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Abstract. In this paper, we investigate a Lotka-Volterra cooperative system with time delays and feedback controls.

By applying new inequalities, we obtain some new sufficient conditions which ensure the system to be permanent.

Our results show that feedback control variables have no influence on the permanence of the system, which enrich

the previous corresponding research results.
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1. Introduction

In virtue of their significance in theory and practice, the Lotka-Volterra systems with time

delays have been extensively studied. As one of the important interactions among species, co-

operative behavior is commonly seen in animal society and human society. The study of Lotka-

Volterra cooperative models with delays have attracted the interest of many researchers(see for

example, [1-7] and references cited therein). In [1], Lu, Lu and Lian studied the permanence of
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the following Lotka-Volterra system with discrete delays

ẋ1(t) = x1(t)
[
r1−a1x1(t)−a11x1(t− τ11)+a12x2(t− τ12)

]
,

ẋ2(t) = x2(t)
[
r2−a2x2(t)+a21x1(t)−a22x2(t− τ22)

]
, (1.1)

with initial conditions

xi(t) = φi(t)≥ 0, t ∈ [−τ0,0]; φi(0)> 0 (i = 1,2)

where ri,ai,ai j and τi j are constants with ai > 0,τi j ≥ 0(i, j = 1,2) and τ0 = max{τi j : i, j =

1,2}, φi(t) is continuous on [−τ0,0]. In the cooperative case (a12 > 0,a21 > 0), they obtained

the main result.

Theorem A. If τ11 = τ12 = τ22 = τ , ai = a ji < aii(i 6= j, i, j = 1,2) and (a1 +a11)(a2 +a22)−

a12a21 > 0, then system (1.1) is permanent.

Moreover, they gave an example (see example 4.1 in [1]) to show that the size of time delays

can destroy the permanence of system (1.1). To eliminate the influence of the size of delays on

the permanence, Nakata and Muroya [2] considered the following nonautonomous two species

Lotka-Volterra cooperative population systems

ẋ1(t) = x1(t)
[
r1(t)−a1

11(t)x1(t− τ)−a2
11(t)x1(t−2τ)+a1

12(t)x2(t− τ)
]
,

ẋ2(t) = x2(t)
[
r2(t)+a0

21(t)x1(t)+a1
21(t)x1(t− τ)−a0

22(t)x2(t)−a1
22(t)x2(t− τ)

]
, (1.2)

with initial conditions

x1(t) = Φ1(t)≥ 0, t ∈ [−2τ,0); Φ1(0)> 0,

x2(t) = Φ2(t)≥ 0, t ∈ [−τ,0); Φ2(0)> 0.

Through establishing new inequalities (one can see Lemma 2.2 - Lemma 2.4 in [2]), they ob-

tained weaker conditions which is not dependent on the size of time delays to prove that the

cooperative system (1.2) is permanent. For more works on the permanence of cooperative sys-

tem with delays, one could refer to [1-3,6,14] and the references cited therein.

In another aspect, ecosystems in the real world are often distributed by unpredictable forces

which can result in changes in biological parameters such as survival rates, so it is necessary to
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study models with control variables which are so-called disturbance functions [8-15]. Recently,

Fan and Wang [10], Nie, Peng and Teng [11] , Chen [12,13] and Chen [14] investigated the per-

sistent property of discrete or continuous feedback control systems with delays. It is interesting

that all of their research results show that feedback controls have no influence on the persistent

property of these systems.

However, to the best of the authors’ knowledge, there are few scholars who study the Lotka-

Volterra cooperative system with feedback control. Whether the feedback control variables play

an essential role on the persistent property of Lotka-Volterra cooperative system or not? To find

an answer to this question, we investigate the following Lotka-Volterra cooperative system with

time delays and feedback controls

ẋ1(t) = x1(t)
[
r1(t)−a1(t)x1(t)−a11(t)x1(t− τ)+a12(t)x2(t− τ)−b1(t)u1(t−σ1)

]
,

ẋ2(t) = x2(t)
[
r2(t)−a2(t)x2(t)+a21(t)x1(t)−a22(t)x2(t− τ)−b2(t)u2(t−σ2)

]
,

u̇1(t) =−c1(t)u1(t)+d1(t)x1(t−η1),

u̇2(t) =−c2(t)u2(t)+d2(t)x2(t−η2), (1.3)

where xi(t) denotes the density of ith cooperative species Xi, ui(t) is the control variable, i= 1,2.

ri(t),ai(t),bi(t),ci(t),di(t),ai j(t)(i, j = 1,2) are all continuous, real-valued functions which are

bounded above and below by positive constants. τ,σi,ηi(i = 1,2) are positive constants and

δ = max{τ,σ1,σ2,η1,η2}.

We consider system (1.3) with the following initial conditions

xi(s) = ϕi(s), s ∈ [−δ ,0], ϕi(0)> 0,

ui(s) = ψi(s), s ∈ [−δ ,0], ψi(0)> 0, (1.4)

where ϕi(s) and ψi(s) are continuous on [−δ ,0]. It is not difficult to see that solutions of (1.3)

and (1.4) are well defined for all t ≥ 0 and satisfy

xi(t)> 0,ui(t)> 0 for t ≥ 0, i = 1,2.

For a continuous bounded function f (t) defined on [0,+∞), we set

f µ = sup
0≤t<+∞

f (t) and f l = inf
0≤t<+∞

f (t).
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More precisely, in this paper, we will prove the following results.

Theorem 1.1. Assume that al
11 > aµ

21,a
l
1 > aµ

21 and al
22 > aµ

12,a
l
2 > aµ

12. Then system (1.3) is

permanent.

As a direct consequence, the following conditions for autonomous case to (1.3) are obtained.

Now we set ai(t) = ai,ai j(t) = ai j for i, j = 1,2.

Corollary 1.2. Assume that a11 > a21,a1 > a21 and a22 > a12,a2 > a12. Then system (1.3) is

permanent.

Remark 1.3. Theorem 1.1 and Corollary 1.2 show that feedback control variables have no

influence on the persistent property of the system (1.3). Obviously, compared with Theorem

A of Lu, Lu and Lian [1], Corollary 1.2 not only is founded in weaker conditions, but also is

suitable for more extensive application. Therefore, our results give some more deeply insight

on the dynamic behaviors of the Lotka-Volterra cooperative system with feedback controls.

2. Lemmas and proof of theorem

At first, let us introduce some basic and important lemmas.

Lemma 2.1. [9] If a> 0,b> 0 and
dx
dt
≥ b−ax, when t ≥ 0 and x(0)> 0, we have liminf

t→+∞
x(t)≥

b
a

. If a > 0,b > 0 and
dx
dt
≤ b−ax, when t ≥ 0 and x(0)> 0, we have limsup

t→+∞

x(t)≤ b
a

.

Lemma 2.2.[9] If a> 0,b> 0 and
dx
dt
≥ x(b−ax), when t ≥ 0 and x(0)> 0, we have liminf

t→+∞
x(t)≥

b
a

. If a > 0,b > 0 and
dx
dt
≤ x(b−ax), when t ≥ 0 and x(0)> 0, we have limsup

t→+∞

x(t)≤ b
a

.

Lemma 2.3.(see [13, Lemma 2.2]) Assume that a > 0,b(t) > 0 is a boundedness continuous

function and x(0)> 0. Further suppose that

dx(t)
dt
≤−ax(t)+b(t),

then for all t ≥ s≥ 0,

x(t)≤ x(t− s)exp{−as}+
∫ t

t−s
b(τ)exp{a(τ− t)}dτ. (2.1)
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Especially, if b(t) is bounded above with respect to M, then

limsup
t→+∞

x(t)≤ M
a
. (2.2)

Lemma 2.4. (see [2, Lemma 2.2]) Assume that for y(t)> 0, it holds that

dy(t)
dt
≤ y(t)

(
λ −

m

∑
l=0

µ
ly(t− lτ)

)
+D,

with initial conditions y(t) = φ(t)≥ 0 for t ∈ [−mτ,0) and φ(0)> 0, where

λ > 0, µ
l ≥ 0(l = 0,1,2, · · · ,m), µ =

m

∑
l=0

µ
l > 0 and D≥ 0

are constants. Then there exists a positive constant My <+∞ such that

limsup
t→+∞

y(t)≤My =−
D
λ
+
(D

λ
+ y∗

)
exp(λmτ)<+∞,

where y = y∗ is the unique solution of y(λ −µy)+D = 0.

From now on, we will prove the boundedness of xi(t) and ui(t), for i = 1,2.

Lemma 2.5. For system (1.3) with initial conditions (1.4), suppose that al
11 > aµ

21,a
l
1 > aµ

21 and

al
22 > aµ

12,a
l
2 > aµ

12 hold, then there exist positive constants P1 and P2 such that

limsup
t→+∞

x1(t)x2(t)≤ P1 =
(rµ

1 + rµ

2 )
2

al
11(a

l
22−aµ

12)
exp
(
(rµ

1 + rµ

2 )τ
)
<+∞, (2.3)

limsup
t→+∞

x1(t)x2(t− τ)≤ P2 =
(rµ

1 + rµ

2 )
2

al
22(a

l
11−aµ

21)
exp
(
(rµ

1 + rµ

2 )τ
)
<+∞. (2.4)

Proof. Firstly, suppose that limsup
t→+∞

x1(t)x2(t) = +∞. Then there exists a subsequence {t(1)k }
+∞

k=1

such that

lim
k→+∞

x1(t
(1)
k )x2(t

(1)
k ) = +∞ and

d
dt

(
x1(t)x2(t)

)
|
t=t(1)k

≥ 0, k = 1,2, · · · . (2.5)

From (1.3), we obtain the following equation

d
dt

(
x1(t)x2(t)

)
= x1(t)x2(t)

[
r1(t)+ r2(t)− (a1(t)−a21(t))x1(t)−a11(t)x1(t− τ)−a2(t)x2(t)

−(a22(t)−a12(t))x2(t− τ)−b1(t)u1(t−σ1)−b2(t)u2(t−σ2)
]

≤ x1(t)x2(t)
[
rµ

1 + rµ

2 − (al
1−aµ

21)x1(t)−al
11x1(t− τ)− (al

22−aµ

12)x2(t− τ)
]

(2.6)
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From (2.5), (2.6) and the assumption of the lemma, it holds that

rµ

1 + rµ

2 ≥ (al
1−aµ

21)x1(t
(1)
k )+al

11x1(t
(1)
k − τ)+(al

22−aµ

12)x2(t
(1)
k − τ).

It implies that x1(t
(1)
k − τ) ≤

rµ

1 + rµ

2

al
11

and x2(t
(1)
k − τ) ≤

rµ

1 + rµ

2

al
22−aµ

12
. Moreover, integrating both

sides of (2.6) from t(1)k − τ to t(1)k , we have

x1(t
(1)
k )x2(t

(1)
k )≤ x1(t

(1)
k − τ)x2(t

(1)
k − τ)exp

(
(rµ

1 + rµ

2 )τ
)

≤
(rµ

1 + rµ

2 )
2

al
11(a

l
22−aµ

12)
exp
(
(rµ

1 + rµ

2 )τ
)
<+∞.

It leads to a contradiction to our consumption. Thus, we obtain that

limsup
t→+∞

x1(t)x2(t)<+∞.

Furthermore, similar to the above discussion, we get that

limsup
t→+∞

x1(t)x2(t)≤
(rµ

1 + rµ

2 )
2

al
11(a

l
22−aµ

12)
exp
(
(rµ

1 + rµ

2 )τ
)
= P1 <+∞.

Secondly, suppose that limsup
t→+∞

x1(t)x2(t−τ)=+∞. Then there exists a subsequence {t(2)k }
+∞

k=1

such that

t(2)k > τ, lim
k→+∞

x1(t
(2)
k )x2(t

(2)
k − τ) = +∞ and

d
dt

(
x1(t)x2(t− τ)

)
|
t=t(2)k

≥ 0, k = 1,2, · · · .

(2.7)

From (1.3), we obtain the following equation

d
dt

(
x1(t)x2(t−τ)

)
= x1(t)x2(t−τ)

[
r1(t)+r2(t−τ)−a1(t)x1(t)−(a11(t)−a21(t−τ))x1(t−τ)

−(a2(t− τ)−a12(t))x2(t− τ)−a22(t− τ)x2(t−2τ)−b1(t)u1(t−σ1)

−b2(t− τ)u2(t− τ−σ2)
]

≤ x1(t)x2(t− τ)
[
rµ

1 + rµ

2 − (al
11−aµ

21)x1(t− τ)− (al
2−aµ

12)x2(t− τ)

−al
22x2(t−2τ)

]
. (2.8)

From (2.7), (2.8) and our assumption, it holds that

rµ

1 + rµ

2 ≥ (al
11−aµ

21)x1(t
(2)
k − τ)+(al

2−aµ

12)x2(t
(2)
k − τ)+al

22x2(t
(2)
k −2τ).
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It implies that x1(t
(2)
k − τ)≤

rµ

1 + rµ

2

al
11−aµ

21
and x2(t

(2)
k −2τ)≤

rµ

1 + rµ

2

al
22

. Moreover, integrating both

sides of (2.8) from t(2)k − τ to t(2)k , we have

x1(t
(2)
k )x2(t

(2)
k − τ)≤ x1(t

(2)
k − τ)x2(t

(2)
k −2τ)exp

(
(rµ

1 + rµ

2 )τ
)

≤
(rµ

1 + rµ

2 )
2

al
22(a

l
11−aµ

21)
exp
(
(rµ

1 + rµ

2 )τ
)
<+∞.

It leads to a contradiction to our consumption. Thus, we obtain that limsup
t→+∞

x1(t)x2(t−τ)<+∞.

Furthermore, similar to the above discussion, we get that

limsup
t→+∞

x1(t)x2(t− τ)≤
(rµ

1 + rµ

2 )
2

al
22(a

l
11−aµ

21)
exp
(
(rµ

1 + rµ

2 )τ
)
= P2 <+∞.

The proof is complete.

Lemma 2.6 Assume that al
11 > aµ

21,a
l
1 > aµ

21 and al
22 > aµ

12,a
l
2 > aµ

12, then for any positive

solution (x1(t),x2(t),u1(t),u2(t))T of system (1.3), there exists a positive constant M such that

limsup
t→+∞

xi(t)≤M, limsup
t→+∞

ui(t)≤M, i = 1,2.

Proof. Let (x1(t),x2(t),u1(t),u2(t))T be a solution of system (1.3) satisfies the initial conditions

(1.4). From Lemma 2.5, there exists a large enough T1 > 0 such that x1(t)x2(t) ≤ 2P1 and

x1(t)x2(t − τ) ≤ 2P2, for all t ≥ T1. And according to the first equation of system (1.3), for

t ≥ T1,

dx1(t)
dt

≤ x1(t)
[
rµ

1 −al
1x1(t)−al

11x1(t− τ)+aµ

12x2(t− τ)−bl
1u1(t−σ1)

]
≤ x1(t)

[
rµ

1 −al
1x1(t)−al

11x1(t− τ)
]
+2aµ

12P2.

By applying Lemma 2.4 to above inequality, we have

limsup
t→+∞

x1(t)≤−
2aµ

12P2

rµ

1
+
(2aµ

12P2

rµ

1
+ y∗1

)
exp(rµ

1 τ), Mx1 <+∞, (2.9)

where y∗1 is the unique positive solution of y[rµ

1 − (al
1 +al

11)y]+2aµ

12P2 = 0.

Similarly, for t ≥ T1,

dx2(t)
dt

≤ x2(t)
[
rµ

2 −al
2x2(t)+aµ

21x1(t)−al
22x2(t− τ)−bl

2u2(t−σ2)
]

≤ x2(t)
[
rµ

2 −al
2x2(t)−al

22x2(t− τ)
]
+2aµ

21P1.
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Again from Lemma 2.4, we have

limsup
t→+∞

x2(t)≤−
2aµ

21P1

rµ

2
+
(2aµ

21P1

rµ

2
+ y∗2

)
exp(rµ

2 τ), Mx2 <+∞, (2.10)

where y∗2 is the unique positive solution of y[rµ

2 − (al
2 +al

22)y]+2aµ

21P1 = 0.

From (2.9) and (2.10), there exists a T2 ≥ T1, such that xi(t) ≤ 2Mxi (i = 1,2) for all t ≥ T2.

According to the latter two equations of system (1.3), for all t ≥ T2 +δ

dui(t)
dt
≤−cl

iui(t)+2dµ

i Mxi, i = 1,2.

By Lemma 2.1, we obtain

limsup
t→+∞

ui(t)≤
2dµ

i Mxi

cl
i

, Mui <+∞, i = 1,2.

Set M = max{Mx1,Mx2,Mu1,Mu2}, obviously, for i = 1,2, we have

limsup
t→+∞

xi(t)≤M, limsup
t→+∞

ui(t)≤M.

This completes the proof.

Lemma 2.7 Assume that al
11 > aµ

21,a
l
1 > aµ

21 and al
22 > aµ

12,a
l
2 > aµ

12, then for any positive

solution (x1(t),x2(t),u1(t),u2(t))T of system (1.3), there exists a positive constant m such that

liminf
t→+∞

xi(t)≥ m, liminf
t→+∞

ui(t)≥ m, i = 1,2.

Proof. Let i ∈ {1,2} and (x1(t),x2(t),u1(t),u2(t))T be a solution of system (1.3) satisfies the

initial conditions (1.4). From Lemma 2.6, there exists a T3 > T2+δ such that xi(t)≤ 2M,ui(t)≤

2M for all t ≥ T3. And so, for t ≥ T3 + δ , from the former two equations of system (1.3), it

follows that
dxi(t)

dt
≥ xi(t)

[
rl

i −aµ

i xi(t)−aµ

ii xi(t− τ)−bµ

i ui(t−σi)
]

≥ xi(t)
[
−
(
aµ

i +aµ

ii +bµ

i
)
2M
]
, ξixi(t) (2.11)

where ξi =−2
(
aµ

i +aµ

ii +bµ

i
)
M < 0. Integrating both sides of (2.11) from s(s≤ t) to t, it leads

to

xi(s)≤ xi(t)exp{−ξi(t− s)}. (2.12)
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Take s = t− τ, t−ηi and t−σi, respectively, one has

xi(t− τ)≤ xi(t)exp(−ξiδ ), (2.13)

xi(t−ηi)≤ xi(t)exp(−ξiδ ), (2.14)

xi(t−σi)≤ xi(t)exp(−ξiδ ). (2.15)

Substituting (2.14) into the latter two equations of system (1.3) leads to

dui(t)
dt
≤−cl

iui(t)+dµ

i xi(t)exp(−ξiδ ).

Applying Lemma 2.3 and (2.12), for all t ≥ s≥ 0,

ui(t)≤ ui(t− s)exp(−cl
is)+

∫ t

t−s
dµ

i xi(υ)exp(−ξiδ )exp{cl
i(υ− t)}dυ

≤ ui(t− s)exp(−cl
is)+

∫ t

t−s
dµ

i xi(t)exp{−ξi(t−υ)}exp(−ξiδ )dυ

≤ ui(t− s)exp(−cl
is)+dµ

i xi(t)
1
ξi
[1− exp(−ξis)]exp(−ξiδ ). (2.16)

Note that for large t,θ and t−θ ≥ T3 +δ > T3, then ui(t− s)≤ 2M. Thus, for t,θ →+∞ and

t−θ ≥ T3 +δ > T3, 0 ≤ ui(t−θ)exp(−cl
iθ) ≤ 2M exp(−cl

iθ)→ 0. So, there exists a Γi > 0,

such that

rl
i −2bµ

i M exp(−cl
iθ)≥

1
2

rl
i , as θ ≥ Γi. (2.17)

Then fix Γi, for all t ≥ T3 +δ +Γi, (2.16) can be expressed in the following form

ui(t)≤ ui(t−Γi)exp(−cl
iΓi)+dµ

i xi(t)
1
ξi
(1− exp(−ξiΓi))exp(−ξiδ )

≤ 2M exp(−cl
iΓi)+Aixi(t),

where Ai = dµ

i
1
ξi
(1− exp(−ξiΓi))exp(−ξiδ )> 0. Then, for all t ≥ T3 +2δ +Γi, we have

ui(t−σi)≤ 2M exp(−cl
iΓi)+Aixi(t−σi). (2.18)

Substituting (2.13)-(2.18) into the former two equations of system (1.3), for t ≥ T3 + 2δ +Γi,

we obtain

dxi(t)
dt
≥ xi(t)

[
rl

i −aµ

i xi(t)−aµ

ii xi(t)exp(−ξiδ )−bµ

i 2M exp(−cl
iΓi)−bµ

i Aixi(t−σi)
]

≥ xi(t)
{

rl
i −bµ

i 2M exp(−cl
iΓi)− [aµ

i +aµ

ii exp(−ξiδ )+bµ

i Ai exp(−ξiδ )]xi(t)
}
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≥ xi(t)
[1

2
rl

i −Bixi(t)
]
,

where Bi = aµ

i + aµ

ii exp(−ξiδ )+ bµ

i Ai exp(−ξiδ ) > 0. Using the first part of Lemma 2.2, we

get

liminf
t→+∞

xi(t)≥
rl

i
2Bi

, mxi. (2.19)

From (2.19), there exists a T4 > max
i=1,2
{T3 +2δ +Γi} such that

xi(t)≥
1
2

mxi for all t ≥ T4.

Together with the latter two equations of system (1.3), it is easy to see that

dui(t)
dt
≥−cµ

i ui(t)+dl
i
1
2

mxi for all t ≥ T4 +δ .

Thus, by applying Lemma 2.1 to the above differential inequality, we have

liminf
t→+∞

ui(t)≥
dl

i mxi

2cµ

i
, mui.

Set m = min{mx1,mx2,mu1,mu2}, obviously, for i = 1,2, we have

liminf
t→+∞

xi(t)≥ m, liminf
t→+∞

ui(t)≥ m.

This completes the proof.

Proof of the theorem 1.1. From Lemmas 2.6 and 2.7 and the definition of permanence, the

conclusion is obvious.

3. Conclusion

With the help of a series of inequalities, some new sufficient conditions of the permanence

of system (1.3) are obtained in this paper. More meaningfully, our results show that feedback

control variables have no influence on the persistent property of the system (1.3). As for Lotka-

Volterra cooperative systems with more general delays, we will carry out the research works in

the future.
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