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Abstract. This work is concerned with the existence of a unique solution and the controllability for a size-

structured population model, which incorporates density-dependent immigration and boundary control. By means

of semigroup theory of operators and fixed point reasoning, we show that the system is well-posed and exactly

controllable.
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1. Introduction

The controllability of a dynamic system is one of the most important internal features, which

displays the function of structures and parameters in the system. If a system is not controllable

in some sense, it may be of great risk. Unfortunately, although controllability is one of the most

significant problems in system control, it is one of the most difficult problems as well. So is the

case in biological population systems.
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Mathematical models of populations including age, size, spatial location, life stage or other

structuring of individuals have an extensive history[1]-[3]. Compared with unstructured mod-

els, they are more realistic ecologically, and more challenging mathematically. As for the size-

structured models, Sinko and Streifer formulated the first one in 1967[4]. Since then there

have been a number of investigations on the topic, but most of the efforts has been focused

on the behavioral analysis, such as persistence, extinction or other transient or long-run evo-

lution. The authors in [5] established the well-posedness for their model and developed an

approximation scheme for the solutions. Kato investigated the local existence, positivity and

continuous dependence for solutions of a population models by means of characteristic curves

methods, see[6]-[7]. In [8], the same author used Schauder’s fixed point theorem to obtain the

existence and uniqueness of local solutions, and the continuous dependence on initial data for

a size-dependent population model with nonlinear growth rate. The stability and some optimal

control problems for size-structured population dynamics have been studied in[9]-[12]. The

authors in [13] proved an abstract result for a kind of semilinear problem and applied it to the

controllability of a size-structured population model. However, there is only few work about

the controllability for size-structured population models. As a special case, many results on the

controllability of age-structured systems have been established, see[14]-[18] and the references

therein. We are motivated in this paper to examine the problem for a type of size-dependent

model, which incorporates the density-dependent immigration and boundary control policies.

The remainder of the present paper is organized as follows. In Section 2 we propose the

model, provide a definition and list some hypotheses. The main results and its proofs are for-

mulated in Section 3. Then final Section 4 consists of conclusions and some remarks.

2. Preliminaries

This work is concerned with the exact controllability in finite time for the following size-

structured single species model:
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∂ p(s, t)

∂ t
+

∂ (g(s)p(s, t))
∂ s

=−µ(s, t)p(s, t)+ f (p(s, t), t),(t,s) ∈ QT ,

g(0)p(0, t) =
∫ m

0 β (s, t)p(s, t)ds+b(t)u(t), t ∈ [0,T ],

p(s,0) = p0(s), s ∈ [0,m],

(2.1)

in which the unknown function p(s, t) represents the density of population with respect to size

s at time t, QT = (0,m)× (0,T ). m > 0 is the finite maximum size of any individual in the

population. The size-specific functions µ(s, t) and β (s, t) denote, respectively, the mortality

and fertility. The term f (p(s, t), t) models the migration progress, and g(s) is the growth rate

of size over time t. Let X := L1(0,T ),∂X := (0,T ), b is a control operator which is bounded

from a Banach space U to ∂X ; u(t) is the boundary control variable, and p0(s) is the initial

size distribution of our target population. Without loss of generality, we suppose that the size

of newborns is zero.

We state the basic assumptions as follows:

(A1) β ∈ L∞(QT),β (s, t)≥ 0 a.e. (s, t) ∈ QT;

(A2) g∈C1[0,m] and 0 < g∗ ≤ g(s)≤ g∗,µ(s, t)+g′(s)≥ 0 a.e.s∈ [0,m], g∗, g∗ are constant

and Γ(s) =
∫ s

0
1

g(v)dv;

(A3) µ(·, t) ∈ L1
loc(0,m),µ(s, t)≥ v > 0 a.e.(s, t) ∈ QT,

∫ m
0 µ(Γ−1(Γ(m)− s), t− s)ds =+∞;

(A4) 0≤ p0(s)≤ p∗0 a.e. s ∈ (0,m), p∗0 is a constant;

(A5) f ∈ L1(QT), f (p(s, t), t)≥ 0 a.e. (s, t) ∈ QT; and

|| f (φ , t)− f (ψ, t)|| ≤ L||φ −ψ||

where L is a constant;

(A6) The functions µ,β , f and g, p0 are extended by zero in the outside of their domains.

In convenience of dealing with the control problem for systems (2.1), we first consider the

case f (p(s, t), t) = 0, then treat the general problem.

When f (p(s, t), t) = 0, we fit the system (2.1) into the setting of abstract Cauchy problem.

Take D := W 1,1(0.T ), clearly it is dense and can be continuously embedded into X [19]. Let

x(t) = p(·, t), then the size structured population model (2.1) can be changed into the following
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form: 
dx(t)

dt
= Amax(t)x(t), t ∈ [0,T ],

L(t)x(t) = h(t,x(t))+b(t)u(t), t ∈ [0,T ],

x(0) = p0,

(2.2)

the operators above are defined as follows:

Amax(t)ϕ :=−g′(·)ϕ−g(·) ∂

∂ s
ϕ−µ(·, t)ϕ

and

L(t)ϕ := g(0)ϕ(0), h(t,x(t)) =
∫ m

0
β (s, t)x(t)ds

for ϕ ∈ L1(0,T ).

For solutions to problem (2.2), we adopt the following definition.

Definition 1. [22] The continuous function x : [0,T ] 7−→ X given by variation of constants

formula

x(t) =U(0, t)x(0)+ lim
λ→+∞

∫ t

0
U(σ , t)λLλ ,σ [h(σ ,x(σ))+b(σ)u(σ)]dσ ,

t ∈ [0,T ](2.3)

is called the mild solution of the inhomogeneous boundary Cauchy problem (2.2).

Remark 1. Under hypotheses (A1)-(A6), it will be shown that there is an evolution family

U(s, t) generated by the solution operators of system (2.2), such that U(s, t)x ∈ D(Amax(t))

and
d
dt

U(s, t)x = Amax(t)U(s, t)x for all x ∈ D(Amax(s)) and t ≥ s ≥ 0. And we also have the

following estimate:

||U(s, t)|| ≤Mew(t−s),

where M and w are the stability constants.

Remark 2. Lλ ,t := (L(t)|ker(λ−Amax(t)))
−1 : ∂X → ker(λ −Amax(t)).
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3. Main Results

In this section, we show the well-posedness and the exact controllability for size-structured

population model (2.1). Firstly, we consider the situation without migration process. Then we

treat the general case.

3.1. Existence of mild solutions. The following result provides the existence of mild solutions

for the problem (2.2).

Proposition 1. Under the assumptions (A1)-(A6), the problem (2.2) has a unique mild solution

x ∈C([0,T ],X).

Proof: According to Hille-Yosida’s theorem, we need only to prove that Amax is closed and

ρ(Amax)⊃ (ω,∞), ||R(λ ,Amax(t))|| ≤
M

λ −ω
.

Taking ϕ ∈ D and applying the closed graph theorem, we obtain that

||ϕ||D =
∫ m

0
|ϕ(a)|da+

∫ m

0
|ϕ ′(a)|da

≤
∫ m

0
|ϕ(a)|da+

∫ m

0
|ϕ ′(a)+ g′(a)+µ(a, t)

g(a)
ϕ(a)|da

+
∫ m

0
|g
′(a)+µ(a, t)

g(a)
ϕ(a)|da

=
∫ m

0
|ϕ(a)|da+

∫ m

0
|Amax(t)

g(a)
ϕ(a)|da+

∫ m

0
|g
′(a)+µ(a, t)

g(a)
ϕ(a)|da

≤ ||ϕ||X +
1
g∗
||Amaxϕ||X +

1
g∗

sup
t∈[0,T ]

||g′(a)+µ(a, t)||∞||ϕ||X

≤ max{1, 1
g∗

sup
t∈[0,T ]

||g′(a)+µ(a, t)||∞,
1
g∗
}(||ϕ||X + ||Amaxϕ||X)

= C1(||ϕ||X + ||Amaxϕ||X),

where C1 = max{1, 1
g∗

sup
t∈[0,T ]

||g′(a)+µ(a, t)||∞,
1
g∗
}, and ||ϕ||X =

∫ m
0 |ϕ(a)|da.

On the other hand,
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||ϕ||X + ||Amaxϕ||X

=
∫ m

0 |ϕ(a)|da+
∫ m

0 |−g(a)ϕ ′(a)− (g′(a)+µ(a, t))ϕ(a)|da

≤
∫ m

0 |ϕ(a)|da+
∫ m

0 |g(a)ϕ ′(a)|da+
∫ m

0 |(g′(a)+µ(a, t))ϕ(a)|da

≤
∫ m

0 |ϕ(a)|da+g∗
∫ m

0 |ϕ ′(a)|da+ supt∈[0,T ] ||g′(a)+µ(a, t)||∞
∫ m

0 |ϕ(a)|da

≤max{1+ supt∈[0,T ] ||g′(a)+µ(a, t)||∞,g∗}
(∫ m

0 |ϕ ′(a)|da+
∫ m

0 |ϕ(a)|da
)

=C2||ϕ||D,

where C2 = max{1+ sup
t∈[0,T ]

||g′(a)+µ(a, t)||∞,g∗}.

Next, we will show that the resolvent operator associated to A(t) := Amax|kerL(t) meets the

conditions of Hille-Yosida’s theorem.

Let λ > 0, the resolvent operator of A(t) is given as follows:

R(λ .A(t))ϕ =
1

g(·)

∫ ·
0

e−
∫ ·

τ

λ+µ(σ ,t)
g(σ)

dσ
ϕ(τ)dτ

and

||R(λ .A(t))ϕ||X =
∫ m

0
|R(λ .A(t))ϕ(ξ )|dξ

=
∫ m

0

1
|g(ξ )|

∣∣∣∣∫ ξ

0
e−

∫
ξ

τ

λ+µ(σ ,t)
g(σ)

dσ
ϕ(τ)dτ

∣∣∣∣dξ

≤
∫ m

0

|ϕ(τ)|
g(ξ )

∫ m

τ

e−
∫

ξ

τ

λ+µ(σ ,t)
g(σ)

dσ dξ dτ.(3.1)

From the hypothesis (A3), we conclude that−(λ +µ(σ , t))≤−(λ +v), i.e. the above inequal-

ity (3.1) can be changed into following form:

||R(λ .A(t))ϕ||X ≤
∫ m

0

|ϕ(τ)|
g(ξ )

∫ m

τ

e−(λ+v)
∫

ξ

τ
1

g(σ)
dσ dξ dτ

=
∫ m

0

|ϕ(τ)|
(λ + v)

(
1− e

−(λ+v)

∫ m

τ

1
g(σ)

dσ)
dτ

≤
∫ m

0

|ϕ(τ)|
(λ + v)

dτ

=
1

(λ + v)
||ϕ||X ≤

1
λ
||ϕ||X .

Therefore, the evolution family U(s, t) exists and Amax is the infinitesimal generator of a C0

semigroup of contractions on X .
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Then by Hille-Yosida’s theorem in [20], we claim that the problem (2.2) has a unique mild

solution.

In fact, Amaxϕ is continuously differentiable for all ϕ ∈ D. If Lλ ,σ is well-defined, then the

operator L(t) is surjective and bounded, which means that the mild solution expression makes

sense. In what follows, we will verify the point.

Setting, in (2.3), ϕ(0) =−
∫ m

0

∂ϕ(a)
∂a

da for all ϕ ∈W 1,1(0,T ), we get that

||L(t)ϕ||= |g(0)ϕ(0)| ≤ g∗||ϕ||D.

Then for x ∈ [0,T ], we take ϕ(·) = e−·

g(·)
x, and conclude L(t)ϕ = g(0)ϕ(0) = x, which implies

the surjectivity of L(t). In addition, we also have

||L(t)ϕ|| = |g(0)ϕ(0)|= |
∫ m

0

∂g(a)ϕ(a)
∂a

da|

= |
∫ m

0
(−λ −µ(a, t))ϕ(a)da|

≥ (λ + v)||ϕ||X > λ ||ϕ||X .

So, Lλ ,σ makes sense and satisfies λ ||Lλ ,σ || ≤ 1.

When the migration progress f (p(s, t), t) 6= 0, we consider the existence of solutions for the

following inhomogeneous Cauchy problem:
dx(t)

dt
= Amax(t)x(t)+ f (x(t), t), t ∈ [0,T ],

L(t)x(t) = h(t,x(t))+b(t)u(t), t ∈ [0,T ],

x(0) = p0.

(3.2)

From Proposition 1, it readily follows that

Theorem 1. Under the assumptions (A1)-(A6), the size-structured population model (3.2) has

a unique mild solution x ∈C([0,T ],X) and

x(t) = U(0, t)x(0)+ lim
λ→+∞

∫ t

0
U(σ , t)λLλ ,σ [h(σ ,x(σ))+b(σ)u(σ)]dσ

+
∫ t

0
U(σ , t) f (x(σ),σ)dσ , t ∈ [0,T ].(3.3)
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3.2. Boundary Controllability. We now consider the controllability of the population model

(2.1) (i.e. system (3.2)) by the boundary control variable. Here we assume that the control

operators are such that b(·) ∈ L2(0,T ).

Definition 2. [21, 22] The system (3.2) is said to be exactly controllable on [0,T ], for some

T > 0, if for every initial value x0, v ∈ X there is a control u ∈ L2(0,T ;U) such that the solution

x(·) of (3.2) satisfies x(T ) = v.

We define the operator W from L2([0,T ],U) into X by

Wu := lim
λ→+∞

∫ T

0
U(σ ,T )λLλ ,σ b(σ)u(σ)dσ ,(3.4)

then we can readily check that the operator W is well-defined. Using results in [23, 24], we

induce that the inverse operator W−1 exists and is bounded.

With the help of the inverse operator W−1, the following controllability result can be proved.

Proposition 2. If the hypotheses (A1)-(A6) are satisfied, then the system (3.2) is exactly con-

trollable on [0,T] provided T (L+‖β‖L∞)(1+‖b(·)‖L2‖W−1‖)< 1.

Proof: If the system (3.2) is exactly controllable on [0,T], then there is a u∗ such that x(T ) = v,

i.e.

U(0,T )x(0)+ lim
λ→+∞

∫ T

0
U(σ ,T )λLλ ,σ [h(σ ,x(σ))

+b(σ)u∗(σ)]dσ +
∫ T

0
U(σ ,T ) f (x(σ),σ)dσ = v.

Define a control as follows:

u∗ =W−1
[

v−U(0,T )x(0)− lim
λ→+∞

∫ T

0
U(σ ,T )λLλ ,σ h(σ ,x(σ))dσ

−
∫ T

0
U(σ ,T ) f (x(σ),σ)dσ

]
.

To establish the controllability, we need only to show that the operator Φ : C([0,T ],X) →

C([0,T ],X) defined in the following (3.5) has a fixed point, which is the solution of the sys-

tem (3.2) and satisfies x(T ) = v:

(Φx)(t) = U(0, t)x(0)+ lim
λ→+∞

∫ t

0
U(σ , t)λLλ ,σ [h(σ ,x(σ))+b(σ)u∗(σ)]dσ
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+
∫ t

0
U(σ , t) f (x(σ),σ)dσ , t ∈ [0,T ].(3.5)

Let xi ∈C([0,T ],X) and u∗i be the control associated to xi, i = 1,2. Then we see that

(Φx1)(t)− (Φx2)(t) = lim
λ→+∞

∫ t

0
U(σ , t)λLλ ,σ

[
h(σ ,x1(σ))−h(σ ,x2(σ))+

b(σ)u∗1(σ)−b(σ)u∗2(σ)
]
dσ +

∫ t

0
U(σ , t)[ f (x1(σ),σ)

− f (x2(σ),σ)]dσ .

Consequently,

‖(Φx1)(t)− (Φx2)(t)‖ ≤ lim
λ→+∞

∥∥∥∥∥∫ t
0 U(σ , t)λLλ ,σ

[
h(σ ,x1(σ))−h(σ ,x2(σ))

]
dσ

∥∥∥∥∥
+ lim

λ→+∞

∥∥∥∥∥∫ t
0 U(σ , t)λLλ ,σ b(σ)

[
u∗1(σ)−u∗2(σ)

]
dσ

∥∥∥∥∥+∥∥∥∥∥∫ t
0 U(σ , t)[ f (x1(σ),σ)− f (x2(σ),σ)]dσ

∥∥∥∥∥
≤ lim

λ→+∞

∥∥∥∥∥∫ t
0 U(σ , t)λLλ ,σ

[
h(σ ,x1(σ))−h(σ ,x2(σ))

]
dσ

∥∥∥∥∥+ lim
λ→+∞

∥∥∥∥∥∫ t
0 U(σ , t)

λLλ ,σ b(σ)W−1
[

lim
λ→+∞

∫ T
0 U(τ,T )λLλ ,τ

[
h(τ,x1(τ))−h(τ,x2(τ))

]
dτ

]
dσ

∥∥∥∥∥+
lim

λ→+∞

∥∥∥∥∥∫ t
0 U(σ , t)λLλ ,σ b(σ)W−1

[∫ T
0 U(τ,T )[ f (x1(τ),τ)− f (x2(τ),τ)]dτ

]
dσ

∥∥∥∥∥
+

∥∥∥∥∥∫ t
0 U(σ , t)[ f (x1(σ),σ)− f (x2(σ),σ)]dσ

∥∥∥∥∥.
By hypotheses (A1)-(A6), we infer that ‖U(σ , t)‖ ≤ 1,‖λLλ ,σ‖ ≤ γ ≤ 1, and ‖h(σ ,x1(σ))−

h(σ ,x2(σ))‖ ≤ ‖β‖L∞‖x1− x2‖. Then Hölder’s inequality leads us to the following result:

‖(Φx1)(t)− (Φx2)(t)‖

≤
∫ t

0

∥∥∥∥[h(σ ,x1(σ))−h(σ ,x2(σ))
]∥∥∥∥dσ +‖b(·)‖L2‖W−1‖∫ T

0

[
‖h(σ ,x1(σ))−h(σ ,x2(σ))‖+‖ f (x1(σ),σ)

− f (x2(σ),σ)‖
]

dσ +
∫ t

0

∥∥∥∥[ f (x1(σ),σ)− f (x2(σ),σ)]

∥∥∥∥dσ

≤ T‖β‖L∞‖x1− x2‖+‖b(·)‖L2‖W−1‖
[
T‖β‖L∞

+T L
]
‖x1− x2‖+LT‖x1− x2‖

= T (L+‖β‖L∞)(1+‖b(·)‖L2‖W−1‖)‖x1− x2‖.
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Since T (L+ ‖β‖L∞)(1+ ‖b(·)‖L2‖W−1‖) < 1, the operator Φ is a contraction on C([0,T ],X).

The existence of a unique fixed point for Φ ends the proof.

Combining the above result with Theorem 1, we obtain the controllability of the system (2.1)

immediately.

Theorem 2. If the hypotheses (A1)-(A6) are satisfied, then the system (2.1) is exactly control-

lable on [0,T] provided T (L+‖β‖L∞)(1+‖b(·)‖L2‖W−1‖)< 1.

4. Concluding Remarks

After a consideration of density-dependent immigration and boundary control, we have for-

mulated a size-structured population dynamical system to model the evolution of the species.

Semigroup theory of operators enables us to establish the existence and uniqueness of the state

solutions, which are based up on some reasonable conditions. As one of the main research

results in present paper, controllability implies that we can adjust the state of the population

according to some practical needs, by a suitable choice of boundary control. In other words,

we just need to choose appropriate function β and L, i.e. put in or taking out some newborn

and immigration individuals to drive the population to a given distribution. This theoretical

result is consistent with the practice. In addition, this kind of result should be useful for species

stabilization, optimal management of renewable resources and other involved problems.
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