
Available online at http://scik.org

Commun. Math. Biol. Neurosci. 2017, 2017:6

ISSN: 2052-2541

EXPONENTIAL SYNCHRONIZATION OF COHEN-GROSSBERG NEURAL
NETWORKS WITH STOCHASTIC PERTURBATION AND

REACTION-DIFFUSION TERMS VIA PERIODICALLY INTERMITTENT
CONTROL

LILI WANG∗, RUI XU

Institute of Applied Mathematics, Shijiazhuang Mechanical Engineering College, No.97 Heping West Road,

Shijiazhuang 050003, Hebei Province, P.R. China

Communicated by B. Liu

Copyright c© 2017 Wang and Xu. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, a class of Cohen-Grossberg neural networks with mixed time-varying delays, stochas-

tic perturbation and reaction-diffusion terms is investigated. The exponential synchronization criteria in terms of

p-norm are obtained based on periodically intermittent control by means of Lyapunov functional theory, mathemat-

ical induction and inequality technique. The influences of stochastic perturbation, spacial diffusion, the control rate

and the control strength on the exponential synchronization are discussed according to the obtained synchroniza-

tion criteria. The proposed criteria improve the previous known results in the literature and remove the restrictions

on the mixed time-varying delays. Numerical simulations are carried out to illustrate the feasibility of the results.
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Cohen-Grossberg neural network [1] proposed in 1983 is a typical neural network model.

Some models such as Hopfield neural networks and cellular neural networks are special cases

of this model. In recent years, Cohen-Grossberg neural networks have attracted the attention of

many researchers due to their potential applications in signal and image processing, associative

memory, optimization problems, and so on (see, for example, [2-4] and references cited therein).

It has been shown that delays in particular time-varying delays are unavoidable in the infor-

mation processing of neurons. In fact, time-varying delays occur in the electronic implemen-

tation of analog neural networks caused by the finite switching speed of amplifier circuits. In

addition, neural networks usually have a spatial property due to the presence of a lot of parallel

pathways of a variety of axon sizes and lengths. Hence, the signal propagation is distributed

during a certain time period. Such an inherent nature can be modeled by distributed delays such

that the distant past has less influence compared to the recent behaviors of the state. There-

fore, discrete and distributed time-varying delays should be considered when the dynamical

behaviors of neural networks are studied (see, for example, [5-7] and references cited therein).

In real neural networks, synaptic transmission is a noisy process introduced by random fluc-

tuations from the release of neurotransmitters and other probabilistic causes [8]. Besides, dif-

fusion phenomena cannot be ignored in neural networks and electric circuits when electrons

are moving in asymmetric electromagnetic fields. For example, the dynamic behavior of multi-

layer cellular neural networks are dependent on not only the evolution time of each variable and

its position, but also its interactions deriving from the space-distributed structure of the whole

networks [9]. Hence, more realistic neural networks should consider the effects of stochastic

perturbation and reaction-diffusion.

In the past decade, many mathematical researchers have studied the synchronization prob-

lems of chaotic neural networks because of their extensive applications in secure communica-

tions, information processing, chaos generators design, and so on (see, for example, [10-13] and

references cited therein). Up to now, various control methods for the synchronization of chaotic

neural networks have been investigated. Periodically intermittent control first proposed in [14]

is a kind of discontinuous control method to achieve synchronization of chaos neural networks.

In each period of this control method, the controller is activated in the work time and is off in



EXPONENTIAL SYNCHRONIZATION OF COHEN-GROSSBERG NEURAL NETWORKS 3

the rest time. It is more economical and efficient in practice than the continuous control meth-

ods including state feedback control [15], pinning control [16], adaptive control [17], sliding

mode control [18], and so on (see, for example, [19-21] and references cited therein). Hence,

periodically intermittent control has been intensively studied due to its important applications

in the engineering fields [22-26].

Many results with respect to the synchronization problems of Cohen-Grossberg neural net-

works have been obtained based on periodically intermittent control (see, for example, [27-32]

and references cited therein). In [27-30], the synchronization problems of Cohen-Grossberg

neural networks with the constant amplification gains were researched. In [31], Yu et al. studied

the exponential synchronization of Cohen-Grossberg neural networks with the general ampli-

fication functions. But the combined effects of the mixed time-varying delays, stochastic per-

turbation and reaction-diffusion terms on the exponential synchronization of Cohen-Grossberg

neural networks were not considered in [31]. In [32], sufficient conditions are given to real-

ize the exponential synchronization of stochastic Cohen-Grossberg neural networks with mixed

time-varying delays and reaction-diffusion terms via periodically intermittent control based on

p-morm by using Lyapunov stability theory with stochastic analysis approaches. However, it

was required that the derivative of the mixed time-varying delays was smaller than one in [32],

that is, the mixed time-varying delays are slowly varying delays. In fact, the continuous varying

of the delay may be slow or fast, so these restrictions are unnecessary and impractical.

From the above discussion, the previous synchronization criteria for Cohen-Grossberg neural

networks under periodically intermittent control are somewhat conservative. Hence, motivated

by the work of Gan [32], in this paper, we are concerned with the combined effects of mixed

time-varying delays, stochastic perturbation and reaction-diffusion terms on the exponential

synchronization of Cohen-Grossberg neural networks via periodically intermittent control to

improve the previous results. To this end, we consider the following Cohen-Grossberg neural

networks

∂ui(t,x)
∂ t

=
l∗

∑
k=1

∂

∂xk

(
Dik

∂ui(t,x)
∂xk

)
−αi(ui(t,x))

[
βi(ui(t,x))−

n

∑
j=1

ai j f j(u j(t,x))

−
n

∑
j=1

bi jg j(u j(t− τi j(t),x)−
n

∑
j=1

di j

∫ t

t−τ∗i j(t)
h j(u j(s,x))ds+ Ji

]
,

(1.1)
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where i ∈ `= {1,2, . . . ,n}, n is the number of neurons in the networks; x = (x1,x2, . . . ,xl∗)
T ∈

Ω ⊂ Rl∗ and Ω = {x = (x1,x2, · · · ,xl∗)
T ||xk| < mk,k ∈ h̄ = {1,2, . . . , l∗}} is a bound compact

set with smooth boundary ∂Ω and mesΩ > 0 in space Rl∗ , where mesΩ is the measure of the

set Ω; u(t,x) = (u1(t,x),u2(t,x), . . . ,un(t,x))T with ui(t,x) is the state of the ith neuron at time

t and in space x; αi(·) represents an amplification function; βi(·) is an appropriately behaved

function; ai j,bi j and di j denote the connection strength, the discrete time-varying delay con-

nection strength, and the distributed time-varying delay connection strength of the jth neuron

on the ith neuron, respectively; f j(·),g j(·) and h j(·) denote the activation functions of the jth

neuron in space x; Dik ≥ 0 represents the transmission diffusion coefficient along the ith neuron;

0 < τi j(t) ≤ τ and 0 < τ∗i j(t) ≤ τ∗ correspond to the discrete time-varying delay and the dis-

tributed time-varying delay along the axon of the jth neuron from the ith neuron, respectively;

Ji denotes the external inputs on the ith neuron.

The boundary conditions and the initial values of system (1.1) take the form

ui(t,x)|∂Ω = 0, (t,x) ∈ [−τ̄,+∞)×∂Ω, i ∈ `, (1.2)

and

ui(s,x) = φi(s,x), (s,x) ∈ [−τ̄,0]×Ω, i ∈ `, (1.3)

where τ̄ = max{τ,τ∗},φ(s,x) = (φ1(s,x),φ2(s,x), . . . ,φn(s,x))T ∈ C is bounded and continu-

ous and C ,C ([−τ̄,0)×Ω,Rn) denotes the Banach space of continuous functions which maps

[−τ̄,0)×Ω into Rn with p-norm (p is a positive integer) defined by

‖φ‖p =

(∫
Ω

n

∑
i=1

sup
−τ̄≤s≤0

|φi(s,x)|pdx

) 1
p

.

System (1.1) is called the master system. To observe the exponential synchronization be-

havior of the master system (1.1), the response system with stochastic perturbation is described

by
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dvi(t,x) =
{ l∗

∑
k=1

∂

∂xk

(
Dik

∂vi(t,x)
∂xk

)
−αi(vi(t,x))

[
βi(vi(t,x))−

n

∑
j=1

ai j f j(v j(t,x))

−
n

∑
j=1

bi jg j(v j(t− τi j(t),x)−
n

∑
j=1

di j

∫ t

t−τ∗i j(t)
h j(v j(s,x))ds+ Ji

]
+Ki(t,x)

}
dt

+
n

∑
j=1

σi j(e j(t,x),e j(t− τi j(t),x),e j(t− τ
∗
i j(t),x))dω j(t),

(1.4)

where v(t,x) = (v1(t,x),v2(t,x), . . . ,vn(t,x))T denotes the state of the response system; e(t,x) =

(e1(t,x),e2(t,x), . . . ,en(t,x))T = v(t,x)−u(t,x) is the synchronization error signal; σ =(σi j)n×n

is the noise intensity matrix; ω(t) = (ω1(t),ω2(t), · · · ,ωn(t))T ∈ Rn is the stochastic distur-

bance which is a Brownian motion defined on (Ω,F ,P), (Ω,F ,P) is a complete probability

space, Ω is the sample space, F is the σ−algebra of subsets of the sample space Ω and P is

the probability measure on F .

The response system (1.4) satisfies the following boundary conditions and initial values

vi(t,x)|∂Ω = 0, (t,x) ∈ [−τ̄,+∞)×∂Ω, i ∈ `, (1.5)

and

vi(s,x) = ψi(s,x), (s,x) ∈ [−τ̄,0]×Ω, i ∈ `, (1.6)

where ψ(s,x) = (ψ1(s,x),ψ2(s,x), . . . ,ψn(s,x)) ∈ C is bounded and continuous.

Let K(t,x) = (K1(t,x),K2(t,x), . . . ,Kn(t,x)) be an intermittent controller defined by

Ki(t,x) =

∑
n
j=1−ki j(v j(t,x)−u j(t,x)), (t,x) ∈ [mT,mT +δT )×Ω,

0, (t,x) ∈ [mT +δT,(m+1)T )×Ω,

(1.7)

where m∈N = {0,1,2, . . .},ki j are constants and kii > 0 for all i, j ∈ `, which denote the control

strength, T > 0 denotes the control period and 0 < δ < 1 is called the rate of control time.

The main aim of this paper is to design the suitable T,δ and ki j such that systems (1.1) and

(1.4) can achieve exponential synchronization under the intermittent controller (1.7). The model

is derived under the following assumptions.
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(H1) There exist positive constants Li,L∗i ,Mi,M∗i ,Ni, and N∗i such that

| fi(v̂i)− fi(v̌i)| ≤ Li|v̂i− v̌i|, | fi(v̂i)| ≤ L∗i ,

|gi(v̂i)−gi(v̌i)| ≤Mi|v̂i− v̌i|, |gi(v̂i)| ≤M∗i ,

|hi(v̂i)−hi(v̌i)| ≤ Ni|v̂i− v̌i|, |hi(v̂i)| ≤ N∗i

for v̂i, v̌i ∈ R, i ∈ `.

(H2) There exist positive constants ᾱi and α∗i such that

|αi(v̂i)−αi(v̌i)| ≤ ᾱi|v̂i− v̌i|, 0≤ αi(v̂i)≤ α
∗
i

for v̂i, v̌i ∈ R, i ∈ `.

(H3) There exist positive constants γi such that

αi(v̂i)βi(v̂i)−αi(v̌i)βi(v̌i)

v̂i− v̌i
≥ γi

for v̂i, v̌i ∈ R, and v̂i 6= v̌i, i ∈ `.

(H4) There exist positive constants ηi j such that

|σi j(ṽ1, v̂1, v̌1)−σi j(ṽ2, v̂2, v̌2)|2 ≤ ηi j
(
|ṽ1− ṽ2|2 + |v̂1− v̂2|2 + |v̌1− v̌2|2

)
for ṽ1, ṽ2, v̂1, v̂2, v̌1, v̌2 ∈ R, and σi j(0,0,0) = 0, i, j ∈ `.

(H5) There exist positive constants ρ ′ and ρ ′′ such that τ̇i j(t)≤ ρ ′ < 1 or τ̇i j(t)≥ ρ ′′ > 1 for

t, i, j ∈ `.

(H6) There exist positive constants ρ ′ and ρ ′′ such that τ̇∗i j(t)≤ ρ ′ < 1 or τ̇i j(t)≥ ρ ′′ > 1 for

all t, i, j ∈ `.

The paper is organized as follows. In the next section, we introduce some definitions and state

several lemmas which will be essential to our proofs. In Section 3, by constructing a suitable

Lyapunov functional, some criteria are obtained to ensure the exponential synchronization of

Cohen-Grossberg neural networks with stochastic perturbation and reaction-diffusion terms un-

der the periodically intermittent control in terms of p−norm. Numerical simulations are carried

out in Section 4 to illustrate the feasibility of the main theoretical results. A brief conclusion is

given in Section 5.
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2. Preliminaries

In this section, we introduce some definitions and lemmas which will be useful in next sec-

tion.

For any u(t,x) = (u1(t,x),u2(t,x), . . . ,un(t,x))T ∈ Rn, define

‖u(t,x)‖p =

(∫
Ω

n

∑
i=1
|ui(t,x)|pdx

) 1
p

.

Definition 1.1. The noise-perturbed response system (1.4) and the master system (1.1) can

be exponentially synchronized under the intermittent controller (1.7) based on p-norm, if there

exist constants µ > 0 and M ≥ 1 such that

E
{
‖v(t,x)−u(t,x)‖p

}
≤ME

{
‖ψ−φ‖p

}
e−µt , (t,x) ∈ [0,+∞)×Ω,

where u(t,x) and v(t,x) are two solutions of systems (1.1) and (1.4) with differential initial

functions φ ,ϕ ∈C , respectively, and E{·} is the mathematical expectation operator with respect

to the given probability measure P .

Lemma 1.1. [33] Let p≥ 2 be a positive integer, mk(k∈ h̄) a positive integer, X a cube |xk| ≤mk,

and let h(x) be a real-valued function belonging to C 1(Ω) which vanish on the boundary ∂Ω

of Ω, i.e., h(x)|∂Ω = 0. Then∫
Ω

|h(x)|pdx≤
p2m2

k
4

∫
Ω

|h(x)|p−2
∣∣∣∣ ∂h
∂xk

∣∣∣∣2 dx.

Lemma 1.2.[34] Let f (x),g(x) : [a,b] → R be continuous functions. Suppose that positive

constants p and q satisfy
1
p
+

1
q
= 1.

Then we have ∫ b

a
| f (x)g(x)|dx≤

[∫ b

a
| f (x)|pdx

] 1
p
[∫ b

a
|g(x)|qdx

] 1
q

.
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3. Exponential synchronization criterion

In this section, the exponential synchronization criterion of the master system (1.1) and the

response system (1.4) is obtained by designing the suitable T,δ and ki j. For convenience, the

following denotations are introduced.

Denote

qi j =
p−1

2α|1−ρ|

(
η

pε∗∗(p−1) ji
ji +η

pε∗∗p ji
ji

)
,

q∗i j =qi j−αsgn(1−ρ)qi j,

q∗∗i j =(τ∗)p−1
α
∗
i |d ji|pξ ∗∗p jiN

pζ ∗∗p ji
i ,

pi j =
1

α|1−ρ|

[
α
∗
i |b ji|pξ ∗p jiM

pζ ∗p ji
i +

p−1
2

(
η

pε∗(p−1) ji
ji +η

pε∗p ji
ji

)]
,

p∗i j =pi j−αsgn(1−ρ)pi j,

wi =− pkii +
n

∑
j=1, j 6=i

p−1

∑
l=1
|ki j|pϖli j +

n

∑
j=1, j 6=i

|k ji|pϖp ji,

λi =
l∗

∑
k=1

4(p−1)Dik

pm2
k

+ p
[

γi−α
∗
i |aii|Li−ᾱi

n

∑
j=1

[
|ai j|L∗j + |bi j|M∗j + |di j|N∗j τ

∗+ |Ji|
]
− p−1

2
ηii

]

−α
∗
i

n

∑
j=1, j 6=i

p−1

∑
l=1
|ai j|pξli jL

pζli j
j −α

∗
i

n

∑
j=1

p−1

∑
l=1

[
|bi j|pξ ∗li jM

pζ ∗li j
j + |di j|pξ ∗∗li j N

pζ ∗∗li j
j

]

− p−1
2

[ n

∑
j=1, j 6=i

p−2

∑
l=1

η
pεli j
i j +

n

∑
j=1

p−2

∑
l=1

(
η

pε∗li j
i j +η

pε∗∗li j
i j

)]

−α
∗
i

n

∑
j=1, j 6=i

|a ji|pξp jiLpζp ji
i − p−1

2

n

∑
j=1, j 6=i

(
η

pε(p−1) ji
ji +η

pεp ji
ji

)
,

where 0 < α < 1, |1−ρ|= max{|1−ρ ′|, |1−ρ ′′|}, |1−ρ|= max{|1−ρ ′|, |1−ρ ′′|}, ξli j,ζli j,

ξ ∗li j,ζ
∗
li j,ξ

∗∗
li j ,ζ

∗∗
li j ,ϖli j,εli j,ε

∗
li j, and ε∗∗li j are nonnegative real numbers and satisfy, respectively,

p

∑
l=1

ξli j = 1,
p

∑
l=1

ζli j = 1,
p

∑
l=1

ξ
∗
li j = 1,

p

∑
l=1

ζ
∗
li j = 1,

p

∑
l=1

ξ
∗∗
li j = 1,

p

∑
l=1

ζ
∗∗
li j = 1,

p

∑
l=1

ϖli j = 1,
p

∑
l=1

εli j = 1,
p

∑
l=1

ε
∗
li j = 1,

p

∑
l=1

ε
∗∗
li j = 1.
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Consider the function

Fi(εi) = λi−wi− εi−
n

∑
j=1

(
eεiτ pi j + eεiτ

∗
qi j + eεiτ

∗
q∗∗i j τ

∗
)
,

where εi ≥ 0, i ∈ `.

If the following assumption holds:

(H7) λi−wi−∑
n
j=1

(
pi j +qi j +q∗∗i j τ∗

)
> 0, i ∈ `,

then Fi(0) > 0, and Fi(εi)→−∞ as εi→ +∞. Noting that Fi(εi) is continuous on [0,+∞) and

F ′i (εi)< 0, using the zero point theorem, it follows that there exists a unique positive number ε̄i

such that Fi(ε̄i) = 0 and Fi(εi)> 0 for εi ∈ (0, ε̄i).

Denote ε̄ = mini∈`{ε̄i}, then

Fi(ε̄) = λi−wi− ε̄−
n

∑
j=1

(
eε̄τ pi j + eε̄τ∗qi j + eε̄τ∗q∗∗i j τ

∗
)
≥ 0, i ∈ `. (3.1)

Theorem 3.1. Assume (H1)− (H7) hold. If the following condition is also satisfied:

(H8) ε̄− (1−δ )w > 0, where w = maxi∈`{|wi|},

then the noise-perturbed response system (1.4) and the master system (1.1) can be exponentially

synchronized under the intermittent controller (1.7) based on p−norm.

Proof. Subtracting (1.1) from (1.4), we obtain the error system

dei(t,x) =
{ l∗

∑
k=1

∂

∂xk

(
Dik

∂ei(t,x)
∂xk

)
−
[

αi(vi(t,x))βi(vi(t,x))−αi(ui(t,x))βi(ui(t,x))
]

+αi(vi(t,x))
n

∑
j=1

[
ai j f ∗j (e j(t,x))+bi jg∗j(e j(t− τi j(t),x)+di j

∫ t

t−τ∗i j(t)
h∗j(e j(s,x))ds

]

+α
∗
i (ei(t,x))

n

∑
j=1

[
ai j f j(u j(t,x))+bi jg j(u j(t− τi j(t),x)+di j

∫ t

t−τ∗i j(t)
h j(u j(s,x))ds

− Ji

]
+

n

∑
j=1

ki je j(t,x)
}

dt +
n

∑
j=1

σi j(e j(t,x),e j(t− τi j(t),x),e j(t− τ
∗
i j(t),x))dω j(t),

(t,x) ∈ [mT,mT +δT )×Ω,

(3.2)
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dei(t,x) =
{ l∗

∑
k=1

∂

∂xk

(
Dik

∂ei(t,x)
∂xk

)
−
[

αi(vi(t,x))βi(vi(t,x))−αi(ui(t,x))βi(ui(t,x))
]

+αi(vi(t,x))
n

∑
j=1

[
ai j f ∗j (e j(t,x))+bi jg∗j(e j(t− τi j(t),x)+di j

∫ t

t−τ∗i j(t)
h∗j(e j(s,x))ds

]

+α
∗
i (ei(t,x))

n

∑
j=1

[
ai j f j(u j(t,x))+bi jg j(u j(t− τi j(t),x)+di j

∫ t

t−τ∗i j(t)
h j(u j(s,x))ds

− Ji

]}
dt +

n

∑
j=1

σi j(e j(t,x),e j(t− τi j(t),x),e j(t− τ
∗
i j(t),x))dω j(t),

(t,x) ∈ [mT +δT,(m+1)T )×Ω,

(3.3)

where

α
∗
i (ei(·,x)) = αi(vi(·,x))−αi(ui(·,x)),

f ∗j (e j(·,x)) = f j(v j(·,x))− f j(u j(·,x)),

g∗j(e j(·,x)) = g j(v j(·,x))−g j(u j(·,x)),

h∗j(e j(·,x)) = h j(v j(·,x))−h j(u j(·,x)).

Define

V (t,x) =
∫

Ω

n

∑
i=1

[
Vi(t,x)+ eε̄τ

n

∑
j=1

pi j

∫ t

t−τi j(t)
Vi(s,x)ds+ eε̄τ

n

∑
j=1

p∗i j

∫ t−τi j(t)

t−τ

Vi(s,x)ds

+ eε̄τ∗
n

∑
j=1

qi j

∫ t

t−τ∗i j(t)
Vi(s,x)ds+ eε̄τ∗

n

∑
j=1

q∗i j

∫ t−τ∗i j(t)

t−τ∗
Vi(s,x)ds

+ eε̄τ∗
n

∑
j=1

q∗∗i j

∫ 0

−τ∗

∫ t

t+s
Vi(η ,x)dηds

]
dx,

(3.4)

where Vi(t,x) = eε̄t |ei(t,x)|p.
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For (t,x) ∈ [mT,mT + δT )×Ω, calculating the Dini right-upper derivative of V (t,x) along

solutions of system (3.2), it follows that

D+E{V (t,x)} ≤E
{∫

Ω

n

∑
i=1

{
ε̄Vi(t,x)+ eε̄τ

n

∑
j=1

pi j

[
Vi(t,x)− (1− τ̇i j(t))Vi(t− τi j(t),x)

]

+ eε̄τ
n

∑
j=1

p∗i j

[
(1− τ̇i j(t))Vi(t− τi j(t),x)−Vi(t− τ,x)

]

+ eε̄τ∗
n

∑
j=1

qi j

[
Vi(t,x)− (1− τ̇

∗
i j(t))Vi(t− τ

∗
i j(t),x)

]

+ eε̄τ∗
n

∑
j=1

q∗i j

[
(1− τ̇

∗
i j(t))Vi(t− τ

∗
i j(t),x)−Vi(t− τ

∗,x)
]

+ eε̄τ∗
n

∑
j=1

q∗∗i j

∫ 0

−τ∗

[
Vi(t,x)−Vi(t + s,x)

]
ds

+ peε̄t |ei(t,x)|p−1
[ l∗

∑
k=1

∂

∂xk

(
Dik

∂ |ei(t,x)|
∂xk

)
− kii|ei(t,x)|

+
n

∑
j=1, j 6=i

|ki j||e j(t,x)|−
∣∣∣∣αi(vi(t,x))βi(vi(t,x))−αi(ui(t,x))βi(ui(t,x))

∣∣∣∣
+ |αi(vi(t,x))|

n

∑
j=1

[
|ai j|| f ∗j (e j(t,x))|+ |bi j||g∗j(e j(t− τi j(t),x))|

+ |di j|
∫ t

t−τ∗i j(t)
|h∗j(e j(s,x))|ds

]
+ |α∗i (ei(t,x))|

n

∑
j=1

[
|ai j|| f j(u j(t,x))|+ |bi j||g j(u j(t− τi j(t),x))|

+ |di j|
∫ t

t−τ∗i j(t)
|h∗j(u j(s,x))|ds+ |Ji|

]]
+

p(p−1)
2

eε̄t |ei(t,x)|p−2
n

∑
j=1

σ
2
i j(e j(t,x),e j(t−τi j(t),x),e j(t−τ

∗
i j(t),x))

}
dx
}
.

(3.5)

If (H1)− (H6) hold, it is easy to show that

D+E{V (t,x)} ≤E
{∫

Ω

n

∑
i=1

{
ε̄Vi(t,x)+ eε̄τ

n

∑
j=1

pi j

[
Vi(t,x)− (1− τ̇i j(t))Vi(t− τi j(t),x)

]

+ eε̄τ
n

∑
j=1

p∗i j

[
(1− τ̇i j(t))Vi(t− τi j(t),x)−Vi(t− τ,x)

]

+ eε̄τ∗
n

∑
j=1

qi j

[
Vi(t,x)− (1− τ̇

∗
i j(t))Vi(t− τ

∗
i j(t),x)

]
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+ eε̄τ∗
n

∑
j=1

q∗i j

[
(1− τ̇

∗
i j(t))Vi(t− τ

∗
i j(t),x)−Vi(t− τ

∗,x)
]

+ eε̄τ∗
n

∑
j=1

q∗∗i j τ
∗Vi(t,x)− eε̄τ∗

n

∑
j=1

q∗∗i j

∫ t

t−τ∗
Vi(s,x)ds

+ peε̄t |ei(t,x)|p−1
[ l∗

∑
k=1

∂

∂xk

(
Dik

∂ |ei(t,x)|
∂xk

)
− γi|ei(t,x)|

− kii|ei(t,x)|+
n

∑
j=1, j 6=i

|ki j||e j(t,x)|+α
∗
i

n

∑
j=1

[
|ai j|L j|e j(t,x)|

+ |bi j|M j|e j(t− τi j(t),x)|+ |di j|
∫ t

t−τ∗i j(t)
N j|e j(s,x)|ds

]
+ ᾱi|ei(t,x)|

n

∑
j=1

[
|ai j|L∗j + |bi j|M∗j + |di j|N∗j τ

∗+ |Ji|
]]

+
p(p−1)

2
eε̄t |ei(t,x)|p−2

n

∑
j=1

ηi j

[
|e j(t,x)|2 + |e j(t− τi j(t))|2

+ |e j(t− τ
∗
i j(t))|2

]}
dx
}
.

(3.6)

By Lemma 2.2, we obtain

∫ t

t−τ∗
Vi(s,x)ds≥

∫ t

t−τ∗i j(t)
Vi(s,x)ds

≥ eε̄(t−τ∗i j(t))
∫ t

t−τ∗i j(t)
|ei(s,x)|pds

≥ eε̄te−ε̄τ?

(∫ t
t−τ∗i j(t)

|ei(s,x)|ds
)p

(
τ∗i j(t)

) p
q

≥ eε̄te−ε̄τ? (τ∗)1−p
(∫ t

t−τ∗i j(t)
|ei(s,x)|ds

)p

.

(3.7)

It follows from the boundary conditions (1.2), (1.5) and Lemma 2.1 that

p
∫

Ω

|ei(t,x)|p−1
l∗

∑
k=1

∂

∂xk

(
Dik

∂ |ei(t,x)|
∂xk

)
dx≤−

l∗

∑
k=1

4(p−1)Dik

pm2
k

∫
Ω

|ei(t,x)|pdx. (3.8)

Noting that

ap
1 +ap

2 + · · ·+ap
p ≥ pa1a2 · · ·ap, ai ≥ 0, i = 1,2, . . . , p,
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we have

p|ei(t,x)|p−1
n

∑
j=1, j 6=i

|ai j|L j|e j(t,x)|=
n

∑
j=1, j 6=i

p

[
p−1

∏
l=1
|ai j|ξli jL

ζli j
j |ei(t,x)|

]
|ai j|ξpi jLζpi j

j |e j(t,x)|

≤
n

∑
j=1, j 6=i

p−1

∑
l=1
|ai j|pξli jL

pζli j
j |ei(t,x)|p

+
n

∑
j=1, j 6=i

|ai j|pξpi jLpζpi j
j |e j(t,x)|p.

(3.9)

Similarly,

p|ei(t,x)|p−1
n

∑
j=1, j 6=i

|ki j||e j(t,x)| ≤
n

∑
j=1, j 6=i

p−1

∑
l=1
|ki j|pϖli j |ei(t,x)|p+

n

∑
j=1, j 6=i

|ki j|pϖpi j |e j(t,x)|p,

p|ei(t,x)|p−2
n

∑
j=1, j 6=i

ηi j|e j(t,x)|2 ≤
n

∑
j=1, j 6=i

p−2

∑
l=1

η
pεli j
i j |ei(t,x)|p

+
n

∑
j=1, j 6=i

(
η

pε(p−1)i j
i j +η

pεpi j
i j

)
|e j(t,x)|p,

p|ei(t,x)|p−2
n

∑
j=1

ηi j|e j(t− τi j(t),x)|2 ≤
n

∑
j=1

p−2

∑
l=1

η
pε∗li j
i j |ei(t,x)|p

+
n

∑
j=1

(
η

pε∗(p−1)i j
i j +η

pε∗pi j
i j

)
|e j(t− τi j(t),x)|p,

p|ei(t,x)|p−2
n

∑
j=1

ηi j|e j(t− τ
∗
i j(t),x)|2 ≤

n

∑
j=1

p−2

∑
l=1

η
pε∗∗li j
i j |ei(t,x)|p

+
n

∑
j=1

(
η

pε∗∗(p−1)i j
i j +η

pε∗∗pi j
i j

)
|e j(t− τ

∗
i j(t),x)|p,

p|ei(t,x)|p−1
n

∑
j=1
|bi j|M j|(e j(t− τi j(t),x)| ≤

n

∑
j=1

p−1

∑
l=1
|bi j|pξ ∗li jM

pζ ∗li j
j |ei(t,x)|p

+
n

∑
j=1
|bi j|pξ ∗pi jM

pζ ∗pi j
j |e j(t− τi j(t),x)|p,

p|ei(t,x)|p−1
n

∑
j=1
|di j|

∫ t

t−τ∗i j(t)
N j|e j(s,x)|ds≤

n

∑
j=1

p−1

∑
l=1
|di j|pξ ∗∗li j N

pζ ∗∗li j
j |ei(t,x)|p

+
n

∑
j=1
|di j|pξ ∗∗pi jN

pζ ∗∗pi j
j

(∫ t

t−τ∗i j(t)
|e j(s,x)|ds

)p

.

(3.10)



14 LILI WANG, RUI XU

Substituting (3.7)-(3.10) into (3.6), we get

D+E{V (t,x)} ≤E
{∫

Ω

n

∑
i=1

{[
ε̄−

l∗

∑
k=1

4(p−1)Dik

pm2
k

− pγi− pkii +
n

∑
j=1, j 6=i

p−1

∑
l=1
|ki j|pϖli j

+α
∗
i p|aii|Li +α

∗
i

n

∑
j=1, j 6=i

p−1

∑
l=1
|ai j|pξli jL

pζli j
j +α

∗
i

n

∑
j=1

p−1

∑
l=1
|bi j|pξ ∗li jM

pζ ∗li j
j

+α
∗
i

n

∑
j=1

p−1

∑
l=1
|di j|pξ ∗∗li j N

pζ ∗∗li j
j + ᾱi

n

∑
j=1

[
|ai j|L∗j p+ |bi j|M∗j p+ |di j|N∗j τ

∗p+ |Ji|p
]

+
p−1

2

[
pηii +

n

∑
j=1, j 6=i

p−2

∑
l=1

η
pεli j
i j +

n

∑
j=1

p−2

∑
l=1

η
pε∗li j
i j +

n

∑
j=1

p−2

∑
l=1

η
pε∗∗li j
i j

]

+
n

∑
j=1, j 6=i

|k ji|pϖp ji +
p−1

2

n

∑
j=1, j 6=i

(
η

pε(p−1) ji
ji +η

pεp ji
ji

)

+α
∗
i

n

∑
j=1, j 6=i

|a ji|pξp jiLpζp ji
i + eε̄τ

n

∑
j=1

pi j + eε̄τ∗
n

∑
j=1

qi j + eε̄τ∗
n

∑
j=1

q∗∗i j τ
∗
]
Vi(t,x)

+ eε̄τ
n

∑
j=1

[
−α|1−ρ|pi j +α

∗
i |b ji|pξ ∗p jiM

pζ ∗p ji
i

+
p−1

2

(
η

pε∗(p−1) ji
ji +η

pε∗p ji
ji

)]
Vi(t− τi j(t),x)

+ eε̄τ∗
n

∑
j=1

[
−α|1−ρ|qi j+

p−1
2

(
η

pε∗∗(p−1) ji
ji +η

pε∗∗p ji
ji

)]
Vi(t− τ

∗
i j(t),x)

+ eε̄t
n

∑
j=1

[
α
∗
i |d ji|pξ ∗∗p jiN

pζ ∗∗p ji
i − (τ∗)1−pq∗∗i j

](∫ t

t−τ∗i j(t)
|ei(s,x)|ds

)p}
dx
}

=E
{∫

Ω

n

∑
i=1

{[
ε̄−

l∗

∑
k=1

4(p−1)Dik

pm2
k

− pγi− pkii +
n

∑
j=1, j 6=i

p−1

∑
l=1
|ki j|pϖli j

+α
∗
i p|aii|Li +α

∗
i

n

∑
j=1, j 6=i

p−1

∑
l=1
|ai j|pξli jL

pζli j
j +α

∗
i

n

∑
j=1

p−1

∑
l=1
|bi j|pξ ∗li jM

pζ ∗li j
j

+α
∗
i

n

∑
j=1

p−1

∑
l=1
|di j|pξ ∗∗li j N

pζ ∗∗li j
j +ᾱi

n

∑
j=1

[
|ai j|L∗j p+ |bi j|M∗j p+ |di j|N∗j τ

∗p+ |Ji|p
]

+
p−1

2

[
pηii +

n

∑
j=1, j 6=i

p−2

∑
l=1

η
pεli j
i j +

n

∑
j=1

p−2

∑
l=1

η
pε∗li j
i j +

n

∑
j=1

p−2

∑
l=1

η
pε∗∗li j
i j

]

+α
∗
i

n

∑
j=1, j 6=i

|a ji|pξp jiLpζp ji
i +

p−1
2

n

∑
j=1, j 6=i

(
η

pε(p−1) ji
ji +η

pεp ji
ji

)
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+
n

∑
j=1, j 6=i

|k ji|pϖp ji + eε̄τ
n

∑
j=1

pi j + eε̄τ∗
n

∑
j=1

qi j + eε̄τ∗
n

∑
j=1

q∗∗i j τ
∗
]
Vi(t,x)

}
dx
}

=−E
{∫

Ω

n

∑
i=1

[
λi−wi− ε̄−

n

∑
j=1

(eε̄τ pi j + eε̄τ∗qi j + eε̄τ∗q∗∗i j τ
∗)

]
Vi(t,x)dx

}
≤0,

which implies that

E{V (t,x)} ≤ E{V (mT,x)}, (t,x) ∈ [mT,mT +δT )×Ω. (3.11)

Similarly, for (t,x) ∈ [mT +δT,(m+1)T )×Ω, we can derive

D+E{V (t,x)} ≤E
{
−
∫

Ω

n

∑
i=1

[
λi + |wi|− ε̄−

n

∑
j=1

(
eε̄τ pi j + eε̄τ∗qi j + eε̄τ∗q∗∗i j τ

∗
)]

Vi(t,x)dx

+
∫

Ω

n

∑
i=1
|wi|Vi(t,x)dx

}
≤E
{

wV (t,x)
}
,

(3.12)

which leads to

E{V (t,x)} ≤ E{V (mT +δT,x)exp{w(t−mT −δT )}}, (t,x) ∈ [mT +δT,(m+1)T )×Ω.

(3.13)

Now, the following inequalities will be proved by mathematical induction:

E{V (t,x)} ≤ E{V (0,x)exp{mw(1−δ )T}}, (t,x) ∈ [mT,mT +δT )×Ω,

E{V (t,x)} ≤ E{V (0,x)exp{w(t− (m+1)δT )}}, (t,x) ∈ [mT +δT,(m+1)T )×Ω.

(3.14)

(1) For m = 0.

If (t,x) ∈ [0,δT )×Ω, it follows from (3.11) that

E{V (t,x)} ≤ E{V (0,x)}.

If (t,x) ∈ [δT,T )×Ω, we derive from (3.13) that

E{V (t,x)} ≤ E{V (δT,x)exp{w(t−δT )}} ≤ E{V (0,x)exp{w(t−δT )}}.

(2) Assume that (3.14) is true for all m≤ l−1.
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(3) In the following, we will prove (3.14) is also true when m = l.

If (t,x) ∈ [lT, lT +δT )×Ω, we see that

E{V (t,x)} ≤ E{V (lT,x)} ≤ E{V (0,x)exp{w(lT − lδT )}}= E{V (0,x)exp{lw(1−δ )T}}.

If (t,x) ∈ [lT +δT,(l +1)T )×Ω, we get

E{V (t,x)} ≤ E{V (lT +δT,x)exp{w(t− lT −δT )}}

≤ E{V (0,x)exp{lw(1−δ )T}exp{w(t− lT −δT )}}

= E{V (0,x)exp{w(t− (l +1)δT )}}.

Therefore, by mathematical induction, we know that (3.14) is true for any positive integer.

If (t,x) ∈ [mT,mT +δT )×Ω, then m≤ t/T , we conclude from (3.14) that

E{V (t,x)} ≤ E
{

V (0,x)exp
{ t

T
w(1−δ )T

}}
= E{V (0,x)exp{(1−δ )wt}} . (3.15)

Similarly, if (t,x) ∈ [mT +δT,(m+1)T )×Ω, then t/T < m+1, we derive from (3.14) that

E{V (t,x)} ≤ E
{

V (0,x)exp
{

w
(

t− t
T

δT
)}}

= E{V (0,x)exp{(1−δ )wt}} . (3.16)

Hence, for any (t,x) ∈ [0,+∞)×Ω, we always have

E{V (t,x)} ≤ E{V (0,x)exp{(1−δ )wt}}= exp{(1−δ )wt}E{V (0,x)}. (3.17)

Note that

E{V (0,x)}=E
{∫

Ω

n

∑
i=1

[
Vi(0,x)+ eε̄τ

n

∑
j=1

pi j

∫ 0

−τi j(0)
Vi(s,x)ds+ eε̄τ

n

∑
j=1

p∗i j

∫ −τi j(0)

−τ

Vi(s,x)ds
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+ eε̄τ∗
n

∑
j=1

qi j

∫ 0

−τ∗i j(0)
Vi(s,x)ds+ eε̄τ∗

n

∑
j=1

q∗i j

∫ −τ∗i j(0)

−τ∗
Vi(s,x)ds

+ eε̄τ∗
n

∑
j=1

q∗∗i j

∫ 0

−τ∗

∫ 0

s
Vi(η ,x)dηds

]
dx
}

≤E
{∫

Ω

n

∑
i=1

[
|ei(0,x)|p + eε̄τ

n

∑
j=1

pi j

∫ 0

−τi j(0)
eε̄s|ei(s,x)|pds

+ eε̄τ
n

∑
j=1

p∗i j

∫ −τi j(0)

−τ

eε̄s|ei(s,x)|pds+ eε̄τ∗
n

∑
j=1

qi j

∫ 0

−τ∗i j(0)
eε̄s|ei(s,x)|pds

+ eε̄τ∗
n

∑
j=1

q∗i j

∫ −τ∗i j(0)

−τ∗
eε̄s|ei(s,x)|pds+ eε̄τ∗

n

∑
j=1

q∗∗i j

∫ 0

−τ∗

∫ 0

s
eε̄s|ei(s,x)|pdηds

]
dx
}

≤E
{∫

Ω

n

∑
i=1

[
|ei(0,x)|p + eε̄τ

n

∑
j=1

pi j

∫ 0

−τi j(0)
eε̄s|ei(s,x)|pds

+ eε̄τ
n

∑
j=1

p∗i j

∫ −τi j(0)

−τ

eε̄s|ei(s,x)|pds+ eε̄τ∗
n

∑
j=1

qi j

∫ 0

−τ∗i j(0)
eε̄s|ei(s,x)|pds

+ eε̄τ∗
n

∑
j=1

q∗i j

∫ −τ∗i j(0)

−τ∗
eε̄s|ei(s,x)|pds+ eε̄τ∗

n

∑
j=1

q∗∗i j τ
∗
∫ 0

−τ∗
eε̄s|ei(s,x)|pds

]
dx
}

≤E
{∫

Ω

n

∑
i=1

[
|ei(0,x)|p + eε̄τ max

i∈`

{ n

∑
j=1

pi j

} n

∑
j=1

∫ 0

−τi j(0)
eε̄s|ei(s,x)|pds

+ eε̄τ max
i∈`

{ n

∑
j=1

p∗i j

} n

∑
j=1

∫ −τi j(0)

−τ

eε̄s|ei(s,x)|pds

+ eε̄τ∗max
i∈`

{ n

∑
j=1

qi j

} n

∑
j=1

∫ 0

−τ∗i j(0)
eε̄s|ei(s,x)|pds

+ eε̄τ∗max
i∈`

{ n

∑
j=1

q∗i j

} n

∑
j=1

∫ −τ∗i j(0)

−τ∗
eε̄s|ei(s,x)|pds

+ eε̄τ∗max
i∈`

{ n

∑
j=1

q∗∗i j τ
∗
}∫ 0

−τ∗
eε̄s|ei(s,x)|pds

]
dx
}
.

Since

‖ψ−φ‖p
p =

∫
Ω

n

∑
i=1

sup
−τ̄≤s≤0

|ψ(s,x)−φ(s,x)|pdx,

then ∫
Ω

n

∑
i=1

∫ 0

−τi j(0)
eε̄s|ei(s,x)|pdsdx≤

∫
Ω

n

∑
i=1

τ sup
−τ̄≤s≤0

|ei(s,x)|pdx = τ‖ψ−φ‖p
p,

∫
Ω

n

∑
i=1

∫ −τi j(0)

−τ

eε̄s|ei(s,x)|pdsdx≤ τ

∫
Ω

n

∑
i=1

sup
−τ̄≤s≤0

|ei(s,x)|pdx = τ‖ψ−φ‖p
p,
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Ω

n

∑
i=1

∫ 0

−τ∗i j(0)
eε̄s|ei(s,x)|pdsdx≤ τ

∗
∫

Ω

n

∑
i=1

sup
−τ̄≤s≤0

|ei(s,x)|pdx = τ
∗‖ψ−φ‖p

p,

∫
Ω

n

∑
i=1

∫ −τ∗i j(0)

−τ∗
eε̄s|ei(s,x)|pdsdx≤ τ

∗
∫

Ω

n

∑
i=1

sup
−τ̄≤s≤0

|ei(s,x)|pdx = τ
∗‖ψ−φ‖p

p,

∫
Ω

n

∑
i=1

∫ 0

−τ∗
eε̄s|ei(s,x)|pdsdx≤ τ

∗
∫

Ω

n

∑
i=1

sup
−τ̄≤s≤0

|ei(s,x)|pdx = τ
∗‖ψ−φ‖p

p.

Therefore,

E
{

V (0,x)
}
≤
[

1+nτeε̄τ max
i∈`

n

∑
j=1

(pi j + p∗i j)+nτ
∗eε̄τ∗max

i∈`

n

∑
j=1

(qi j +q∗i j)

+ τ
∗2eε̄τ∗max

i∈`

{ n

∑
j=1

q∗∗i j

}]
E{‖ψ−φ‖p

p}.

Let

M =

[
1+nτeε̄τ max

i∈`

n

∑
j=1

(pi j + p∗i j)+nτ
∗eε̄τ∗max

i∈`

n

∑
j=1

(qi j +q∗i j)

+ τ
∗2eε̄τ∗max

i∈`

{ n

∑
j=1

q∗∗i j

}] 1
p

> 1.

Then

E{V (0,x)} ≤MpE{‖ψ−φ‖p
p}.

Further, from (3.17), we obtain

E{V (t,x)} ≤ exp{(1−δ )wt}MpE{‖ψ−φ‖p
p}. (3.18)

In addition,

E{V (t,x)} ≥ E
{∫

Ω

n

∑
i=1

eε̄t |ei(t,x)|pdx
}
= eε̄tE{‖v(t,x)−u(t,x)‖p

p}. (3.19)

From (3.18) and (3.19), we have

E{‖v(t,x)−u(t,x)‖p} ≤ exp
{

1
p

(
(1−δ )w− ε̄

)
t
}

ME{‖ψ−φ‖p}. (3.20)

Let

µ =
1
p

[
ε̄− (1−δ )w

]
.

Then

E{‖v(t,x)−u(t,x)‖p} ≤ME{‖ψ−φ‖p}e−µt .
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Hence, the noise-perturbed response system (1.4) and the master system (1.1) can be expo-

nentially synchronized under the intermittent controller (1.7) based on p−norm. The proof of

Theorem 3.1 is complete.

Remark 1. Hu et al.[29] investigated the exponential synchronization for the following reaction-

diffusion neural networks with mixed delays in terms of p-norm based on periodically intermit-

tent control

∂ui(t,x)
∂ t

=
m

∑
l=1

∂

∂xl

(
Dil

∂ui(t,x)
∂xl

)
− ciui(t,x)+

n

∑
j=1

hi j f j(u j(t,x))

+
n

∑
j=1

ai j f j(u j(t− τ j(t),x)+
n

∑
j=1

bi j

∫ t

t−σ j

f j(u j(s,x))ds+ Ji,

∂vi(t,x)
∂ t

=
m

∑
l=1

∂

∂xl

(
Dil

∂vi(t,x)
∂xl

)
− civi(t,x)+

n

∑
j=1

hi j f j(v j(t,x))

+
n

∑
j=1

ai j f j(v j(t− τ j(t),x)+
n

∑
j=1

bi j

∫ t

t−σ j

f j(v j(s,x))ds+ Ji +Ki(t).

(3.21)

Gan et al.[30] dealed with the exponential synchronization problem for the following reaction-

diffusion neural networks with mixed time-varying delays and stochastic disturbance in terms

of p−norm via periodically intermittent control

∂ui(t,x)
∂ t

=
l∗

∑
k=1

∂

∂xk

(
Dik

∂ui(t,x)
∂xk

)
− ciui(t,x)+

n

∑
j=1

ai j f j(u j(t,x))

+
n

∑
j=1

bi jg j(u j(t− τi j(t),x)+
n

∑
j=1

di j

∫ t

t−τ∗i j(t)
h j(u j(s,x))ds+ Ji,

dvi(t,x) =
{ l∗

∑
k=1

∂

∂xk

(
Dik

∂vi(t,x)
∂xk

)
− civi(t,x)+

n

∑
j=1

ai j f j(v j(t,x))

+
n

∑
j=1

bi jg j(v j(t− τi j(t),x)+
n

∑
j=1

di j

∫ t

t−τ∗i j(t)
h j(v j(s,x))ds+ Ji +Ki(t,x)

}
dt

+
n

∑
j=1

σi j(e j(t,x),e j(t− τi j(t),x))dω j(t),

(3.22)

It is evident that system (3.21) and system (3.22) are the special cases of system (1.1) in this

paper. The corresponding exponential synchronization criteria obtained in [29,30] are included

to Theorem 3.1 in this paper. From this point, our results are more general.
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Remark 2. In this paper, the issue of exponential synchronization for Cohen-Grossberg neural

networks with mixed time-varying delays, stochastic noise disturbance and reaction-diffusion

effects was investigated. The same model was researched in [32]. However, in [32], the author

obtained the exponential synchronization criteria for neural networks by assuming that discrete

time-varying delays τi j(t) and distributed time-varying delays τ∗i j(t) satisfy τ̇i j(t) ≤ ρ < 1 and

τ̇∗i j(t) ≤ ρ∗ < 1 for all t. These restrictions in [32] are removed in this paper. Therefore, the

synchronization criteria derived in this paper are less conservative.

4. Numerical simulations

In this section, some numerical simulations are presented to show the feasibility of our results.

Example In system (1.1), we choose n = 2,k = 1. Then system (1.1) takes the form

∂ui(t,x)
∂ t

= Di
∂ 2ui(t,x)

∂x2 −αi(ui(t,x))
[

βi(ui(t,x))−
2

∑
j=1

ai j f j(u j(t,x))

−
2

∑
j=1

bi jg j(u j(t− τ(t),x)−
2

∑
j=1

di j

∫ t

t−τ∗(t)
h j(u j(s,x))ds

]
,

(4.1)

where i = 1,2, α1(u1(t,x)) = 0.7+
0.2

1+u2
1(t,x)

,α2(u2(t,x)) = 1+
0.1

1+u2
2(t,x)

, β1(u1(t,x)) =

1.4u1(t,x),β2(u2(t,x)) = 1.6u2(t,x), f j(u j(t,x)) = g j(u j(t,x)) = h j(u j(t,x)) = tanh(u j(t,x)),

τ(t) =


1.1t, t < π/2,

0.55π +0.1πcost t ≥ π/2
,τ∗(t) =


1.02t, t < 0.1,

0.102+0.01sin(t−0.1), t ≥ 0.1
. The pa-

rameters of system (4.1) are assumed that D1 = 0.1,D2 = 0.1,a11 = 1.5,a12 = −0.25,a21 =

3.2,a22 = 1.9,b11 = −1.8,b12 = −1.3,b21 = −0.2,b22 = 2.2,d11 = 0.9,d12 = −0.15,d21 =

0.2,d22 =−0.2,x ∈Ω = [−5,5]. The initial condition of the master system (4.1) is chosen as

u1(s,x) = 0.1sin
(

x+5
10

π

)
, u2(s,x) = 0.2sin

(
x+5

10
π

)
, (4.2)

where (s,x)∈ [−0.65π,0]×Ω. Numerical simulation illustrates that the reaction-diffusion neu-

ral network (4.1) with boundary condition (1.2) and the initial condition (4.2) exhibits a chaotic

behavior (see Fig.1).
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Fig.1 Chaotic behaviors of Cohen-Grossberg neural networks (4.1).

The noise-perturbed response system is described by

dvi(t,x) =
{

Di
∂ 2vi(t,x)

∂x2 −αi(vi(t,x))
[

βi(vi(t,x))−
2

∑
j=1

ai j f j(v j(t,x))

−
2

∑
j=1

bi jg j(v j(t− τ(t),x)−
2

∑
j=1

di j

∫ t

t−τ∗(t)
h j(v j(s,x))ds

]
+Ki(t,x)

}
dt

+
2

∑
j=1

σi j(e j(t,x),e j(t− τ(t),x),e j(t− τ
∗(t),x))dω j(t),

(4.3)

where
σ11 = 0.1e1(t,x)+0.2e1(t− τ(t),x)+0.1e1(t− τ

∗(t),x), σ12 = 0,

σ21 = 0, σ22 = 0.1e2(t,x)+0.1e2(t− τ(t),x)+0.1e2(t− τ
∗(t),x).

The initial condition for the response system (4.3) is chosen as

v1(s,x) = 0.5sin
(

x+5
10

π

)
, v2(s,x) = 0.6sin

(
x+5

10
π

)
,

where (s,x) ∈ [−0.65π,0]×Ω.

By simple computation, we obtain that L∗i = M∗i = N∗i = Li = Mi = Ni = 1, i = 1,2, ᾱ1 =

0.2, ᾱ2 = 0.1,α∗1 = 0.9,α∗2 = 1.1,γ1 = 0.84,γ2 = 1.52,η11 = 0.12,η12 = 0,η21 = 0,η22 =

0.03,ρ ′= 0.314< 1,ρ ′′= 1.1> 1,ρ ′= 0.01< 1,ρ ′′= 1.02> 1,τ = 0.65π,τ∗= 0.112. There-

fore, assumptions (H1)− (H6) hold for systems (4.1) and (4.3).

Let α = 0.95, p = 2,ξli j = ζli j = ξ ∗li j = ζ ∗li j = ξ ∗∗li j = ζ ∗∗li j = ϖli j = εli j = ε∗li j = ε∗∗li j = 1/2 for

i, j,= 1,2, l = 1,2, and choose the control parameters k11 = 20,k12 = 0,k21 = 0,k22 = 20,δ =
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Fig.2 Asymptotical behaviors of the synchronization errors.

0.981,T = 10, then

λ1 =−10.0790, λ2 =−9.5760, w1 =−40.0000, w2 =−40.0000,

p11 = 2.6706, p12 = 0.2763, p21 = 2.1948, p22 = 3.7603,

q11 = 0.1276 q12 = 0, q21 = 0, q22 = 0.0319,

q∗∗11 = 0.0907, q∗∗12 = 0.0202, q∗∗21 = 0.0185, q∗∗22 = 0.0246.

Then, ε̄1 = 1.1138, ε̄2 = 0.7852. Therefore, ε̄ = 0.7852,w = 40.0000. It is easy to verify that

assumptions (H7)− (H8) are satisfied. According to Theorem 3.1, the master system (4.1)

and the response system (4.3) are exponential synchronized based on p−norm. Numerical

simulation illustrates our results (see Fig.2).

Remark 3. In example, τ̇(t) = 1.1 > 1 for t < π/2 and τ̇∗(t) = 1.02 > 1 for t < 0.1. It is evi-

dent that the synchronization criteria obtained in [32] do not succeed. However, the numerical

simulations clearly illustrate the effectiveness of the exponential synchronization criteria in this

paper.

Remark 4. The influences of reaction-diffusion on the exponential synchronization of Cohen-

Grossberg neural networks can be discussed from the synchronization criteria obtained in this

paper. Evidently, it is beneficial for reaction-diffusion Cohen-Grossberg neural networks to

achieve the synchronization by increasing diffusion coefficients Di or reducing diffusion space
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Fig.3 Asymptotical behaviors of the synchronization errors with different diffusion

coefficients.
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Fig.4 Asymptotical behaviors of the synchronization errors with different diffusion space.

xk, respectively. Dynamical behaviors of the error systems with differential diffusion coeffi-

cients or differential diffusion space, respectively, are shown in Fig.3 and Fig.4.

Remark 5. Clearly, the larger stochastic perturbation is, the more difficult (H7) is satisfied.

Hence, the exponential synchronization of neural networks with the smaller stochastic per-

turbation is more easily realized. Dynamical behaviors of the error systems with differential

stochastic perturbation are shown in Fig.5.

Remark 6. Obviously, if the control rate δ or the control strength kii increase, respectively,

assumptions (H7)− (H8) can be satisfied more easily. Hence, the exponential synchronization
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Fig.5 Asymptotical behaviors of the synchronization errors with different stochastic

perturbation.
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Fig.6 Asymptotical behaviors of the synchronization errors with different control rate.

of neural networks is more easily realized under the larger control rate or the larger control

strength of the intermittent controller, respectively. Dynamical behaviors of the synchronization

errors with differential control rate or the control strength, respectively, are shown in Fig.6 and

Fig.7.
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Fig.7 Asymptotical behaviors of the synchronization errors with different control strength.

5. Conclusion

In this paper, periodically intermittent controller was designed to achieve the exponential

synchronization for a class of stochastic Cohen-Grossgerg neural networks with mixed time-

varying delays and reaction-diffusion in terms of p−norm. By constructing the Lyapunov func-

tional, the exponential synchronization criteria were obtained. The influences of stochastic

perturbation, spacial diffusion, the control rate and the control strength on the exponential syn-

chronization of Cohen-Grossgerg neural networks were discussed by the synchronization cri-

teria. A chaotic Cohen-Grossberg neural network was proposed to verify the feasibility of our

results. Compared with the previous works([27-32]), the model in this paper is more general,

and the obtained conditions are less conservative.

It is shown that (H7) can be satisfied as long as feedback strengh parameter kii, i ∈ ` is small

enough. Furthermore, the upper bound of |kii|,(i ∈ `) is given in (H8). So, the results in

this paper should provide some guidelines for designing the suitable periodically intermittent

controller in the practical applications.
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