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Abstract. Sufficient conditions are obtained for the existence of positive periodic solution of the following discrete

amensalism model with Holling II functional response

x1(k+1) = x1(k)exp
{

a1(k)−b1(k)x1(k)−
c1(k)x2(k)

e1(k)+ f1(k)x2(k)

}
,

x2(k+1) = x2(k)exp
{

a2(k)−b2(k)x2(k)
}
,

where {bi(k)}, i = 1,2,{c1(k)}{e1(k)},{ f1(k)} are all positive ω-periodic sequences, ω is a fixed positive integer,

{ai(k)} are ω-periodic sequences, which satisfies ai =
1
ω

ω−1
∑

k=0
ai(k)> 0, i = 1,2.
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Amensalism and commensalism are two common relationship between the species, here,

amensalism is an interaction where an organism inflicts harm to another organism without any

costs or benefits received by the other. And commensalism describe a relationship which is only

favorable to the one side and have no influence to the other side.

In the past decade, numerous works on the mutualism model ([1]-[14]) or the commensalism

model has been published([15]-[20]). However, only recently did scholars paid attention to the

amensalism model([21]-[26]).

Sun [21] first time proposed a amensalism model:

dx
dt

= r1x
(k1− x−ay

k1

)
,

dy
dt

= r2y
(k2− y

k2

)
,

(1.1)

where all the parameters ri,ki, i = 1,2 and a are positive constants. They investigated the local

stability of all equilibrium points. The model is then generalized by Zhu and Chen[22] to the

following more general case

dx
dt

= x
(

a1 +b1x+ c1y
)
,

dy
dt

= y
(

a2 + c2y
)
,

(1.2)

where ai > 0,ci < 0, i = 1,2,b1 < 0. The qualitative property of the system (1.2) is investigated.

Stimulated by the works of Sun[21] and Zhu and Chen[22], Zhang[23] proposed the follow-

ing delay amensalism model

dx
dt

= x
(

r1−a11x(t− τ)
)
,

dy
dt

= y
(

r2−a21

∫ t

−∞

f (t− s)x(s)ds−a22y
)
.

(1.3)

By taking τ as parameter, the author investigated the local stability property of the positive

equilibrium and found the Hopf bifurcation phenomenon of the system.

All the works of [21]-[23] are autonomous ones and recently, Han et al[28] proposed the
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following non-autonomous amensalism model:

dx1

dt
= x1

(
a1(t)−b1(t)x1− c1(t)x2

)
,

dx2

dt
= x2

(
a2(t)−b2(t)x2

)
.

(1.4)

By using a continuation theorem based on Gaines and Mawhin’s coincidence degree, a set of

easily verified sufficient conditions which guarantee the global existence of positive periodic

solutions of above system is established. Chen et al[25, 26] argued that the discrete time mod-

els governed by difference equations are more appropriate than the continuous ones when the

populations have non-overlapping generations, and they proposed the following discrete non-

autonomous amensalism model:

x1(k+1) = x1(k)exp
{

a1(k)−b1(k)x1(k)− c1(k)x2(k)
}
,

x2(k+1) = x2(k)exp
{

a2(k)−b2(k)x2(k)
}
.

(1.5)

In [25], they investigated the persistent, extinction and stability property of the system, and in

[26], they established a set of easily verified sufficient conditions which guarantee the global

existence of positive periodic solutions of above system.

In system (1.1)-(1.5), the authors made the assumption that the influence of the second species

to the first one is linearize, none of them consider the functional response of the second species.

Now, by adapting the Holling II functional response to system (1.5), we could establish the

following two species discrete amensalism model with Holling II functional response

x1(k+1) = x1(k)exp
{

a1(k)−b1(k)x1(k)−
c1(k)x2(k)

e1(k)+ f1(k)x2(k)

}
,

x2(k+1) = x2(k)exp
{

a2(k)−b2(k)x2(k)
}
,

(1.6)

where {bi(k)}, i = 1,2,{c1(k)}{e1(k)},{ f1(k)} are all positive ω-periodic sequences, ω is a

fixed positive integer, {ai(k)} are ω-periodic sequences, which satisfies ai =
1
ω

ω−1
∑

k=0
ai(k) >

0, i = 1,2. Here we assume that the coefficients of the system (1.6) are all periodic sequences

which having a common integer period. Such an assumption seems reasonable in view of

seasonal factors, e.g., mating habits, availability of food, weather conditions, harvesting, and

hunting, etc.
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The aim of this paper is to obtain a set of sufficient conditions which ensure the existence of

positive periodic solution of system (1.6).

2. Main results

In the proof of our existence theorem below, we will use the continuation theorem of Gaines

and Mawhin([27]).

Lemma 2.1 (Continuation Theorem) Let L be a Fredholm mapping of index zero and let N be

L-compact on Ω̄. Suppose

(a).For each λ ∈ (0,1), every solution x of Lx = λNx is such that x 6∈ ∂Ω;

(b).QNx 6= 0 for each x ∈ ∂Ω∩KerL and

deg{JQN,Ω∩KerL,0} 6= 0.

Then the equation Lx = Nx has at least one solution lying in DomL∩ Ω̄.

Let Z,Z+,R and R+ denote the sets of all integers, nonnegative integers, real unumbers, and

nonnegative real numbers, respectively. For convenience, in the following discussion, we will

use the notation below throughout this paper:

Iω = {0,1, ...,ω−1}, g =
1
ω

ω−1

∑
k=0

g(k), gu = max
k∈Iω

g(k), gl = min
k∈Iω

g(k),

where {g(k)} is an ω-periodic sequence of real numbers defined for k ∈ Z.

Lemma 2.2[28] Let g : Z→ R be ω-periodic, i. e., g(k+ω) = g(k). Then for any fixed k1,k2 ∈

Iω , and any k ∈ Z, one has

g(k)≤ g(k1)+
ω−1

∑
s=0
|g(s+1)−g(s)|,

g(k)≥ g(k2)−
ω−1

∑
s=0
|g(s+1)−g(s)|.

We now reach the position to establish our main result.
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Theorem 2.1 Assume that ā1 >
(c1

f1

)
holds, then system (1.6) admits at least one positive ω-

periodic solution.

Proof. Let

xi(k) = exp{ui(k)}, i = 1,2,

so that system (1.3) becomes

u1(k+1)−u1(k) = a1(k)−b1(k)exp{u1(k)}−
c1(k)exp{u2(k)}

e1(k)+ f1(k)exp{u2(k)}
,

u2(k+1)−u2(k) = a2(k)−b2(k)exp{u2(k)}.
(2.1)

Define

l2 =
{

y =
{

y(k)
}
,y(k) = (y1(k),y2(k))T ∈ R2

}
.

For a = (a1,a2)
T ∈ R2, define |a| = max{|a1|, |a2|}. Let lω ⊂ l2 denote the subspace of all ω

sequences equipped with the usual normal form ‖y‖= max
k∈Iω

|y(k)|. It is not difficult to show that

lω is a finite-dimensional Banach space. Let

lω
0 = {y = {y(k)} ∈ lω :

ω−1

∑
k=0

y(k) = 0}, lω
c = {y = {y(k)} ∈ lω : y(k) = h ∈ R2,k ∈ Z},

then lω
0 and lω

c are both closed linear subspace of lω , and

lω = lω
0 ⊕ lω

c , dimlω
c = 2.

Now let us define X = Y = lω , (Ly)(k) = y(k+1)− y(k). It is trivial to see that L is a bounded

linear operator and

KerL = lω
c , ImL = lω

0 , dimKerL = 2 =CodimImL.

Then it follows that L is a Fredholm mapping of index zero. Let

N(u1,u2)
T = (N1,N2)

T := N(u,k),

where {
N1 = a1(k)−b1(k)exp{u1(k)}−

c1(k)exp{u2(k)}
e1(k)+ f1(k)exp{u2(k)}

,

N2 = a2(k)−b2(k)exp{u2(k)}.

Px =
1
ω

ω−1

∑
s=0

x(s),x ∈ X , Qy =
1
ω

ω−1

∑
s=0

y(s),y ∈ Y.
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It is not difficult to show that P and Q are two continuous projectors such that

ImP = KerL and ImL = KerQ = Im(I−Q).

Furthermore, the generalized inverse (to L) Kp: ImL→KerP∩DomL exists and is given by

Kp(z) =
k−1

∑
s=0

z(s)− 1
ω

ω−1

∑
s=0

(ω− s)z(s).

Thus

QNx =
1
ω

ω−1

∑
k=0

N(x,k),

K p(I−Q)Nx =
k−1

∑
s=0

N(x,s)+
1
ω

ω−1

∑
s=0

sN(x,s)−
( k

ω
+

ω−1
2ω

)ω−1

∑
s=0

N(x,s).

Obviously, QN and Kp(I−Q)N are continuous. Since X is a finite-dimensional Banach space,

it is not difficult to show that Kp(I−Q)N(Ω) is compact for any open bounded set Ω ⊂ X .

Moreover, QN(Ω) is bounded. Thus, N is L-compact on any open bounded set Ω ⊂ X . The

isomorphism J of ImQ onto KerL can be the identity mapping, since ImQ=KerL.

Now we are at the point to search for an appropriate open, bounded subset Ω in X for the

application of the continuation theorem. Corresponding to the operator equation Lx = λNx,λ ∈

(0,1), we have

u1(k+1)−u1(k) = λ

[
a1(k)−b1(k)exp{u1(k)}−

c1(k)exp{u2(k)}
e1(k)+ f1(k)exp{u2(k)}

]
,

u2(k+1)−u2(k) = λ [a2(k)−b2(k)exp{u2(k)}].
(2.2)

Suppose that y = (y1(k),y2(k))T ∈ X is an arbitrary solution of system (2.2) for a certain λ ∈

(0,1). Summing on both sides of (2.2) from 0 to ω−1 with respect to k, we reach

ω−1
∑

k=0

[
a1(k)−b1(k)exp{u1(k)}−

c1(k)exp{u2(k)}
e1(k)+ f1(k)exp{u2(k)}

]
= 0,

ω−1
∑

k=0
[a2(k)−b2(k)exp{u2(k)}] = 0.

That is,
ω−1

∑
k=0

b1(k)exp{u1(k)}+
ω−1

∑
k=0

c1(k)exp{u2(k)}
e1(k)+ f1(k)exp{u2(k)}

= ā1ω, (2.3)

ω−1

∑
k=0

b2(k)exp{u2(k)}= ā2ω. (2.4)
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From (2.3) and (2.4), we have

ω−1
∑

k=0
|u1(k+1)−u1(k)|

= λ
ω−1
∑

k=0
|a1(k)−b1(k)exp{u1(k)}−

c1(k)exp{u2(k)}
e1(k)+ f1(k)exp{u2(k)}

|

≤
ω−1
∑

k=0
|a1(k)|+

ω−1
∑

k=0

(
b1(k)exp{u1(k)}+

c1(k)exp{u2(k)}
e1(k)+ f1(k)exp{u2(k)}

)
=

ω−1
∑

k=0
|a1(k)|+ ā1ω

= (Ā1 + ā1)ω,

(2.5)

ω−1
∑

k=0
|u2(k+1)−u2(k)|

= λ
ω−1
∑

k=0
|a2(k)−b2(k)exp{u2(k)}|

≤ (Ā2 + ā2)ω.

(2.6)

where Ā1 =
1
ω

ω−1
∑

k=0
|a1(k)|, Ā2 =

1
ω

ω−1
∑

k=0
|a2(k).

Since {u(k)}= {(u1(k),u2(k))T} ∈ X , there exist ηi,δi, i = 1,2 such that

ui(ηi) = min
k∈Iω

ui(k), ui(δi) = max
k∈Iω

ui(k). (2.6)

By (2.4), one could easily obtain

u2(η2)≤ ln
ā2

b̄2
, u2(δ2)≥ ln

ā2

b̄2
. (2.7)

Similarly to the analysis of (11)-(15) in [26], by using (2.5) and (2.7), we could obtain

u2(k)≤ ln
ā2

b̄2
+(Ā2 + ā2)ω, u2(k)≥ ln

ā2

b̄2
− (Ā2 + ā2)ω, (2.8)

|u2(k)| ≤max
{
| ln ā2

b̄2
+(Ā2 + ā2)ω|, | ln

ā2

b̄2
− (Ā2 + ā2)ω|

}
def
= H2. (2.9)

It follows from (2.3) that

ω−1
∑

k=0
b1(k)exp{u1(η1)} ≤ ā1ω,

and so,

u1(η1)≤ ln
ā1

b1
. (2.10)
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It follows from Lemma 2.2, (2.5) and (2.10) that

u1(k) ≤ u1(η1)+
ω−1
∑

k=0
|u1(k+1)−u1(k)|

≤ ln ā1
b1
+(Ā1 + ā1)ω

def
= M1.

(2.11)

It follows from (2.3) and (2.8) that

ω−1
∑

k=0
b1(k)exp{u1(δ1)} = ā1ω−

ω−1
∑

k=0

c1(k)exp{u2(k)}
e1(k)+ f1(k)exp{u2(k)}

≥ ā1ω−
ω−1
∑

k=0

c1(k)exp{ln ā2
b̄2
+(Ā2 + ā2)ω}

e1(k)+ f1(k)exp{ln ā2
b̄2
+(Ā2 + ā2)ω}

≥ ā1ω−
ω−1
∑

k=0

c1(k)
f1(k)

≥ ā1ω−
(c1

f1

)
ω,

where
(c1

f1

)
= 1

ω

ω−1
∑

k=0

c1(k)
f1(k)

. And so,

u1(δ1)≥ ln
ā1−

(c1

f1

)
b1

, (2.12)

It follows from Lemma 2.2, (2.6) and (2.12) that

u1(k) ≥ u1(δ1)−
ω−1
∑

k=0
|u1(k+1)−u1(k)|

≥ ln
ā1−

(c1

f1

)
b1

− (Ā1 + ā1)ω
def
= M2.

(2.13)

It follows from (2.11) and (2.13) that

|u1(k)| ≤max
{
|M1|, |M2|

}
def
= H1. (2.14)

Clearly, H1 and H2 are independent on the choice of λ . Obviously, the system of algebraic

equations

ā1− b̄1x1−
1
ω

ω−1

∑
k=0

c1(k)x2

e1(k)+ f1(k)x2
= 0, ā2− b̄2x2 = 0 (2.15)

has a unique positive solution (x∗1,x
∗
2) ∈ R+

2 , where

x∗1 =

ā1−
1
ω

ω−1

∑
k=0

c1(k)x∗2
e1(k)+ f1(k)x∗2
b̄1

>

ā1−
(c1

f1

)
b̄1

> 0, x∗2 =
ā2

b̄2
> 0.
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Let H =H1+H2+H3, where H3 > 0 is taken sufficiently enough large such that ||(ln{x∗1}, ln{x∗2})T ||=

| ln{x∗1}|+ | ln{x∗2}|< H3.

Let H = H1 +H2 +H3, and define

Ω =
{

u(t) = (u1(k),u2(k))T ∈ X : ‖u‖< H
}
.

It is clear that Ω verifies requirement (a) in Lemma 2.1. When u ∈ ∂Ω∩KerL = ∂Ω∩R2, u is

constant vector in R2 with ||u||= B. Then

QNu =

 ā1− b̄1 exp{u1}−
1
ω

ω−1

∑
k=0

c1(k)exp{u2}
e1(k)+ f1(k)exp{u2}

ā2− b̄2 exp{u2}

 6= 0.

Moreover, direct calculation shows that

deg{JQN,Ω∩KerL,0}= sgn
(

b̄1b̄2 exp{x∗1}exp{x∗2}
)
= 1 6= 0.

where deg(.) is the Brouwer degree and the J is the identity mapping since ImQ = KerL.

By now we have proved that Ω verifies all the requirements in Lemma 2.1. Hence (2.1) has at

least one solution (u∗1(k),u
∗
2(k))

T in DomL∩ Ω̄. And so, system (1.3) admits a positive periodic

solution (x∗1(k),x
∗
2(k))

T , where x∗i (k) = exp{u∗i (k)}, i = 1,2, This completes the proof of the

claim.

3. Numeric simulation

Now let us consider the following example.

Example 3.1.

x1(k+1) = x1(k)exp
{

2+0.3sin(πk)− (1+0.3sin(πk))x1(k)−
(2+0.5sin(πk))x2(k)

1+2x2(k)

}
,

x2(k+1) = x2(k)exp
{

0.6+0.3sin(πn)− (3+2cos(πk))x2(k)
}
,

(3.1)

Corresponding to system (1.6), here we choose a1(k) = 2+0.3sin(πk),b1(k) = 1+0.3sin(πk),

c1(k) = 2+0.5sin(πk),e1(k) = 1, f1(k) = 2. a2(k) = 0.6+0.3sin(πk),b2(k) = 3+2cos(πk).

One could easily check that the condition of Theorem 2.1 holds, and consequently, system (3.1)
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admits at least one positive 2-period solution. Numeric simulation (Fig.1, Fig. 2 )also support

this assertion.

time n

0 2 4 6 8 10 12 14

so
lu

tio
n 

X
1

0

0.5

1

1.5

2

2.5

3

FIGURE 1. Dynamic behavior of the first component x1

in system (3.1) with the initial condition (x(0),y(0)) =

(0.14,0.19), (0.27,0.69) and (0.80,0.39), respectively.

time n

0 2 4 6 8 10 12 14

so
lu

tio
n 

X
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 2. Dynamic behavior of the second component

x1 in system (3.1) with the initial condition (x(0),y(0)) =

(0.14,0.19), (0.27,0.69) and (0.80,0.39), respectively.

4. Discussion

In this paper, we propose a discrete ammensilism model with Holling II functional response,

by using the coincidence degree theory, sufficient conditions which ensure the existence of

positive periodic sequences solution are established.

We mention here that as far as system (1.6) is concerned, such topic as persistent, extinction

and stability property of the system is very important, indeed, from Figure 1 and Figure 2, one

could see that the periodic solution of the system (3.1) is stable, however, such a conclusion
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could not be obtained from our Theorem 2.1. We will investigate the stability property of the

system (1.6) in the future.
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