive almost periodic solutions

for the system. Furthermore, our results improve the main results of paper [1]. An example is given to illustrate

the effectiveness of our results.
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1. Introduction

In recent years, the existence of positive periodic solutions for biological models with har-

vesting terms has been widely investigated by many researchers (see[1-4]). In[1], the authors

proposed a non-autonomous three species Lotka-Volterra predator-prey system with harvesting
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terms model:

x
′
1(t) = x1(t)

(
r1(t)−a11(t)x1(t)−a12(t)x2(t)

)
−h1(t),

x
′
2(t) = x2(t)

(
r2(t)+a21(t)x1(t)−a22(t)x2(t)−a23(t)x3(t)

)
−h2(t),

x
′
3(t) = x3(t)

(
r3(t)+a32(t)x2(t)−a33(t)x3(t)

)
−h3(t).

(1.1)

Under the assumptions of periodicity of the parameters of (1.1), using Mawhin’s continuation

theorem of coincidence degree theory, the authors of [1] established the eight positive periodic

solutions to (1.1). In fact, it is more realistic and reasonable to study almost periodic system

than periodic system. Recently, there are two main approaches to obtain sufficient conditions

for the existence and stability of the almost periodic solutions of biological models: one is us-

ing the fixed point theorem, Lyapunov functional method, and differential inequality techniques

(see [5-11]); the other is using functional hull theory and Lyapunov functional method (see

[12-17]). However, to the best of our knowledge, there are very few published letters consid-

ering the almost periodic solutions for impulsive nonautonomous Lotka-Volterra predator-prey

system with time delay and harvesting terms by applying the method of coincidence degree

theory. Motivated by above, in this paper, we are concerned with the following impulsive non-

autonomous three species Lotka-Volterra predator-prey system with time delay and harvesting

terms model:

x
′
1(t) = x1(t)

(
r1(t)−a11(t)x1(t)−a12(t)x2(t− τ2(t))

)
−h1(t), t 6= tk,

x
′
2(t) = x2(t)

(
r2(t)+a21(t)x1(t− τ1(t))−a22(t)x2(t)−a23(t)x3(t− τ3(t))

)
−h2(t), t 6= tk,

x
′
3(t) = x3(t)

(
r3(t)+a32(t)x2(t− τ2(t))−a33(t)x3(t)

)
−h3(t), t 6= tk,

x1(t+k ) = (1+Γ1k)x1(tk), t = tk,

x2(t+k ) = (1+Γ2k)x2(tk), t = tk,

x3(t+k ) = (1+Γ3k)x3(tk), t = tk,
(1.2)

where xi(t) denotes the densities of the ith species respectively; ri(t) represents the ith species

intrinsic growth rates; aii(t) denotes the intra-specific competition rates of the ith species;

a12(t),a23(t) are the predation rates for the second species to first the species, the third species



POSITIVE ALMOST PERIODIC SOLUTIONS TO AN IMPULSIVE LOTKA-VOLTERRA SYSTEM 3

to the second species, respectively; a21(t),a32(t) are the nutrition conversion rates for the first

species to the second species, the second species to the third species, respectively; hi(t) is the

harvesting term for the ith species. Moreover, ri(t),aii(t), a12(t),a23(t), a21(t),a32(t), hi(t),

are all bounded and positive continuous almost periodic functions defined on [0,∞)(i = 1,2,3);

the time delay τi(t) (i= 1,2,3) are all nonnegative continuous almost periodic functions; Γik >

−1(i = 1,2,3) are constants and 0 = t0 < t1 < t2 < ...tk < tk+1 < ..., are impulse points with

lim
k→+∞

tk =+∞.

The organization of this paper is as follows. In Section2, we state some definitions lemmas

which are useful in later sections and make some preparations. In Section3, using Mawhins

continuation theorem of coincidence degree theory and some analytical approaches, we estab-

lish sufficient conditions for the existence of eight positive almost periodic solutions to system

(1.2). In Section 4, an example is given to illustrate our results obtained.

2. Preliminaries

In this section, we give a short introduction to some referred definitions and lemmas that will

come into play later on.

AP(R) = { f (t) : f (t) is a continuous, real valued, almost periodic function on R}. Suppose

that f (t,φ) is almost periodic in t, uniformly with respect to φ ∈C([−σ ,0],R). T ( f ,ε,S) will

denote the set of ε− almost periods with respect to S ⊂ C([−σ ,0],R), l(ε,S) the inclusion

interval, Λ( f ) the set of Fourier exponents, mod(f) the module of f, and m( f ) the mean value.

Let PC(R,Rn)={ϕ : R→Rn,ϕ is a piecewise continuous function with points of discontinuity

of the first kind at tk,k = 1,2, ..., at which ϕ(t−k ) and ϕ(t+k ) exist and ϕ(t−k ) = ϕ(tk)}.

Definition 2.1 [21] The family of sequences {t j
k = tk+ j−tk,k, j ∈ Z} is said to be equipotentially

almost periodic if for arbitrarye ε > 0, there exists a relatively dense set ε− almost periods, that

are common for any sequences.

Definition 2.2 [21] The function ϕ ∈ PC(R,R) is said to be almost periodic, if the following

conditions hold:

(1) the set of sequences {t j
k = tk+ j− tk,k, j ∈ Z} is equipotentially almost periodic;
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(2) for any ε > 0 there exists a real number δ = δ (ε)> 0 such that if the points t1 and t2 belong

to the same interval of continuity of ϕ(t) and |t1− t2|< δ , then |ϕ(t1)−ϕ(t2)|< ε;

(3) for any ε > 0 there exists a relatively dense set T of ε− almost periodic such that if τ ∈ T,

then |ϕ(t + τ)−ϕ(t)|< ε for all t ∈ R which satisfy the condition |t− tk|> ε,k ∈ Z.

Lemma 2.1 [18] If f (t) ∈ AP(R), then there exists t0 ∈ R such that f (t0) = m( f ).

lemma 2.2 [22] Assume that f (t) ∈ AP(R), then f (t) is bounded on R.

Lemma 2.3 [18] Assume that x(t) ∈ AP(R)∩C1(R,R), then there exist two point sequences

{ξk}∞
k=1, {ηk}∞

k=1, such that x
′
(ξk) = x

′
(ηk) = 0, lim

k→+∞
ξk =+∞ and lim

k→+∞
ηk =−∞.

Lemma 2.4 [18] Assume that x(t) ∈ AP(R)∩C1(R,R), then x(t) falls into one of the following

four cases:

(i) there are ξ ,η ∈ R such that x(ξ ) = sup
t∈R

x(t) and x(η) = inf
t∈R

x(t). In this case, x
′
(ξ ) = x

′
(η) =

0.

(ii) there are no ξ ,η ∈ R such that x(ξ ) = sup
t∈R

x(t) and x(η) = inf
t∈R

x(t). In this case, for any

ε > 0, there exist two points ξ ,η ∈ R such that x
′
(ξ ) = x

′
(η) = 0, x(ξ ) > sup

t∈R
x(t)− ε and

x(η)< inf
t∈R

x(t)+ ε .

(iii) there is a ξ ∈ R such that x(ξ ) = sup
t∈R

x(t) and there is no η ∈ R such that x(η) = inf
t∈R

x(t).

In this case, x
′
(ξ ) = 0 and for any ε > 0, there exist an η such that x

′
(η) = 0 and x(η) <

inf
t∈R

x(t)+ ε .

(iv) there is an η ∈ R such that x(η) = inf
t∈R

x(t) and there is no ξ ∈ R such that x(ξ ) = sup
t∈R

x(t). In

this case, x
′
(η)= 0 and for any ε > 0, there exist a ξ such that x

′
(ξ )= 0 and x(ξ )> sup

t∈R
x(t)−ε .

Consider the following system

x
′
1(t) = x1(t)

(
r1(t)−a11(t)x1(t)−a12(t)x2(t− τ2(t))

)
−h1(t),

x
′
2(t) = x2(t)

(
r2(t)+a21(t)x1(t− τ1(t))−a22(t)x2(t)−a23(t)x3(t− τ3(t))

)
−h2(t),

x
′
3(t) = x3(t)

(
r3(t)+a32(t)x2(t− τ2(t))−a33(t)x3(t)

)
−h3(t),

(2.1)
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where

a11(t) = a11(t) ∏
0<tk<t

(1+Γ1k), a12(t) = a12(t) ∏
0<tk<t

(1+Γ2k),

h1(t) = h1(t) ∏
0<tk<t

(1+Γ1k)
−1, a21(t) = a21(t) ∏

0<tk<t
(1+Γ1k),

a22(t) = a22(t) ∏
0<tk<t

(1+Γ2k), a23(t) = a23(t) ∏
0<tk<t

(1+Γ3k),

h2(t) = h2(t) ∏
0<tk<t

(1+Γ2k)
−1, a32(t) = a32(t) ∏

0<tk<t
(1+Γ2k),

a33(t) = a33(t) ∏
0<tk<t

(1+Γ3k), h3(t) = h3(t) ∏
0<tk<t

(1+Γ3k)
−1.

Lemma 2.5 For systems (1.2) and (2.1), the following results hold:

(1)if (x1(t),x2(t),x3(t))T is a solution of (1.2), then

(x1(t),x2(t),x3(t))T =
(

∏
0<tk<t

(1+Γ1k)
−1x1(t), ∏

0<tk<t
(1+Γ2k)

−1x2(t), ∏
0<tk<t

(1+Γ3k)
−1x3(t)

)T

is a solution of (2.1).

(2)if (x1(t),x2(t),x3(t))T is a solution of (2.1), then

(x1(t),x2(t),x3(t))T =
(

∏
0<tk<t

(1+Γ1k)x1(t), ∏
0<tk<t

(1+Γ2k)x2(t), ∏
0<tk<t

(1+Γ2k)x3(t)
)T

is a solution of (1.2).

Proof. (1) Suppose that (x1(t),x2(t),x3(t))T is a solution of (1.2). Let

x1(t) = ∏
0<tk<t

(1+Γ1k)
−1x1(t), x2(t) = ∏

0<tk<t
(1+Γ2k)

−1x2(t), x3(t) = ∏
0<tk<t

(1+Γ3k)
−1x3(t),
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we first show that x1(t),x2(t),x3(t) are continuous. Since x1(t),x2(t),x3(t) are continuous on

each interval (tk, tk+1], it is sufficient to check the continuity of x1(t),x2(t),x3(t) at the impulse

points tk,k ∈ Z+. Since

x1(t+k ) = ∏
0<ts≤tk

(1+Γ1s)
−1x1(t+k ) = (1+Γ1k)

−1
∏

0<ts<tk

((1+Γ1s)
−1(1+Γ1k)x1(tk) = x1(tk)

and

x1(t−k ) = ∏
0<ts<t−k

(1+Γ1s)
−1x1(t−k ) = ∏

0<ts<tk

(1+Γ1s)
−1x1(tk) = x1(tk),

thus x1(tk) is continuous on [0,+∞). Using the same method, we get x2(tk),x3(tk) is continuous

on [0,+∞). By substituting

x1(t) = ∏
0<tk<t

(1+Γ1k)x1(t), x2(t) = ∏
0<tk<t

(1+Γ2k)x2(t), x3(t) = ∏
0<tk<t

(1+Γ3k)x3(t)

into the equation of system (1.2), we obtain

x
′
1(t) = x1(t)

(
r1(t)−a11(t)x1(t)−a12(t)x2(t− τ2(t))

)
−h1(t),

x
′
2(t) = x2(t)

(
r2(t)+a21(t)x1(t− τ1(t))−a22(t)x2(t)−a23(t)x3(t− τ3(t))

)
−h2(t),

x
′
3(t) = x3(t)

(
r3(t)+a32(t)x2(t− τ2(t))−a33(t)x3(t)

)
−h3(t).

Therefore, (x1(t),x2(t),x3(t))T is a solution of (2.1).

(2) Suppose that (x1(t),x2(t),x3(t))T is a solution of (2.1). Let

x1(t) = ∏
0<tk<t

(1+Γ1k)x1(t), x2(t) = ∏
0<tk<t

(1+Γ2k)x2(t), x3(t) = ∏
0<tk<t

(1+Γ3k)x3(t),

then for any t 6= tk,k ∈ Z+, by substituting

x1(t) = ∏
0<tk<t

(1+Γ1k)
−1x1(t), x2(t) = ∏

0<tk<t
(1+Γ2k)

−1x2(t), x3(t) = ∏
0<tk<t

(1+Γ3k)
−1x3(t)

into the equation of system (2.1), we obtain

x
′
1(t) = x1(t)

(
r1(t)−a11(t)x1(t)−a12(t)x2(t− τ2(t))

)
−h1(t),

x
′
2(t) = x2(t)

(
r2(t)+a21(t)x1(t− τ1(t))−a22(t)x2(t)−a23(t)x3(t− τ3(t))

)
−h2(t),

x
′
3(t) = x3(t)

(
r3(t)+a32(t)x2(t− τ2(t))−a33(t)x3(t)

)
−h3(t).
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And for t = tk,k ∈ Z+, we obtain

x1(t+k ) = lim
t→tk+

∏
0<tk<t

(1+Γ1k)x1(t) = ∏
0<ts≤tk

(1+Γ1s)x1(tk)

= (1+Γ1k) ∏
0<ts<tk

(1+Γ1s)x1(tk) = (1+Γ1k)x1(tk).

Similarly, we have x2(t+k )= (1+Γ2k)x2(tk),x3(t+k )= (1+Γ2k)x3(tk). Therefore, (x1(t),x2(t),x3(t))T

is a solution of (1.2).

Lemma 2.6 [2] Let x> 0,y> 0,z> 0 and x> 2
√

yz, for the functions f (x,y,z) =
x+
√

x2−4yz
2z

and g(x,y,z) =
x−
√

x2−4yz
2z

, the following assertions hold.

(1) f (x,y,z) and g(x,y,z) are monotonically increasing and monotonically decreasing on the

variable x ∈ (0,+∞), respectively.

(2) f (x,y,z) and g(x,y,z) are monotonically decreasing and monotonically increasing on the

variable y ∈ (0,+∞), respectively.

(3) f (x,y,z) and g(x,y,z) are monotonically decreasing and monotonically increasing on the

variable z ∈ (0,+∞), respectively.

For the sake of convenience, we denote f l = inf
t∈[0,ω]

f (t), f M = sup
t∈[0,ω]

f (t) here f (t) is a con-

tinuous almost periodic function.

Throughout this paper, we need the following assumptions:

(H1) rl
1−aM

12l+2 > 2
√

aM
11h

M
1 , rl

2−aM
23l+3 > 2

√
aM

22h
M
2 , rl

3 > 2
√

aM
33h

M
3 ,

where

l±1 =
rM

1 ±
√
(rM

1 )2−4al
11h

l
1

2al
11

,

l±2 =
(rM

2 +aM
22l+1 )±

√
(rM

2 +aM
22l+1 )2−4al

22h
l
2

2al
22

,

l±3 =
(rM

3 +aM
32l+2 )±

√
(rM

3 +aM
32l+2 )2−4al

33h
l
3

2al
33

.
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(H2) The set of sequences {t j
k = tk+ j− tk,k, j ∈ Z} is uniformly almost periodic.

(H3) ∏
0<tk<t

(1+Γik),(i = 1,2) is almost periodic.

For simplicity, we need to introduce some notations as follows:

A±1 =
(rl

1−aM
12l+2 )±

√
(rl

1−aM
12l+2 )2−4aM

11h
M
1

2aM
11

,

A±2 =
(rl

2−aM
23l+3 )±

√
(rl

2−aM
23l+3 )2−4aM

22h
M
2

2aM
22

,

A±3 =
rl

3±
√

(rl
3)

2−4aM
33h

M
3

2aM
33

.

Lemma 2.7 For the following equation

r1(t)−a11(t)eu1(t)−h1(t)e−u1(t) = 0,

r2(t)−a22(t)eu2(t)−h2(t)e−u2(t) = 0,

r3(t)−a33(t)eu3(t)−h3(t)e−u3(t) = 0,

by the assumption H1 and lemma 2.6, we have the following inequalities

ln l−1 < lnu−1 < lnA−1 < lnA+
1 < lnu+1 < ln l+1 ,

ln l−2 < lnu−2 < lnA−2 < lnA+
2 < lnu+2 < ln l+2 ,

ln l−3 < lnu−3 < lnA−3 < lnA+
3 < lnu+3 < ln l+3 ,

where

u±1 =
r1(t)±

√
(r1(t))2−4a11(t)h1(t)

2a11(t)
,

u±2 =
r2(t)±

√
(r2(t))2−4a22(t)h2(t)

2a22(t)
,

u±3 =
r3(t)±

√
(r3(t))2−4a33(t)h3(t)

2a33(t)
.

3. Existence of multiple positive almost periodic solutions
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In this section, by using Mawhins continuation theorem, we will show a theorem about eight

positive almost periodic solutions for system (1.2).

Let X and Z be real normed vector spaces. Let L: DomL ⊂ X → Z be a linear mapping and

N : X× [0,1]→ Z be a continuous mapping. The mapping L will be called a Fredholm mapping

of index zero if dim KerL = codimImL < +∞ and ImL is closed in Z. If L is a Fredholm

mapping of index zero, then there exist continuous projectors P : X → X and Q : Z → Z such

that ImP = KerL and KerQ = ImL = Im(I−Q), and X = KerL⊕KerP, Z = ImL⊕ ImQ. It

follows that L|DomL
⋂

kerP : (I−P)X→ ImL is invertible and its inverse is denoted by Kp. If Ω is

a bounded open subset of X , the mapping N is called L− compact on Ω× [0,1], if QN(Ω× [0,1])

is bounded and Kp(I−Q)N : Ω× [0,1]→ X is compact. Because ImQ is isomorphic to KerL,

there exists an isomorphismJ:ImQ→ KerL.

Lemma 3.1 [23] Let L be a Fredholm mapping of index zero and let N be L−compact on

Ω× [0,1] Assume that:

(a) for each λ ∈ (0,1), every solution x of Lx = λN(x,λ ) is such that x /∈ ∂Ω∩DomL;

(b)QN(x,0)x 6= 0 for each x ∈ ∂Ω∩KerL;

(c )deg(JQN(x,0),Ω∩KerL,0) 6= 0.

Then Lx = N(x,1) has at least one solution in Ω
⋂

DomL.

In what follows, we always assume that (H3) holds.

Consider X = Z = V1
⊕

V2, V1 = {z(t) = (z1(t),z2(t),z3(t))T : zi(t) ∈ AP(R), mod (zi(t)) ⊆

mod(Fi),∀µ ∈Λ(zi(t)) satisfies |µ| ≥α,(i= 1,2,3)}, satisfies that V1∪{ri(t),ai2(t),a11(t),a21(t),

a23(t),a33(t),τi(t), hi(t),(i= 1,2,3)} is equipotentially almost periodic. V2 = {z(t)≡ (c1,c2,c3)∈

R3}, where

F1(t,ϕ1,ϕ2,ϕ3) = r1(t)−a11(t)eϕ1(0)−a12(t)eϕ2(−τ2(t))−h1(t)e−ϕ1(0),

F2(t,ϕ1,ϕ2,ϕ3) = r2(t)+a21(t)eϕ1(−τ1(t))−a22(t)eϕ2(0)−a23(t)eϕ3(−τ3(t))−h2(t)e−ϕ2(0),

F3(t,ϕ1,ϕ2,ϕ3) = r3(t)+a32(t)eϕ2(−τ2(t))−a33(t)eϕ3(0)−h3(t)e−ϕ3(0).
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in which ϕi ∈C([−τ,0),R), i = 1,2,3,τ = maxsup
t∈R
{τ1(t),τ2(t),τ3(t)} and α is given positive

constant. Define

‖z‖= sup
t∈R
|z1(t)|+ sup

t∈R
|z2(t)|+ sup

t∈R
|z3(t)| f or all z ∈ X = Z.

Similar to the proofs of Lemma 3.1, Lemma 3.2 in [19] and Lemma 3.3 in [20], one can

easily prove the following three lemmas, respectively.

Lemma 3.2 X and Z are Banach spaces equipped with the norm ‖.‖.

Lemma 3.3 Let L : X → Z,Lx = x
′
= (x

′
1,x

′
2,x

′
3)

T , then L is a Fredholm mapping of index zero.

Lemma 3.4 Let N : X× [0,1]→ Z, N(x(t),λ ) = (N(x1(t),λ ), N(x2(t),λ ), and N(x3(t),λ ))T =

(Gx
1,G

x
2,G

x
3)

T , where

Gx
1 = N(x1(t),λ ) = r1(t)−a11(t)ex1(t)−λa12(t)ex2(t−τ2(t))−h1(t)e−x1(t),

Gx
2 = N(x2(t),λ ) = r2(t)+λa21(t)ex1(t−τ1(t))−a22(t)ex2(t)−λa23(t)ex3(t−τ3(t))−h2(t)e−x2(t),

Gx
3 = N(x3(t),λ ) = r3(t)+λa32(t)ex2(t−τ2(t))−a33(t)ex3(t)−h3(t)e−x3(t)

and

P : X → X ,Px =
(

m(x1),m(x2),m(x3)
)T

, Q : Z→ Z,Qz =
(

m(z1),m(z2),m(z3)
)T

.

Then N is L−compact on Ω, where Ω is an open bounded subset of X.

Theorem 3.1 Assume that (H1)−(H3) hold, then system (1.2) has at least eight positive almost

periodic solutions.

Proof. By making the substitutions x1(t) = exp(u1(t)),x2(t) = exp(u2(t)),x3(t) = exp(u3(t))

then system (2.1) is reformulated as

u
′
1(t) = r1(t)−a11(t)eu1(t)−a12(t)eu2(t−τ2(t))−h1(t)e−u1(t),

u
′
2(t) = r2(t)+a21(t)eu1(t−τ1(t))−a22(t)eu2(t)−a23(t)eu3(t−τ3(t))−h2(t)e−u2(t),

u
′
3(t) = r3(t)+a32(t)eu2(t−τ2(t))−a33(t)eu3(t)−h3(t)e−u3(t).

(3.1)

Then if there exists almost periodic solution (u1(t),u2(t),u3(t))T of (3.1) , We can get at least

one positive almost periodic solutions (x1(t),x2(t),x3(t))T of (2.1).
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In order to use Lemma 3.1, we have to find at least eight appropriate open bounded subsets

X . Corresponding to the operator equation Lx = λN(x,λ ),λ ∈ (0,1), we have

u
′
1(t) = λ

(
r1(t)−a11(t)eu1(t)−λa12(t)eu2(t−τ2(t))−h1(t)e−u1(t)

)
,

u
′
2(t) = λ

(
r2(t)+λa21(t)eu1(t−τ1(t))−a22(t)eu2(t)−λa23(t)eu3(t−τ3(t))−h2(t)e−u2(t)

)
,

u
′
3(t) = λ

(
r3(t)+λa32(t)eu2(t−τ2(t))−a33(t)eu3(t)−h3(t)e−u3(t)

)
.

(3.2)

Assume that u = (u1,u2,u3)
T ∈ X is an almost periodic solution of system (3.2) for some λ ∈

(0,1). Then by Lemma 2.4, for any ε > 0 and a∈ R there exist ξi,ηi ∈ [a,a+ l(ε)]∩T (u,ε), i =

1,2,3 such that ui(ξi) > uM
i − ε,ui(ηi) < ul

i + ε and u
′
i(ξi) = u

′
i(ηi) = 0. From this and (3.2),

we have

r1(ξ1)−a11(ξ1)eu1(ξ1)−λa12(ξ1)eu2(ξ1−τ2(ξ1))−h1(ξ1)e−u1(ξ1) = 0,(a)

r2(ξ2)+λa21(ξ2)eu1(ξ2−τ1(ξ2))−a22(ξ2)eu2(ξ2)−λa23(ξ2)eu3(ξ2−τ3(ξ2))−h2(ξ2)e−u2(ξ2) = 0,(b)

r3(ξ3)+λa32(ξ3)eu2(ξ3−τ2(ξ3))−a33(ξ3)eu3(ξ3)−h3(ξ3)e−u3(ξ3) = 0,(c)
(3.3)

and

r1(η1)−a11(η1)eu1(η1)−λa12(η1)eu2(η1−τ2(η1))−h1(η1)e−u1(η1) = 0,(a)

r2(η2)+λa21(η2)eu1(η2−τ1(η2))−a22(η2)eu2(η2)−λa23(t)eu3(η2−τ3(η2))−h2(η2)e−u2(η2) = 0,(b)

r3(η3)+λa32(η3)eu2(η3−τ2(η3))−a33(η3)eu3(η3)−h3(η3)e−u3(η3) = 0.(c)
(3.4)

On the one hand, according to equation (a) of (3.3), we have

r1(ξ1)−a11(ξ1)eu1(ξ1)−h1(ξ1)e−u1(ξ1) = λa12(ξ1)eu2(ξ1−τ2(ξ1)) > 0,

then, we have

al
11e2u1(ξ1)− rM

1 eu1(ξ1)+h
l
1 ≤ a11(ξ1)e2u1(ξ1)− r1(ξ1)eu1(ξ1)+h1(ξ1)< 0,

namely,

al
11e2u1(ξ1)− rM

1 eu1(ξ1)+h
l
1 < 0,
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which implies that

ln
rM

1 −
√

(rM
1 )2−4al

11h
l
1

2al
11

< u1(ξ1)< ln
rM

1 +

√
(rM

1 )2−4al
11h

l
1

2al
11

,

namely,

ln l−1 < u1(ξ1)< ln l+1 . (3.5)

Similarly, from the equation (a) of (3.4), we obtain

ln l−1 < u1(η1)< ln l+1 . (3.6)

From (3.5) and the equation (b) of (3.3), we obtain

al
22eu2(ξ2)+h

l
2e−u2(ξ2) ≤ a22(ξ2)eu2(ξ2)+h2(ξ2)e−u2(ξ2)

< r2(ξ2)+λa21(ξ2)eu1(ξ2−τ1(ξ2))

< rM
2 +aM

21l+1 ,

that is

al
22e2u2(ξ2)− (rM

2 +aM
21l+1 )eu2(ξ2)+h

l
2 < 0,

which implies that

ln
(rM

2 +aM
22l+1 )−

√
(rM

2 +aM
22l+1 )2−4al

22h
l
2

2al
22

< u2(ξ2)< ln
(rM

2 +aM
22l+1 )+

√
(rM

2 +aM
22l+1 )2−4al

22h
l
2

2al
22

,

namely,

ln l−2 < u2(ξ2)< ln l+2 . (3.7)

Similarly from the equation (b) of (3.4), we obtain

ln l−2 < u2(η2)< ln l+2 . (3.8)

From (3.7) and the equation (c) of (3.3), we obtain

al
33eu3(ξ3)+h

l
3e−u3(ξ3) ≤ a33(ξ3)eu3(ξ3)+h3(ξ3)e−u3(ξ3)

= r3(ξ3)+λa32(ξ3)eu2(ξ3−τ2(ξ3))

< rM
3 +aM

32l+2 ,
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that is

al
33e2u3(ξ3)− (rM

3 +aM
32l+2 )eu3(ξ3)+h

l
3 < 0,

which implies that

ln
(rM

3 +aM
32l+2 )−

√
(rM

3 +aM
32l+2 )2−4al

33h
l
3

2al
33

< u3(ξ3)< ln
(rM

3 +aM
32l+2 )+

√
(rM

3 +aM
32l+2 )2−4al

33h
l
3

2al
33

,

namely,

ln l−3 < u3(ξ3)< ln l+3 . (3.9)

Similarly from the equation (c) of (3.4), we obtain

ln l−3 < u3(η3)< ln l+3 . (3.10)

On the other hand, by the equation (a) of (3.3) and (3.7), we obtain

rl
1 ≤ r1(ξ1) = a11(ξ1)eu1(ξ1)+λa12(ξ1)eu2(ξ1−τ2(ξ1))+h1(ξ1)e−u1(ξ1)

< aM
11eu1(ξ1)+aM

12l+2 +h
M
1 e−u1(ξ1),

so, we have

aM
11e2u1(ξ1)− (rl

1−aM
12l+2 )eu1(ξ1)+h

M
1 > 0,

which imply that

u1(ξ1)> ln
(rl

1−aM
12l+2 )+

√
(rl

1−aM
12l+2 )2−4aM

11h
M
1

2aM
11

= lnA+
1 ,

u1(ξ1)< ln
(rl

1−aM
12l+2 )−

√
(rl

1−aM
12l+2 )2−4aM

11h
M
1

2aM
11

= lnA−1 .

(3.11)

Similarly, we can obtain from the equation (a) of (3.4) that

u1(η1)> ln
(rl

1−aM
12l+2 )+

√
(rl

1−aM
12l+2 )2−4aM

11h
M
1

2aM
11

= lnA+
1 ,

u1(η1)< ln
(rl

1−aM
12l+2 )−

√
(rl

1−aM
12l+2 )2−4aM

11h
M
1

2aM
11

= lnA−1 .

(3.12)
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By the equation (b) of (3.3) and (3.9), we obtain

rl
2 ≤ r2(ξ2)

= −λa21(ξ2)eu1(ξ2−τ1(ξ2))+a22(ξ2)eu2(ξ2)+λa23(ξ2)eu3(ξ2−τ3(ξ2))+h2(ξ2)e−u2(ξ2)

< aM
22eu2(ξ2)+aM

23l+3 +h
M
2 e−u2(ξ2),

so, we have

aM
22e2u1(ξ1)− (rl

2−aM
23l+3 )eu2(ξ2)+h

M
2 > 0,

which imply that

u2(ξ1)> ln
(rl

2−aM
23l+3 )+

√
(rl

2−aM
23l+3 )2−4aM

22h
M
2

2aM
22

= lnA+
2 ,

u2(ξ1)< ln
(rl

2−aM
23l+3 )−

√
(rl

2−aM
23l+3 )2−4aM

22h
M
2

2aM
22

= lnA−2 .

(3.13)

Similarly, we can obtain from the equation (b) of (3.4) that

u2(η2)> ln
(rl

2−aM
23l+3 )+

√
(rl

2−aM
23l+3 )2−4aM

22h
M
2

2aM
22

= lnA+
2 ,

u2(η2)< ln
(rl

2−aM
23l+3 )−

√
(rl

2−aM
23l+3 )2−4aM

22h
M
2

2aM
22

= lnA−2 .

(3.14)

By the equation (c) of (3.3), we obtain

rl
3 ≤ r3(ξ3) = −λa32(ξ3)eu2(ξ3−τ2(ξ2))+a33(ξ3)eu3(ξ3)+h3(ξ3)e−u3(ξ3)

< aM
33eu3(ξ3)+h

M
3 e−u3(ξ3),

so, we have

aM
33e2u3(ξ3)− rl

3eu3(ξ3)+h
M
3 > 0,

which imply that

u3(ξ3)> ln
rl

3 +

√
(rl

3)
2−4aM

33h
M
3

2aM
33

= lnA+
3 ,

u3(ξ3)< ln
rl

3−
√

(rl
3)

2−4aM
33h

M
3

2aM
33

= lnA−3 .

(3.15)
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Similarly, we can obtain from the equation (c) of (3.4) that

u3(η3)> ln
rl

3 +

√
(rl

3)
2−4aM

33h
M
3

2aM
33

= lnA+
3 ,

u3(η3)< ln
rl

3−
√

(rl
3)

2−4aM
33h

M
3

2aM
33

= lnA−3 .

(3.16)

It follows from (3.5)-(3.10),(3.11)-(3.16) and Lemma 2.7, we get

ln l−1 < u1(t)< lnA−1 or lnA+
1 < u1(t)< ln l+1 ,

ln l−2 < u2(t)< lnA−2 or lnA+
2 < u2(t)< ln l+2 ,

ln l−3 < u3(t)< lnA−3 or lnA+
3 < u3(t)< ln l+3 .

Clearly, ln l±1 , ln l±2 , ln l±3 , lnA±1 , lnA±2 , lnA±3 , are independent of λ . We denote

Ω1 = {u = (u1,u2,u3)
T ∈ X |u1(t) ∈ (ln l−1 , lnA−1 ),u2(t) ∈ (ln l−2 , lnA−2 ),u3(t) ∈ (ln l−3 , lnA−3 )},

Ω2 = {u = (u1,u2,u3)
T ∈ X |u1(t) ∈ (ln l−1 , lnA−1 ),u2(t) ∈ (ln l−2 , lnA−2 ),u3(t) ∈ (ln l+3 , lnA+

3 )},

Ω3 = {u = (u1,u2,u3)
T ∈ X |u1(t) ∈ (ln l−1 , lnA−1 ),u2(t) ∈ (ln l+2 , lnA+

2 ),u3(t) ∈ (ln l−3 , lnA−3 )},

Ω4 = {u = (u1,u2,u3)
T ∈ X |u1(t) ∈ (ln l−1 , lnA−1 ),u2(t) ∈ (ln l+2 , lnA+

2 ),u3(t) ∈ (ln l+3 , lnA+
3 )},

Ω5 = {u = (u1,u2,u3)
T ∈ X |u1(t) ∈ (ln l+1 , lnA+

1 ),u2(t) ∈ (ln l+2 , lnA+
2 ),u3(t) ∈ (ln l−3 , lnA−3 )},

Ω6 = {u = (u1,u2,u3)
T ∈ X |u1(t) ∈ (ln l+1 , lnA+

1 ),u2(t) ∈ (ln l−2 , lnA−2 ),u3(t) ∈ (ln l−3 , lnA−3 )},

Ω7 = {u = (u1,u2,u3)
T ∈ X |u1(t) ∈ (ln l+1 , lnA+

1 ),u2(t) ∈ (ln l−2 , lnA−2 ),u3(t) ∈ (ln l+3 , lnA+
3 )},

Ω8 = {u = (u1,u2,u3)
T ∈ X |u1(t) ∈ (ln l+1 , lnA+

1 ),u2(t) ∈ (ln l+2 , lnA+
2 ),u3(t) ∈ (ln l+3 , lnA+

3 )}.

Thus Ωk,k = 1,2,3,4,5,6,7,8 are bounded open subsets of X , Ωi ∩Ω j = /0, i 6= j. Thus Ωk

satisfies the requirement (a) in Lemma 3.1.

Now we show that (b) of Lemma 3.1 holds, i.e., we prove when u ∈ ∂Ωi ∩KerL = ∂Ωi ∩

R3,QN(u,0) 6= (0,0,0)T , i = 1,2,3,4,5,6,7,8. If it is not true, then when u ∈ ∂Ωi ∩KerL =
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∂Ωi∩R3, i= 1,2,3,4,5,6,7,8. constant vector u=(u1,u2,u3)
T with u∈ ∂Ωi, i= 1,2,3,4,5,6,7,8

satisfies

m
(

r1(t)−a11(t)eu1−h1(t)e−u1
)
= 0,

m
(

r2(t)−a22(t)eu2−h2(t)e−u2
)
= 0,

m
(

r3(t)−a33(t)eu3−h3(t)e−u3
)
= 0.

In view of the mean value theorem of calculous, there exist three points ζ1,ζ2,ζ3 such that

r1(ζ1)−a11(ζ1)eu1−h1(ζ1)e−u1 = 0,

r2(ζ2)−a22(ζ2)eu2−h2(ζ2)e−u2 = 0,

r3(ζ3)−a33(ζ3)eu3−h3(ζ3)e−u3 = 0.

(3.17)

From (3.17), we have

u±1 = ln
r1(ζ1)±

√
(r1(ζ1))2−4a11(ζ1)h1(ζ1)

2a11(ζ1)
,

u±2 = ln
r2(ζ2)±

√
(r2(ζ2))2−4a22(ζ2)h2(ζ2)

2a22(ζ2)
,

u±3 = ln
r3(ζ3)±

√
(r3(ζ3))2−4a33(ζ3)h3(ζ3)

2a33(ζ3)
.

(3.18)

According to Lemma 2.7, we obtain

ln l−1 < lnu−1 < lnA−1 < lnA+
1 < lnu+1 < ln l+1 ,

ln l−2 < lnu−2 < lnA−2 < lnA+
2 < lnu+2 < ln l+2 ,

ln l−3 < lnu−3 < lnA−3 < lnA+
3 < lnu+3 < ln l+3 .

(3.19)

Then u belongs to one of Ωi∩R3, i = 1,2,3,4,5,6,7,8. This contradicts the fact that u ∈ ∂Ωi∩

R3, i = 1,2,3,4,5,6,7,8. This proves (b) in Lemma 3.1 holds.
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Finally, we show that (c) in Lemma 3.1 holds. Note that the system of algebraic equations

r1(ζ1)−a11(ζ1)ex−h1(ζ1)e−x = 0,

r2(ζ2)−a22(ζ2)ey−h2(ζ2)e−y = 0,

r3(ζ3)−a33(ζ3)ez−h3(ζ3)e−z = 0,

has eight distinct solutions since H1 holds:

(x∗1,y
∗
1,z
∗
1) = (lnx−, lny−, lnz−), (x∗2,y

∗
2,z
∗
2) = (lnx−, lny−, lny+),

(x∗3,y
∗
3,y
∗
3) = (lnx−, lny+, lnz−), (x∗4,y

∗
4,z
∗
4) = (lnx−, lny+, lnz+),

(x∗5,y
∗
5,z
∗
5) = (lnx+, lny+, lnz−), (x∗6,y

∗
6,z
∗
6) = (lnx+, lny−, lny−),

(x∗7,y
∗
7,y
∗
7) = (lnx+, lny−, lnz+), (x∗8,y

∗
8,z
∗
8) = (lnx+, lny+, lnz+),

where

x± =
r1(ζ1)±

√
(r1(ζ1))2−4a11(ζ1)h1(ζ1)

2a11(ζ1)
,

y± =
r2(ζ2)±

√
(r2(ζ2))2−4a22(ζ2)h2(ζ2)

2a22(ζ2)
,

z± =
r3(ζ3)±

√
(r3(ζ3))2−4a33(ζ3)h3(ζ3)

2a33(ζ3)
.

From (3.18),(3.19), we have

(x∗1,y
∗
1,z
∗
1) ∈Ω1, (x∗2,y

∗
2,z
∗
2) ∈Ω2, (x∗3,y

∗
3,z
∗
3) ∈Ω3, (x∗4,y

∗
4,z
∗
4) ∈Ω4,

(x∗5,y
∗
5,z
∗
5) ∈Ω5, (x∗6,y

∗
6,z
∗
6) ∈Ω6, (x∗7,y

∗
7,z
∗
7) ∈Ω7, (x∗8,y

∗
8,z
∗
8) ∈Ω8.
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Since KerL = ImQ, we can take J = I. A direct computation gives, we get

deg{JQN(u,0),Ωi∩KerL,(0,0,0)T}

= sign

∣∣∣∣∣∣∣∣∣∣∣∣

−a11(ζ1)x∗+
h1(ζ1)

x∗
0 0

0 −a22(ζ2)y∗+
h2(ζ2)

y∗
0

0 0 −a33(ζ3)z∗+
h3(ζ3)

z∗

∣∣∣∣∣∣∣∣∣∣∣∣
= sign[(−a11(ζ1)x∗+

h1(ζ1)

x∗
)(−a22(ζ2)y∗+

h2(ζ2)

y∗
)(−a33(ζ3)z∗+

h3(ζ3)

z∗
)].

Since

r1(ζ1)−a11(ζ1)x∗−
h1(ζ1)

x∗
= 0,

r2(ζ2)−a22(ζ2)y∗−
h2(ζ2)

y∗
= 0,

r3(ζ3)−a33(ζ3)z∗−
h3(ζ3)

z∗
= 0,

then

deg{JQN(u,0),Ωi∩KerL,(0,0,0)T}

= sign[(r1(ζ1)−2a11(ζ1)x∗)(r2(ζ2)−2a22(ζ2)y∗)(r3(ζ3)−2a33(ζ3)y∗)], i = 1,2,3,4,5,6,7,8.

Thus

deg{JQN(u,0),Ω1∩KerL,(0,0,0)T}=−1, i = 1,4,5,7,

deg{JQN(u,0),Ω2∩KerL,(0,0,0)T}= 1, i = 2,3,6,8.

namely,

deg{JQN(u,0),Ωi∩KerL,(0,0,0)T} 6= 0, i = 1,2,3,4,5,6,7,8.

So far, we have proved that Ωk,k = 1,2,3,4,5,6,7,8 satisfies all the assumptions in Lemma

3.1. Hence, system (3.1) has at least 8 different almost periodic solutions. So, system (2.1) has

at least 8 different positive almost periodic solutions. If (x(t),y(t),z(t))T is an almost periodic

solution of system (2.1), by using Lemma 2.5, we know that(
x(t) = ∏

0<tk<t
(1+Γ1k)x(t),y(t) = ∏

0<tk<t
(1+Γ2k)y(t),z(t) = ∏

0<tk<t
(1+Γ3k)z(t)

)T
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is a solution of system (1.2). Therefore, system (1.2) has at least 8 different positive almost

periodic solutions. This completes the proof of Theorem 3.1.

Consider the following non-autonomous Lotka-Volterra predator-prey system with harvesting

terms

x
′
1(t) = x1(t)

(
r1(t)−a11(t)x1(t)−a12(t)x2(t− τ2(t))

)
−h1(t),

x
′
2(t) = x2(t)

(
r2(t)+a21(t)x1(t− τ1(t))−a22(t)x2(t)−a23(t)x3(t− τ3(t))

)
−h2(t),

x
′
3(t) = x3(t)

(
r3(t)+a32(t)x2(t− τ2(t))−a33(t)x3(t)

)
−h3(t).

(3.20)

Similar to the proof of Theorem 3.1, one can easily obtain

Corollary 3.1 Assume that the following condition holds

(H
′
1) rl

1− aM
12l+2 > 2

√
aM

11hM
1 , rl

2− aM
23l+3 > 2

√
aM

22hM
2 , rl

3 > 2
√

aM
33hM

3 . Then system(3.20) has

at least 8 different positive almost periodic solutions. Since condition unrelated to delays, thus,

if τi(t)≡ 0(i = 1,2,3), our results also supplement the results of Liu and Wei (see[1]).

4. An example

Consider the following three species non-autonomous Lotka-Volterra predator-prey with with

impulsive and harvesting terms:

x
′
1(t) = x1(t)

(
3+ sin

√
2t− 8+2cos t

17
x1(t)−

2+ cos t
90

x2(t−5|sin t|)
)
− 153+17cos

√
5t

400
, t 6= tk,

x
′
2(t) = x2(t)

(
4+ cos

√
3t +

4+2sin t
17

x1(t−3|sin t|)− 6+ cos t
9

x2(t)−
2+ cos t

88
x3(t−2|sin t|)

)
−18+9cos t

50
, t 6= tk,

x
′
3(t) = x3(t)

(
3+ cos

√
2t +

2+ sin t
9

x2(t−5|sin t|)− 30+5cos t
44

x3(t)
)
− 44+22cos

√
3t

125
, t 6= tk,

x1(t+k ) = (1+(−0.15))x1(tk), t = tk,

x2(t+k ) = (1+(−0.1))x2(tk), t = tk,

x3(t+k ) = (1+(−0.12))x3(tk), t = tk.
(4.1)
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In this case, r1(t)= 3+sin
√

2t, a11(t)=
8+2cos t

17
, a12(t)=

2+ cos t
90

, h1(t)=
153+17cos

√
5t

400
,

r2(t)= 4+cos
√

3t, a21(t)=
4+2sin t

17
, a22(t)=

6+ cos t
9

, a23(t)=
2+ cos t

88
, h2(t)=

18+9cos t
50

,

r3(t) = 3+ cos
√

2t, a32(t) =
2+ sin t

9
, a33(t) =

30+5cos t
44

, h3(t) =
44+22cos

√
3t

125
. τ1(t) =

3|sin t|, τ2(t)= 5|sin t|, τ3(t)= 2|sin t|. Then, we have a11(t)= a11(t) ∏
0<tk<t

(1+Γ1k)=
8+2cos t

17
(1+

(−0.15))=
4+ cos t

10
, a12(t)= a12(t) ∏

0<tk<t
(1+Γ2k)=

2+ cos t
90

(1+(−0.1))=
2+ cos t

100
, h1(t)=

h1(t) ∏
0<tk<t

(1+Γ1k)
−1 =

153+17cos
√

5t
400

(1+(−0.15))−1 =
9+ cos

√
5t

20
, a21(t)= a21(t) ∏

0<tk<t
(1+

Γ1k)=
4+2sin t

17
(1+(−0.15))=

2+ sin t
10

, a22(t)= a22(t) ∏
0<tk<t

(1+Γ2k)=
6+ cos t

9
(1+(−0.1))=

6+ cos t
10

, a23(t)= a23(t) ∏
0<tk<t

(1+Γ3k)=
2+ cos t

88
(1+(−0.12))=

2+ cos t
100

, h2(t)= h2(t) ∏
0<tk<t

(1+

Γ2k)
−1 =

18+9cos t
50

(1+(−0.1))−1 =
2+ cos t

5
, a32(t) = a32(t) ∏

0<tk<t
(1+Γ2k) =

2+ sin t
9

(1+

(−0.1)) =
2+ sin t

10
, a33(t) = a33(t) ∏

0<tk<t
(1 + Γ3k) =

30+5cos t
44

(1 + (−0.12)) =
6+ cos t

10
,

h3(t) = h3(t) ∏
0<tk<t

(1+Γ3k)
−1 =

44+22cos
√

3t
125

(1+(−0.12))−1 =
2+ cos

√
3t

5
. Since

l+1 =
rM

1 +

√
(rM

1 )2−4al
11h

l
1

2al
11

=
4+

√
42−4× 3

10
× 8

20

2× 3
10

=
20+2

√
97

3
<

40
3
,

l+2 =
(rM

2 +aM
22l+1 )+

√
(rM

2 +aM
22l+1 )2−4al

22h
l
2

2al
22

<
(5+

7
10
× 40

3
)+

√
(5+

7
10
× 40

3
)2−4× 5

10
× 1

5

2× 5
10

< 30,

l+3 =
(rM

3 +aM
32l+2 )+

√
(rM

3 +aM
32l+2 )2−4al

33h
l
3

2al
33

=
(4+

3
10
×20)+

√
(4+

3
10
×20)2−4× 5

10
× 1

5

2× 5
10

< 26,
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then

rl
1−aM

12l+2 > 2− 3
100
×30 > 2

√
5

10
× 10

20
= 2
√

aM
11h

M
1 ,

rl
2−aM

23l+3 > 3− 3
100
×26 > 2

√
7

10
× 3

5
= 2
√

aM
22h

M
2 ,

rl
3 = 2 > 2

√
7

10
× 3

5
= 2
√

aM
33h

M
3 .

Hence, all conditions of Theorem 3.1 are satisfied, then, the system (4.1) has at least eight

positive almost periodic solutions.
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