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Abstract. In this paper, a two-dimensional age-structured mathematical model for HIV/AIDS in three different

communities of a heterogeneous population is proposed. The two distinct classes of each community lead to a set

of model equations with single ordinary and partial differential equations. Different rates of contact are considered

among the individuals of the communities. The equilibrium states and the corresponding characteristic equations

are obtained which are analyzed by Bellman and Cookes theorem, especially non-zero equilibrium state.
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1. Introduction

AIDS (Acquired Immune Deficiency Syndrome or Acquired Immunodeficiency Syndrome)

is a disease induced by a virus designated HIV (Human Immunodeficiency Virus). HIV is found

in the body fluids containing such as white blood cells, blood, placental fluid, semen, spinal

fluid, vaginal fluid, breast milk and cerebrospinal fluid of an infected person. The virus is passed
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from one person to another through blood-to-blood and sexual contact. Both the virus and the

disease are often referred to HIV/AIDS. HIV is responsible for the development of AIDS in

common individual. The development of HIV infections in an AIDS patient can conclusively

lead to death [11]. Initially, there were no vaccines and medicines available that can prevent

HIV/AIDS. HIV infected individual required high nutrient foods, rest, recreation and regular

exercise. Awareness of the danger of HIV/AIDS among common people is necessarily required

those have a high risk of HIV [14].

Biomathematics is the application of mathematical methods to solve the problems originating

in biology and life sciences [4]. Mathematics has been used to understand and prognosticate

the spread of diseases cognate to public health quandaries over the past one hundred years [2].

Some of the infectious diseases depend on the various factors viz. Age, time, contact rates

etc. Age is one of the most consequential characteristics in the mathematical modelling of

populations and infectious diseases. Some of the childhood diseases, such as measles, chicken

pox, rubella, influenza are spread between homogeneous ages of children. Younger people

may be more active in interaction between populations and in disease transmissions [17, 19].

Consequently, most of the AIDS cases occur in the group of incipient adults. Diversified age

groups have different reproduction and survival capacities and altered behavior. Subsequently,

mortality rates, infection rates and behavioral change are different which plays a paramount

role in persistence, control and prevention of many infectious diseases. Sexually-transmitted

diseases (STDs) are spread through partner interactions with pair-formations which are age-

dependent in most of the cases. The contact rates between two members of populations variably

correlate with the age of couples in the modelling of age-structured population.

The common age-structured population model is described and investigated by using partial

differential and integral equations [10]. Sharpe and Lotka [18] studied the disease transmission

of single species population. Gurtin and MacCamy [8] evaluated the general sufficient condition

for stability of the model. Cushing [6] developed the dynamics of hierarchical age-structured

population model. Cushing and Saleem [5] formulated a general prey-predator model with age-

dependent predator population. Zhonghua and Jigen [20] considered a SIRS epidemic model

with age-dependent infectivity and general nonlinear contact rate. Mathematical models have
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become consequential implements in analyzing the spread and control of HIV/AIDS disease

dynamics [7, 9]. The first simple mathematical model for HIV had been developed by An-

derson and May [2]. Nowadays, sundry mathematical models have been concentrated for the

age-dependent HIV/AIDS transmission dynamics. M. O. Okongo et al. [15] introduced a com-

prehensive deterministic mathematical model for HIV/AIDS transmission model incorporating

gregarious behaviour, treatment, vaccination, stages of infection, age structures, discrete time

delay and vertical transmission. Recently, Musa [12, 13] considered two dimensional and three

dimensional mathematical model of HIV/AIDS disease with age-structured infectives.

The deterministic mathematical model of HIV/AIDS has been proposed for disease among

heterogeneous population which termed into system of ordinary and partial differential equa-

tions. It is especially for sexually active members of the core population [16]. The equilibrium

states and the corresponding characteristic equations are obtained which are analyzed by Bell-

man and Cookes theorem.

The present paper is organized as follows: the basic model equations for susceptibles and

HIV/AIDS infected population of three different communities are introduced in section 2. In

section 3, equilibrium states of the model equations are discussed. The analysis and the stability

of zero and non-zero equilibrium states of the model has been studied in Section 4. In Section

5, the discussion and numerical results are demonstrated through graphs.

2. The basic model

A model with three sub populations (i = 1, 2, 3) with different sexual and social practices are

considered. Community C1 includes those whose sexual preferences, degree of sexual activity

and social practices can facilitate the transmission of disease. Community C2 and C3 include

those heterosexual individuals who have multiple sexual partners, whose risk of infection arises

from social and sexual contact with the individuals of C1. In order to construct a compartmental

model of disease spread in three communities, we assume that

(1) There is an intra-interaction of the individuals of each community.

(2) There is an inter-interaction of members of community C1 and C2, C1 and C3, but no

interaction between the individuals of communities C2 and C3.
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The infected class in the community C1,C2 and C3 is structured by the infection age with the

density function ρ1(t, a), ρ2(t, a) and ρ3(t, a) respectively, where ′t ′ is the time parameter and
′a′ is the infection age. There is a maximum infection age ′T ′ in each communities at which

a member of the infected class must quit the compartment via death and so 0 ≤ a ≤ T. The

gross death rate via infection is given by σ1(a), σ2(a) and σ3(a); δ1,δ2 and δ3 are the additional

burden from infection, while K is a control parameter associated with the measure of slowing

down the death of the infected member in the community C1,C2 and C3 respectively such that

the effectiveness of the anti-retroviral drugs gives the longer life span of infected peoples. A

high level of control parameter will imply high rate of effectiveness of anti-retroviral drugs and

vice-versa. The model equations for C1,C2 and C3 are given as follows:

for C1,

dS1

dt
= (β1−µ1)S1(t)+θ1 β1 I1(t)−α11 S1(t) I1(t)−α12 S1(t) I2(t)−α13 S1(t) I3(t), (1)

I1(t) =
∫ T

0
ρ1(t, a)da, 0 ≤ a ≤ T, (2)

∂ ρ1(t, a)
∂ t

+
∂ ρ1(t, a)

∂ a
+σ1(a)ρ1(t, a) = 0, (3)

ρ1(t, 0) = B1(t) = α11 S1(t) I1(t)+α12 S1(t) I2(t)+α13 S1(t) I3(t)+(1−θ1)β1 I1(t), (4)

ρ1(0, t) = ϕ1(a). (5)

For C2,

dS2

dt
= (β2−µ2)S2(t)+θ2 β2 I2(t) −α21 S2(t) I1(t)−α22 S2(t) I2(t), (6)

I2(t) =
∫ T

0
ρ2(t, a)da, 0 ≤ a ≤ T, (7)

∂ ρ2(t, a)
∂ t

+
∂ ρ2(t, a)

∂ a
+σ2(a)ρ2(t, a) = 0, (8)

ρ2(t, 0) = B2(t) = α21 S2(t) I1(t) +α22 S2(t) I2(t)+(1−θ2)β2 I2(t), (9)

ρ2(0, t) = ϕ2(a). (10)

For C3,

d S3

d t
= (β3−µ3)S3(t)+θ3 β3 I3(t) −α31S3(t) I1(t)−α33 S3(t) I3(t), (11)

I3(t) =
∫ T

0
ρ3(t, a)da, 0 ≤ a ≤ T, (12)
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∂ ρ3(t, a)
∂ t

+
∂ ρ3(t, a)

∂ a
+σ3(a)ρ3(t, a) = 0, (13)

ρ3(t, 0) = B3(t) = α31 S3(t) I1(t) +α33 S3(t) I3(t)+(1−θ3)β3 I3(t), (14)

ρ3(0, t) = ϕ3(a). (15)

Here, Si(i = 1, 2, 3) and Ii(i = 1, 2, 3) denote the member of susceptibles and AIDS infected

population in the community Ci(i = 1, 2, 3), σi(a) = µi+δi tan π a
2T K ; i = 1, 2, 3, and the param-

eters ρi(t, a), βi, µi, σi(a), δi, K, θi and T be the age-specific function, natural birth rate, natural

death rate, gross death rate of the infected class, additional burden from infection, measure of

the effectiveness of efforts at slowing down the death of infected members, the proportion of

the off-springs of the infected class which are virus free at birth and maximum infection age in

the community Ci(i = 1, 2, 3) respectively. Also, αii be the transmission rate of HIV within the

community Ci(i = 1, 2, 3) and αi j be the transmission rate of HIV between the communities

Ci(i = 1, 2, 3) and C j( j = 1, 2, 3). Now, we have to study the zero and non-zero equilibrium

states of HIV/AIDS in each of these communities.

3. Equilibrium states

At the equilibrium state, let us assume that

Si(0) = xi, Ii(0) = yi, ρi(t, a) = ϕi(a). (16)

To find the zero and non-zero equilibrium states of the above model eqs (1)-(15), we have to

substitute (16) in (1)-(5), we get

(β1−µ1)x1 +θ1 β1 y1−α11 x1 y1−α12 x1 y2−α13 x1 y3 = 0, (17)

y1 =

T∫
0

ϕ1(a)da, (18)

dϕ1(a)
da

+σ1(a)ϕ1(a) = 0, (19)

ϕ1(0) = α11 x1 y1 +α12 x1 y2 +α13 x1 y3 +(1−θ1)β1 θ1, (20)
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Integrating (19) from ‘0’ to ‘a’, we get

ϕ1(a) = ϕ1(0) exp{−
a∫

0

σ1(s)ds}. (21)

It can also be written as

ϕ1(a) = ϕ1(0) π1(a), where π1(a) = exp{−
a∫

0

σ1(s)ds}. (22)

Therefore, (18) becomes

y1 = ϕ1(0) π̄1(a), where π̄1(a) =
T∫

0

π1(a)da. (23)

By using (20) in (23), it implies

y1 = (α11 x1 y1 +α12 x1 y2 +α13 x1 y3 +(1−θ1)β1 y1) π̄1(a). (24)

Substituting (16) in (6)-(10), we have

(β2−µ2)x2 +θ2 β2 y2−α21 x2 y1−α22 x2 y2 = 0, (25)

y2 =

T∫
0

ϕ2(a)da, (26)

d ϕ2(a)
da

+σ2(a)ϕ2(a) = 0, (27)

ϕ2(0) = α21 x2 y1 +α22 x2 y2 +(1−θ2)β2 θ2. (28)

Integrating (27) from ‘0’ to ‘a’, we get

ϕ2(a) = ϕ2(0) exp{−
a∫

0

σ2(s)ds}. (29)

It can also be written as

ϕ2(a) = ϕ2(0)π2(a), where π2(a) = exp{−
a∫

0

σ2(s)ds}. (30)

Therefore, (26) becomes

y2 = ϕ2(0) π̄2(a), where π̄2(a) =
T∫

0

π2(a)da. (31)
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By using (28) in (31), it implies

y2 = (α21 x2 y1 +α22 x2 y2 +(1−θ2)β2 y2) π̄2(a). (32)

Substituting (16) in (11)-(15), we have

(β3−µ3)x3 +θ3 β3 y3−α31 x3 y1−α33 x3 y3 = 0, (33)

y3 =

T∫
0

ϕ3(a)da, (34)

d ϕ3(a)
da

+σ3(a)ϕ3(a) = 0, (35)

ϕ3(0) = α31 x3 y1 +α33 x3 y3 +(1−θ3)β3 θ3. (36)

Integrating (35) from ‘0’ to ‘a’, we get

ϕ3(a) = ϕ3(0) exp{−
a∫

0

σ3(s)ds}. (37)

It can also be written as

ϕ3(a) = ϕ3(0)π3(a), whereπ3(a) = exp{−
a∫

0

σ3(s)ds}. (38)

Therefore, (34) becomes

y3 = ϕ3(0) π̄3(a), where π̄3(a) =
T∫

0

π3(a)da. (39)

By using (36) in (39), it implies

y3 = (α31 x3 y1 +α33 x3 y3 +(1−θ3)β3 y3) π̄3(a). (40)

Thus, from (24), (32) and (40), we get

x1 =

(
y1
π̄1
− (1−θ1)β1 y1

)
(α11 y1 +α12 y2 +α13 y3)

, (41)

x2 =

(
y2
π̄2
− (1−θ2)β2 y2

)
(α21 y1 +α22 y2)

, (42)

x3 =

(
y3
π̄3
− (1−θ3)β3 y3

)
(α31 y1 +α33 y3)

. (43)
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Substituting (41), (42) and (43) in (17), (25) and (33) respectively, we obtain

α11 y1 +α12 y2 +α13 y3 =
(β1−µ1){1− (1−θ1)β1 π̄1}

(1−β1 π̄1)
, (44)

α21 y1 +α22 y2 =
(β2−µ2){1− (1−θ2)β2 π̄2}

(1−β2 π̄2)
(45)

and

α31 y1 +α33 y3 =
(β3−µ3){1− (1−θ3)β3 π̄3}

(1−β3 π̄3)
. (46)

Solving (44), (45) and (46), we get

y1 =−
1

(−α12α21α33−α22α13α31 +α11α22α33)


α12 α33 (1−β2 π̄2−β2 π̄2θ2)(β2−µ2)

(1−β2π̄2)

−α22α33(1−β1π̄1−β1π̄1θ1)(β1−µ1)
(1−β1π̄1)

−α22α13(1−β3π̄3−β3π̄3θ3)(β3−µ3)
(1−β3π̄3)

 ,

y2 =
1

(−α12α21α22α33−α13α31α22α22 +α11α22α22α33)

×


α12α21 α33 (1−β2 π̄2−β2 π̄2 θ2)(β2−µ2)

(1−β2 π̄2)

− α21α22 α33 (1−β1 π̄1−β1 π̄1 θ1 )(β1−µ1)
(1−β1 π̄1)

− α21α22 α13 (1−β3 π̄3−β3 π̄3 θ3 )(β3−µ3)
(1−β3 π̄3)

+ (1−β2 π̄2−β2 π̄2 θ2)(β2−µ2)

α22 (1−β2 π̄2)
,

y3 =
1

(−α12 α21 α33 α33 − α13 α31 α22 α33 + α11 α22 α33 α33)

×


α12 α31 α33 (1−β2 π̄2−β2 π̄2 θ2)(β2−µ2)

(1−β2 π̄2)

− α22 α31 α33 (1−β1 π̄1−β1 π̄1 θ1)(β1−µ1)
(1−β1 π̄1)

+ α22 α31 α13 (1−β3 π̄3−β3 π̄3 θ3)(β3−µ3)
(1−β3π̄3)

+ (1−β3 π̄3−β3 π̄3 θ3)(β3−µ3)

α33 (1−β3π̄3)
.]

By using the above value of y1, y2, y3 in (41), (42) and (43), we obtain

x1 =
(1−β1 π̄1)

π̄1 (β1−µ1)
, x2 =

(1−β2 π̄2)

π̄2 (β2−µ2)
, x3 =

(1−β3 π̄3)

π̄3 (β3−µ3)
.

Thus, the zero equilibrium state of the model is given by

(x1, x2, x3, y1, y2, y3) = (0, 0, 0, 0, 0, 0)

and the non-zero equilibrium state is given by the above non-zero value of x1, x2, x3, y1, y2 and

y3.

4. Analysis of the model
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4.1 The Characteristics equation

To analyze the model, suppose that

Si(t) = xi + pi(t), Ii(t) = yi +qi(t), ρi(t, a) = ϕi(a)+ηi(a)eλ t : i = 1, 2, 3, (47)

where

pi(t) = p̄i eλ t , qi(t) = q̄i eλ t =

T∫
0

ηi(a)da. (48)

Substituting (47) and (48) into (1)-(4), then (1) becomes

d
dt
(x1 + p̄1 eλ t) = (β1−µ1)(x1 + p̄1 eλ t)+θ1β1(y1 + q̄1 eλ t)−α11(x1 + p̄1eλ t)

(y1 + q̄1eλ t)−α12(x1 + p̄1eλ t)(y2 + q̄2 eλ t)−α13 (x1 + p̄1 eλ t)(y3 + q̄3 eλ t),

it can also be written as

(β1−µ1−α11y1 −α12y2 −α13y3−λ )p̄1eλ t +(θ1β1−α11x1)q̄1 eλ t

−α12 x1 q̄2 eλ t−α13 x1q̄3 eλ t = 0. (49)

(2) implies

y1 + q̄1 eλ t =

T∫
0

(ϕ1(a)+η1(a)eλ t)da. (50)

(3) implies

∂

∂ t
(ϕ1(a)+η1(a)eλ t)+

∂

∂a
(ϕ1(a)+η1(a)eλ t)+ σ1(a)(ϕ1(a)+η1(a)eλ t) = 0

it can also be written as
d η1(a)

da
+(λ +σ1(a))η1(a) = 0. (51)

Integrating (51) from ‘0’ to ‘a’, we have

η1(a) = η1(0) exp{−
a∫

0

(λ +σ1(s))ds}.

Again integrating (51) over [0, T ], we get

T∫
0

η1(a)da = η1(0)
T∫

0

[exp{−
a∫

0

(λ +σ1(s))ds}]da. (52)
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Now, (4) becomes

ρ1(t,0) = α11 (x1 + p̄1 eλ t)(y1 + q̄1 eλ t)+α12 (x1 + p̄1 eλ t)(y2 + q̄2 eλ t)

+α13 (x1 + p̄1 eλ t)(y3 + q̄3eλ t)+(1−θ1)β1(y1 + q̄1 eλ t)

By using (20) and (47) at a = 0 in the above equation, for i = 1, it becomes

α11x1y1 +α12x1y2 +α13x1y3 +(1−θ1)β1y1 +η1(0)eλ t

= α11x1y1 +α11x1q̄1eλ t +α11y1 p̄1eλ t +α11 p̄1q̄1e2λ t +α12x1y2

+α12 x1 q̄2 eλ t +α12 y2 p̄1 eλ t + α12 p̄1 q̄2 e2λ t +α13 x1y3

+α13x1q̄3 eλ t +α13y3 p̄1 eλ t +(1−θ1)β1(y1 + q̄1eλ t),

(4) can also be written as

η1(0) = (α11y1 +α12y1 +α13y1) p̄1 +(α11x1 +(1−θ1)β1)q̄1 +α12x1q̄2 +α13x1q̄3. (53)

Now, using (52) and (53) in (48) for i = 1, thus we have

q̄1 = [(α11y1 +α12y2 +α13y3)p̄1 +(α11x1 +(1−θ1)β1)q̄1

+α12x1q̄2 +α13x1q̄3]

T∫
0

[exp{−
a∫

0

(λ +σ1(s))ds}]da.

Let b1(λ ) =
T∫
0
[exp{−

a∫
0
(λ +σ1(s))ds}]da. Then the above equation becomes

(α11y1 +α12y2 +α13y3)b1(λ )p̄1 +{(α11x1 +(1−θ1)β1)b1(λ )−1}q̄1

+α12x1b1(λ )q̄2 +α13x1b1(λ )q̄3 = 0. (54)

Substituting (47) and (48) into (6)-(9), then (6) becomes

d
dt
(x2 + p̄2 eλ t) = (β2−µ2)(x2 + p̄2 eλ t)+ θ2 β2 (y2 + q̄2 eλ t)

−α21(x2 + p̄2eλ t)(y1 + q̄1 eλ t)−α22(x2 + p̄2eλ t)(y2 + q̄2eλ t),

it can also be written as

(β2−µ2−α21y1−α22y2−λ )p̄2eλ t−α21x2q̄1eλ t +(θ2β2−α22x2)q̄2eλ t = 0. (55)
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(7) implies

y2 + q̄2 eλ t =

T∫
0

(ϕ2(a)+η2(a)eλ t)da. (56)

(8) implies

∂

∂ t
(ϕ2(a)+η2(a)eλ t)+

∂

∂a
(ϕ2(a)+η2(a)eλ t)+σ2(a)(ϕ2(a)+η2(a)eλ t) = 0,

it can also be written as
d η2(a)

da
+(λ +σ2(a))η2(a) = 0. (57)

Integrating (57) from ‘0’ to ‘a’, we have

η2(a) = η2(0) exp{−
a∫

0

(λ +σ2(s))ds}.

Again integrating (57) over [0, T ], we get

T∫
0

η2(a)da = η2(0)
T∫

0

[exp{−
a∫

0

(λ +σ2(s))ds}]da. (58)

Now, (9) becomes

ρ2(t, 0) = α21 (x2 + p̄2 eλ t)(y1 + q̄1 eλ t)+α22 (x2 + p̄2 eλ t)

(y2 + q̄2 eλ t)+(1−θ2)β2 (y2 + q̄2eλ t).

By using (28) and (47) at a = 0 in the above equation for i = 2, it becomes

α21 x2 y1 +α22 x2 y2 +(1−θ2)β2 y2 +η2(0)eλ t = α21 x2 y1 +α21 x2 q̄1 eλ t

+α21 y1 p̄2 eλ t +α21 p̄2 q̄1 e2λ t +α22 x2 y2α22 x2 q̄2eλ t

+α22y2 p̄2eλ t +α22 p̄2q̄2e2λ t +(1−θ2)β2(y2 + q̄2eλ t).

(9) can also be written as

η2(0) = (α21 y1 +α22 y2) p̄2 + α21 x2 q̄1 + (α22 x2 + (1−θ2)β2) q̄2. (59)

Now, using (58) and (59) in (48) for i = 2, thus we have

q̄2 = [α21x2q̄1 + (α21 y1 +α22y2)p̄2 +(α22x2 +(1−θ2)β2)q̄2]

T∫
0

[exp{−
a∫

0

(λ +σ1(s))ds}]da.
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Let b2(λ ) =
T∫
0
[exp{−

a∫
0
(λ + σ2(s))ds}]da. Then the above equation becomes

(α21 y1 + α22 y2)b2(λ ) p̄2 + α21 x2 b2(λ ) q̄1 + {(α22x2 +(1−θ2)β2)b2(λ )−1}q̄2 = 0. (60)

Substituting (47) and (48) into (11)-(14), then (11) becomes

d
dt
(x3 + p̄3 eλ t) = (β3−µ3)(x3 + p̄3 eλ t)+θ3 β3 (y3 + q̄3 eλ t)−α31(x3 + p̄3eλ t)

(y1 + q̄1eλ t)−α33(x3 + p̄3eλ t)(y3 + q̄3eλ t),

it can also be written as

(β3−µ3−α31y1−α33 y3−λ )p̄3eλ t−α31x3q̄1eλ t +(θ3β3−α33x3)q̄3eλ t = 0. (61)

(12) implies

y3 + q̄3 eλ t =

T∫
0

(ϕ3(a)+η3(a)eλ t)da. (62)

(13) implies

∂

∂ t
(ϕ3(a)+η3(a)eλ t)+

∂

∂a
(ϕ3(a)+η3(a)eλ t)+σ3(a)(ϕ3(a) +η3(a)eλ t) = 0,

it can also be written as
d η3(a)

da
+(λ +σ3(a))η3(a) = 0. (63)

Integrating (63) from ‘0’ to ‘a’, we get

η3(a) = η3(0) exp{−
a∫

0

(λ +σ3(s))ds}.

Again integrating (63) over [0, T ], we get

T∫
0

η3(a)da = η3(0)
T∫

0

[exp{−
a∫

0

(λ +σ3(s))ds}]da. (64)

Now, (14) becomes

ρ3(t, 0) = B3(t) = α31 (x3 + p̄3 eλ t)(y1 + q̄1 eλ t)+α33 (x3 + p̄3 eλ t)

(y3 + q̄3 eλ t)+(1−θ3)β3 (y3 + q̄3 eλ t).
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By using (36) and (47) at a = 0 in the above equation, for i = 3, it becomes

α31 x3 y1 +α33 x3 y3 +(1−θ3)β3 y3 +η3(0)eλ t = α31 x3 y1 +α31 x3 q̄1 eλ t

+α31 y1 p̄3 eλ t +α31 p̄3 q̄1 e2λ t +α33 x3 y3 +α33 x3 q̄3 eλ t

+α33 y3 p̄3 eλ t +α33 p̄3 q̄3 e2λ t +(1−θ3)β3 (y3 + q̄3 eλ t).

(14) can also be written as

η3(0) = (α31 y1 +α33 y3) p̄3 +α31 x3 q̄1 +(α33 x3 +(1−θ3)β3) q̄3. (65)

Now, using (64) and (65) in (48) for i = 3, thus we have

q̄3 = [α31x3q̄1 +(α31y1 +α33y3) p̄3 +(α33 x3 +(1−θ3)β3)q̄3]

T∫
0

[exp{−
a∫

0

(λ +σ3(s))ds}]da.

Let b3(λ ) =
T∫
0
[exp{−

a∫
0
(λ +σ3(s))ds}]da. Then the above equation becomes

(α31y1 +α33y3)b3(λ )p̄3 +α31x3b3(λ )q̄1 +{(α33x3 +(1−θ3)β3)b3(λ )−1}q̄3 = 0. (66)

Now, from (49), (54), (55), (60), (61) and (66), we obtain the Jacobian determinant for the

system with the eigenvalue λ ,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(β1 − µ1 − α11 y1−

α12 y2 − α13 y3 − λ )
(θ1 β1 − α11 x1) 0

(α11 y1 + α12 y2

+α13 y3)b1(λ )

{(α11 x1

+(1− θ1)β1)

b1(λ ) − 1}

0

0 −α21 x2
(β2 − µ2 − α21 y1

−α22 y2 − λ )

0 α21 x2 b2(λ )
(α21 y1 + α22 y2)

b2(λ )

0 −α31 x3 0

0 α31 x3 b2(λ ) 0
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−α12 x1 0 −α13 x1

α12 x1 b1(λ ) 0 α13 x1 b1(λ )

(θ2 β2 − α22 x2) 0 0

{(α22 x2

+(1− θ2)β2)

b2(λ ) − 1}

0 0

0
(β3 − µ3 − α31 y1

−α33 y3 − λ )
(θ3 β3 − α33 x3)

0
(α31 y1 + α33 y3)

b3(λ )

{(α33 x3

+(1− θ3)β3)

b3(λ ) − 1}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

The characteristic equation is given by

(−b3C{R{−b2B{−b1x1x2α12α21(λ −β1 +µ1)+Q{b1AP−X (λ +A−β1 +µ1)}}

+{b1b2x1x2α12α21(λ −β1 +µ1)+Y{b1AP−X(λ +A−β1 +µ1)}}

(−λ −B+β2−µ2)}−b1x1x3α13α31(λ −β1 +µ1)(λ +B−β2−α21y1β2b2

+µ2−b2(α22x2(λ −β2 +µ2)+β2(α22y2 +(1−θ2)+{Z(λ −β2 +µ2))))}

{−b2B{−b1x1x2α12α21(λ −β1 +µ1)+Q{b1AP−X(λ +A−β1 +µ1)}}

+{b1b2x1x2α12α21(λ −β1 +µ1)+Y{b1AP−X(λ +A−β1 +µ1)}}

(−λ −B+β2−µ2)}+b1b3x1x3α13α31(λ −β1 +µ1)

(λ +B−β2−α21y1β2b2 +µ2−b2(α22x2(λ −β2 +µ2)

+β2(α22y2 +(1−θ2)λ −β2 +µ2))))}(−λ −C+β3−µ3)) = 0, (67)

where

A = (α11y1 +α12y2 +α13y3),B = (α21y1 +α22y2),C = (α31y1 +α33y3),

P =−(θ1 β1−α11 x1), Q = (θ2 β2−α22 x2), R = (θ3 β3−α33 x3),

X = (−1+b1 (α11 x1 +β1 (1−θ1))),

Y = (−1+b2 (α22 x2 +β2(1−θ2))), Z = (−1+b3 (α33 x3 +β3 (1−θ3))).
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4.2 Stability of the zero equilibrium state

At the zero equilibrium state, (x1, x2, x3, x4, x5, x6) = (0, 0, 0, 0, 0, 0), then the characteristic

equation becomes

{−1+β1 b1(λ )(1−θ1)}{−1+β2 b2(λ )(1−θ2)}{−1+β3 b3(λ )(1−θ3)}

(−λ +β1−µ1)(−λ +β2−µ2)(−λ +β3−µ3) = 0. (68)

This implies either

{−1+βibi(λ )(1−θi)}= 0, (69)

or

(−λ +βi−µi) = 0. (70)

Therefore, we have λ = (βi− µi) and this shows that λ < 0 if βi < µi. Now, the nature of

the roots of the transcendental equation (69) is now investigated for i = 1, 2, 3. Since bi(λ ) =
T∫
0
[exp{−

a∫
0
(λ +σi(s))ds}]da, i = 1, 2, 3, therefore, it can be written as

bi(λ ) =

T∫
0

(1 −λ a)πi(a)da.

This implies bi(λ ) = π̄i(a)−λ Ai, where Ai =
T∫
0

aπi(a)da and therefore, (69) takes the form

(1−θi)βi (π̄i−λAi)−1 = 0.

Thus,

λ =
(1−θi)βi π̄i−1
(1−θi)βi Ai

, i = 1, 2, 3. (71)

Let Di(K) = {(1− θi)βi π̄i − 1}. So, the origin will be stable when Di(K) < 0, i.e., (1−

θi)βi π̄i < 1 and unstable otherwise. Some of the values are presented in Table 1 are as fol-

lows:
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Table 1 Stability of origin for different values of parameters

K βi µi θi T δi Di(K) Remark

0.3 0.01 0.05 0.4 10 0.003 -0.958142 stable

0.4 0.01 0.05 0.4 10 0.003 -0.957353 stable

0.5 0.01 0.05 0.4 10 0.003 -0.956885 stable

0.6 0.01 0.05 0.4 10 0.003 -0.956571 stable

0.7 0.19 0.01 0.4 10 0.003 0.0574185 unstable

0.8 0.19 0.01 0.4 10 0.003 0.0606162 unstable

0.9 0.19 0.01 0.4 10 0.003 0.0631032 unstable

Table 1 shows that if the birth rate is less than death rate, then Di(K) < 0, which implies the

stability of the origin. For the birth rate is greater than the death rate, then Di(K) > 0, which

implies the instability of the origin for different values of control parameter

4.3 Stability of the non-zero equilibrium state

To analyze the non-zero state for stability, we shall apply the result of Bellman and Cooke’s

theorem to the characteristic equation (67), taking it in the form H(λ ) = 0, where H(λ ) is given

by the L.H.S. of the (67). For λ = iw, we obtain

b1(iw) = f1(w)+ ig1(w), b2(iw) = f2(w)+ ig2(w), b3(iw) = f3(w)+ ig3(w),

where

f1(w) =
T∫

0

Cos(wa)π1(a)da, g1(w) =−
T∫

0

Sin(wa)π1(a)da,

f2(w) =
T∫

0

Cos(wa)π2(a)da, g2(w) =−
T∫

0

Sin(wa)π2(a)da,

and

f3(w) =
T∫

0

Cos(wa)π3(a)da, g3(w) =−
T∫

0

Sin(wa)π3(a)da.



AGE-STRUCTURED MATHEMATICAL MODEL FOR HIV/AIDS 17

For w= 0, we have fi(0)= π̄i, gi(0)= 0. Also f
′
i (0)= 0, g

′
i(0)=−Ai, where Ai =

T∫
0

aπi(a)da, i=

1, 2, 3. Thus, H(λ ) takes the form

H(iw) = F(w)+ iG(w),

where F(w) is the real part and G(w) is the imaginary part of H(iw). Now, we need to obtain

the condition for which the inequality

F(w)G′(w)−F ′(w)G(w)> 0 (72)

holds at w = 0, i.e., F(0)G′(0) > 0. In this case, Di(K) = F(0)G′(0), then the non-zero state

will be stable when Di(K)> 0.

Table 2 Stability of non-zero state for different values of parameters

K αii bi βi µi θi T δi Di(K) Remark

0.3 0.001 0.01 0.1 0.05 0.4 1 0.003 1.0233097 stable

0.4 0.001 0.01 0.1 0.05 0.4 1 0.003 1.0382323 stable

0.5 0.001 0.01 0.1 0.05 0.4 1 0.003 1.0471858 stable

0.6 0.001 0.01 0.1 0.05 0.4 1 0.003 1.0531549 stable

0.7 0.001 0.01 0.1 0.05 0.4 1 0.003 1.0574185 stable

0.8 0.001 0.01 0.1 0.05 0.4 1 0.003 1.0606162 stable

0.9 0.001 0.01 0.1 0.05 0.4 1 0.003 1.0631032 stable

Table 2 shows that the stability of the non-zero state i.e.,Di(K) > 0, for different values of

parameters. In this table, we assume that the non-zero equilibrium state is stable only for

K ≥ 0.3, otherwise unstable.

5. Discussion

In this deterministic model for heterogeneous population of three different communities e-

valuated after translating in ordinary and partial differential equations, the stability condition

for the zero and non-zero equilibrium states are obtained. For the stability of zero equilibrium
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FIGURE 1. xi versus yi for βi = 0.5, µi = 0.05, αii = 0.002, αi j = 0.001, δi =

0.003, θi = 0.02 and π̄i = 0.01.

FIGURE 2. xi versus t for βi = 0.5, µi = 0.05, αii = 0.002, αi j = 0.001, δi =

0.003, θi = 0.02 and π̄i = 0.01.

state, the real part of the roots of the characteristic equation must be negative and thus we obtain

(1− θi)βi π̄i < 1. In Table 1, all the conditions are satisfied for zero equilibrium state for the

birth rate is less than the death rate. Now, by applying Bellman and Cooke s theorem at non-zero

equilibrium state, the obtained transcendental equation H(iw) = F(w)+ iG(w), whose real and

imaginary parts necessarily follow the inequality (72) for at least one value of w. In our case,

the inequality satisfied at w = 0. Results of stability analysis for different values of parameters

are shown in Table 2. As per our assumption, the behaviour of different values of parameters

birth rate, death rate, control parameter and the numerical results are graphically shown in Fig.

1-3.
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FIGURE 3. yi versus t for βi = 0.5, µi = 0.05, αii = 0.002, αi j = 0.001, δi =

0.003, θi = 0.02 and π̄i = 0.01.

6. Conclusion

The deterministic mathematical model is proposed with age-dependent HIV/AIDS infection

for heterogeneous population of three different communities. Here, each community is divided

into two classes: susceptible and HIV infectives. The infected individuals are age-dependent

and structured with the age-density function ρ(t, a) where ‘t’ is the time and ‘a′ is the infection

age. There is the maximum infection age ‘T ’ at which the infected individuals must leave the

compartment via death. The zero and non-zero equilibrium states are obtained for population

suppression and maintenance in these communities which depends on the control parameter K.

The zero equilibrium state is stable if Di(K) < 0, which are analyzed in Table 1 for different

values of parameters. The non-zero equilibrium state is stable if the inequality (72) holds which

are verified in Table 2. The stability analysis of equilibrium states implies that the zero and

non-zero equilibrium states must be bounded in these communities through public awareness

campaign.
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