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Abstract. In this paper, a mosquito-borne disease model, which address the impacts of the aquatic stage of

mosquitoes on mosquito-borne disease transmission, is proposed and analyzed. The dynamical behaviors of the

model are analyzed theoretically and numerically. The basic reproduction number which is a monotone decreasing

function with respect to the delay has been figured out. Our results imply that the increasing of temperature may

exacerbates mosquito-borne disease transmission.
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1. Introduction

Many diseases are transmitted by mosquitoes, like malaria, dengue, West Nile virus, etc. World-

wide, mosquito-borne diseases kill more people than any other single factor.
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Mosquito life includes four stages: egg, larva, pupa, and adult. Each of these stages can be

easily recognized by their special appearance. The duration of the whole cycle, from egg laying

to an adult mosquito eclosion, varies between 7 and 20 days, depending on the ambient temper-

ature of the swamp and the mosquito species involved [8]. Only the adult female mosquitos bite

human and animals in order to take blood meals, and the male mosquitoes feed only on plant

juices. Female mosquitoes feed on man, domestic animals, such as cattle, horses, goats, etc; all

species of birds including chickens and ducks; all types of wild animals including deer, rabbits;

and they also feed on snakes, lizards, frogs, and toads. Female mosquitoes will not lay viable

eggs without blood meals. Therefore, the abundance of mosquito in a region is closely related

to the blood meal resources available in the region ([11]).

In order to control these diseases, it is essential to understand the mosquito population dy-

namics first and then to consider how resource and temperature can affect mosquito population,

and how they in turn can affect mosquito-borne disease transmission. Since only the adult fe-

male mosquitoes are responsible for transmitting diseases, therefore in general, models focus

only on describing the dynamics of adult female mosquitoes. There have been extensive dynam-

ical modeling studies of the mosquito population and mosquito-borne diseases. In [1, 5, 12, 19]

West Nile virus transmission dynamics has been considered. In [3, 13, 14, 17, 18], malaria

transmission dynamics has been considered. In [6, 7, 15, 16], dengue transmission dynamic-

s have been studied. In [2], Bolzoni et al. studied the role of heterogeneity on the invasion

probability of mosquito-borne diseases in multi-host models.

It is our aim to modify the mosquito growth equation to include the factor of maturation delay

related to air temperature and to investigate the impact of maturation delay on the transmission

dynamics of mosquito-borne diseases.

The rest of the paper is organized as follows. In Section 2, the derivation of a new model is

given. We analyze the dynamics of this model in Section 3 and 4, including the existence of

equilibria and stability. Finally, we present some numerical simulations and comments on our

findings in Section 5.
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2. Preliminaries

In this section, we will establish a new model with stage-structured mosquitoes to study the

impact of resource and temperature on the malaria transmission dynamics.

The basic assumptions for our model are as follows:

• The total number of host population and adult female mosquito population are denoted

by Nb and Nm respectively.

• The adult stage of the female mosquito population is divided into susceptible Ms and

infectious Mi compartments. We assume that the pathogen can cause reservoir death

and this population is divided into susceptible Bs, infectious Bi and recovered Br com-

partments. The recovered host have immunity.

• Mosquitoes never recover from infection, that is, their infective period ends with their

death due to their relatively short life.

• For the transmission of the pathogen, it is assumed that a susceptible host can receive

the infection only by contacting with infective mosquitos, vice versa.

With the assumptions above and parameters listed in Table 1, the dynamics are given by the

following equations:

(2.1)



dMs

dt
= rmMs(t− τ)e−δτ +(1−q)rmMi(t− τ)e−δτ −bβm

MsBi

Nb +A

−dmMs− εmMsNm,

dMi

dt
= qrmMi(t− τ)e−δτ +bβm

MsBi

Nb +A
−dmMi− εmMiNm,

dBs

dt
= Λ−dbBs−bβb

MiBs

Nb +A
,

dBi

dt
= bβb

MiBs

Nb +A
− (db +ν + r)Bi,

dBr

dt
= rBi−dbBr,

with initial data Ms(θ) = φs(θ)> 0 and Mi(θ) = φi(θ)> 0, where φs(θ) and φi(θ) are positive

continuous functions on [−τ,0] respectively, 0 ≤ Bs(0) ≤ Λ

db
, 0 ≤ Bi(0) ≤ Λ

db
, 0 ≤ Br(0) ≤ Λ

db
,

and also Nm = Ms +Mi and Nb = Bs +Bi +Br.
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Parameters in the models Mosquito Host

Per capita birth rate rm

Recruitment rate Λ

Proportion of births that are infected q

Natural death rate for adult (pre-adult) stage dm(δ ) db

Disease-induced death rate ν

Maturation delay τ

Recovery rate r

Biting rate (the average number of bites per mosquito per unit time) b

Transmission probability (from vectors to birds) βb

Transmission probability (from birds to vectors) βm

The number of other animals as blood meal resource A

Intraspecific competition rate εm

TABLE 1. Parameters involved in the model.

It is not difficult to prove the following theorem:

Theorem 2.1. With an initial value condition in (2.1), there is a unique solution, and the solu-

tion remains positive and bounded for any finite time t ≥ 0.

Therefore, Model (2.1) is mathematically well-defined and biologically reasonable.

3. Equilibria

A straightforward calculation shows there two disease-free equilibria for model (2.1):

P01 = (0,0,Λ/db,0,0)

and

P02 = (N̂m,0,Λ/db,0,0),
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where

N̂m = (rme−δτ −dm)/εm.

In addition, P02 exists if and only if τ < τ∗, where

τ
∗ =

1
δ

ln
rm

dm
.

By equating the derivatives on the left-hand side to zero and solving the resulting algebraic

equations. The points of any equilibrium P̂ = (M̂s,M̂i, B̂s, B̂i, B̂r) satisfy the following relations

B̂s =
Λ− (db +ν + r)B̂i

db
(3.2)

N̂b =
Λ−νB̂i

db
(3.3)

M̂s = N̂m− M̂i(3.4)

M̂i =
bβmdbN̂mB̂i

bβmdbB̂i + rme−δτ(1−q)(Λ−νB̂i +Adb)
(3.5)

Substituting (3.2)-(3.5) in the corresponding fourth equilibrium equation of (2.1), we obtain that

B̂i = 0 or B̂i is a positive root of the quadratic polynomial

(3.6) r(Bi) = a2B2
i +a1Bi +a0,

where

a2 = [bβmdb− rme−δτ(1−q)ν ]ν ,

a1 = 2rme−δτ(1−q)(Λ+Adb)ν−bβmdb(Λ+Adb)−b2
βmβbN̂mdb

= −a2(Λ+Adb)/ν + rm(1−qe−δτ)(Λ+Adb)[ν− (db +ν + r)
Λ+Adb

Λ
R0],

a0 = rme−δτ(1−q)(Λ+Adb)
2(R0(τ)−1)

and

(3.7) R0(τ) =
b2βmβbN̂mdbΛ

rme−δτ(1−q)(db +ν + r)(Λ+Adb)2 .

It is easy to see that a2 < 0 if a1 > 0 and R0(τ)≥ 1.
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Remark 3.1. R0 is the basic reproduction number which is a monotone decreasing function

with respect to the maturation τ .

The solution B̂i = 0 gives the disease-free equilibrium point P01 and P02.

We are looking for nontrivial equilibrium solutions. From (3.2)-(3.5) it can be seen that

B̂i ∈ I , (0,B0), where

B0 =
Λ

db +ν + r
.

Evaluating r(Bi) at the end points of the interval I gives

r(0) = rme−δτ(1−q)(Λ+Adb)
2(R0(τ)−1)

r(B0)< 0.

When R0(τ) > 1, then r(0) > 0, therefore there exists a unique root in the interval I, which

implies the existence of a unique equilibrium point P∗(M̂∗s ,M̂
∗
i , B̂
∗
s , B̂
∗
i , B̂
∗
r ), where îa satisfies: If

a2 = 0,

B̂∗i =−
a0

a1
.

If a2 6= 0,

B̂∗i =
−a1−

√
∆

2a2
,

where ∆, a2
1−4a2a0.

When R0(τ) = 1, the roots of (3.6) are 0 and −a1
a2

. It is easy to see that there exists a unique

root in the interval I if and only if a1 > 0, which implies the existence of a unique equilibrium

point P∗.

When R0(τ)< 1, r(0)< 0. The conditions to have at least one root in the mentioned interval

are: a2 < 0, 0 < − a1
2a2

< B0 and ∆ > 0. If ∆ > 0, there exist two roots in the interval I, which

implies the existence of two equilibria P1(M̂s1,M̂i1, B̂s1, B̂i1, B̂r1) and P2(M̂s2,M̂i2, B̂s2, B̂i2, B̂r2),

where

B̂i1 =
−a1 +

√
∆

2a2
,

B̂i2 =
−a1−

√
∆

2a2
.
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If ∆ = 0, there is a unique root in the interval I, whitch implies the existence of unique equilib-

rium.

Then, we can conclude the above results in the following theorem:

Theorem 3.2. 1. The boundary equilibrium, the disease free equilibrium P01 always exists and

P02 exists when τ < τ∗.

2. If R0(τ)> 1, there exists a unique positive equilibrium P∗.

3. If R0(τ)= 1, then there is a positive equilibrium when a1 > 0, otherwise there is no positive

equilibrium.

4. If R0(τ) < 1, then (a) if a2 > 0, there is no positive equilibrium; (b) if a2 < 0, the system

(2.1) has two positive equilibria P1 and P2 if and only if ∆ > 0 and 0 < −a1
2a2

< B0; And these

two equilibria coalesce if and only if 0 < −a1
2a2

< B0 and ∆ = 0; otherwise there is no positive

equilibrium.

4. Stability

For the equilibrium P01, the eigenvalues of the Jacobian matrix are: −db (multiplicity 2),−(db+

ν + r) and the roots of

(4.8) (λ − rme−(δ+λ )τ +dm)(λ − rmqe−(δ+λ )τ +dm) = 0

When τ = 0, one can easily get that one of the eigenvalues of the Jacobian matrix at P01 is:

rm−dm > 0. Therefore, P01 is always unstable.

When τ > 0, we can easily prove that P01 is unstable stable if 0 < τ < τ∗ and is stable if

τ > τ∗

Then, we have the following theorem:

Theorem 4.1. The equilibrium P01 is always unstable if 0≤ τ < τ∗; P01 is stable if τ > τ∗.
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For the equilibrium P02, the eigenvalues of the Jacobian matrix are: −db (multiplicity 2) and

the roots of

λ − rme−(δ+λ )τ +2rme−δτ −dm = 0,(4.9)

(λ +db +ν + r)(λ − rmqe−(δ+λ )τ + rme−δτ)− rm(1−q)e−δτ(db +ν + r)R0(τ) = 0.(4.10)

When τ = 0, one can easily get that the eigenvalues of the Jacobian matrix at P02 are: −(rm−

dm)< 0, −db < 0 (multiplicity 2), and the roots of

(4.11) λ
2 +[d +ν + r+ rm(1−q)]λ + rm(1−q)(d +ν + r)(1−R0(0)) = 0

It is easy to see that P02 is unstable if R0 > 1, P02 is locally stable if R0 < 1. Then, we have the

following theorem:

Theorem 4.2. When τ = 0, the equilibrium P02 is locally stable (unstable) if R0(0)< 1 (R0(0)>

1).

In the following, will discuss the situation when 0 < τ < τ∗. Let

τ
∗∗ ,

1
δ

ln
rm(R0(0)−1)+dm

dmR0(0)
,

τ
∗∗∗ ,

1
δ

ln(
rm

dm
− εmrm(1+q)(db +ν + r)(Λ+Adb)

2

dmΛβmβbb2db
).

Obviously, τ∗∗ < τ∗ and

τ = τ
∗∗ ⇔ R0(τ) = 1,

τ
∗∗ > 0 ⇔ R0(0)> 1,

τ
∗∗ = 0 ⇔ R0(0) = 1,

and τ∗∗ < 0 or τ∗∗ does not exist if and only if R0(0)< 1. We can prove that:

Lemma 4.3. No stability switch may occur when 0 < τ ≤ τ∗∗∗ or τ∗∗ < τ < τ∗.
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Proof. One can easily prove that 0 can be the root of (4.12) when τ∗∗ < τ < τ∗ or 0 < τ ≤ τ∗∗∗.

Assuming that there is a pure imaginary root λ = iω for (4.10). Let z = ω2. Then, we have

(4.12) z2 +aZ +b = 0,

where

a = r2
m(1−q2)e−2δτ +(db +ν + r)2 +

2b2βmβbΛdb(rme−δτ −dm)

εm(Λ+Adb)2 ,

b = rme−δτ(1−q)(db +ν + r)(1−R0(τ))[rme−δτ(1+q)(db +ν + r)

−b2βmβbΛdb(rme−δτ −dm)

εm(Λ+Adb)2 ].

It is easy to see a > 0. If τ∗∗ ≤ τ < τ∗, then b ≥ 0, there is no positive root for (4.12) which

implies that there is no pure imaginary root for (4.10). Therefore, no stability switch may occur

when 0 < τ ≤ τ∗∗∗ or τ∗∗ < τ < τ∗.

�

Then, we have the following result.

Theorem 4.4. Case 1: R0(0) < 1 (τ∗∗ < 0 or τ∗∗ not exist). According to Theorem 4.2 and

Lemma 4.3, P02 is stable when 0 < τ < τ∗.

Case 2: R0(0)> 1 (τ∗∗ > 0).

(i) τ∗∗∗ > 0. When 0 < τ < τ∗∗∗, according to Theorem 4.2 and Lemma 4.3, P02 is unstable.

When τ∗∗∗ < τ < τ∗∗, there may be Hopf bifurcation.

(ii) τ∗∗∗ ≤ 0. The situation is similar to (i).

5. Simulation and discussion

In this paper, a mosquito-borne disease model, which address the impacts of the aquatic stage

of mosquitoes and the seasonal climate effects on mosquito-borne disease transmission, has

been proposed and analyzed. Our model provides a baseline to understand the risk and plan
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FIGURE 1. The time course of state variables. The unit of time t is day. rm = 10;

q= 0.06; δ=0.2; A= 3000; b= 0.35; βm = 0.65; dm = 0.05; εm = 0.000005; Λ=

5; db = 3.65∗10−3; βb = 0.8; ν = 0.25; r = 0.25.Note that τ∗ = 26.49158684,

τ∗∗ = 22.84233291 and τ∗∗∗ = 22.10444322.

for mosquito-borne disease control under the condition of global warming, since the maturation

delay becomes shorter with the increasing of temperature.

The basic reproduction number which is a monotone decreasing function with respect to

mosquito maturation delay has been figured out. This result implies that the increasing of

temperature indeed exacerbates mosquito-borne disease transmission.

For many mosquito-borne disease models, the threshold condition, the basic reproduction

number was calculated which is a crucial control threshold for disease eradication. However,
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our study suggests that backward bifurcation can be an intrinsic property. There exists a sub-

threshold condition for the outbreak of the virus due to the existence of backward bifurcation.

The infection will not be cleared from the population provided even if the basic reproduction

number is smaller than unity. Due to backward bifurcation of the model and the basic repro-

ductive number itself is not enough to describe whether the disease will prevail or not and we

should pay more attention to the initial sizes and density of the infected hosts and mosquitos.

It should be mentioned that the stability of endemic equilibria is still unknown even if τ =

0, theoretically. In order to demonstrate the theoretical results and figure out the stability of

endemic equilibria for some special parameter values, we carry out numerical simulations for

the model (2.1). Fig. 1 implies that there exists a stable endemic equilibrium and the disease-

free equilibrium P02 is unstable if 0 < τ < τ∗∗∗ and τ∗∗ < τ < τ∗, no stability switch may occur

and P02 is stable if the value of maturation delay increases such that τ∗∗ < τ < τ∗. On the

other hand, Fig. 1 also shows that both of the number of infected mosquitoes and infected hosts

converge to a higher positive value with the decreasing of maturation delay, which manifests

the increasing of temperature indeed exacerbates the transmission of mosquito-borne disease

numerically.
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