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Abstract. This paper proposed a control-strategies for nodes to control the spread of an epidemic outbreak in

arbitrary directed graphs by optimally allocating their resources throughout the network. Epidemic propagation is

well modeled as a networked version of the Susceptible-Exposed-Infected-Susceptible (SEIS) epidemic process.

Using the Kolmogorov forward equations and mean-field approximation, we present a mean-field model to describe

the spreading dynamics and prove the existence of a necessary and sufficient condition for global exponential

stability. Based on this stability condition, we can derive another condition to control the spread of an epidemic

outbreak in terms of the eigenvalues of a matrix that depends on the network structure and the parameters of

the model. According to different control purposes and conditions, two types of control-theoretic decision can be

considered: 1)given a fixed budget, find the optimal resource allocation to achieve the highest level of containment,

2)given a decay rate of epidemic, find the minimum cost to control the spreading process at a desired decay rate. A

geometric program can be formulated to solve the optimal problems and the existence of solutions is also proved.

Numerical simulations can illustrated our results.
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1. Introduction

Development of strategies to control spreading processes in networks has brought much at-

tention due to its applications in many relevant fields, including computer virus [1], public

health [2-3], and information propagation over social network [4]. The dynamic of spreading

processes in networks not only depend on the epidemic model but also the structure of the con-

tact network. In this context, the spread process is modeled by a variant of SIS epidemic model

that includes a state of ”expose”. The individual infected rate and recovery rate can be modified

within a feasible range by allocating resources in each node. Based on this model, an efficient

convex framework can be formulated to solve the optimal problems.

The dynamic behavior of spreading processes in networks has been widely studied. Mean-

field models over arbitrary contact graphs were brought to the forefront in both continuous time

[5] and discrete-time. [6] is a paper about the dynamic behavior of spreading processes in ar-

bitrary contact networks for the case of discrete-time dynamic. [7] consider a continuous time

SIS model over arbitrary graphs using mean field theory and provide a condition for globally

asymptotically stable of the disease-free state. It should be noted that most models are devel-

oped base on undirected graphs, however, in practice, directed graphs may be more appropriate

to the spread of diseases in human populations. Therefore, we study the spread processes in an

arbitrary directed network of heterogeneous nodes.

Designing control strategies of spread processes in networks is a significant problem. Several

papers have proposed some methods on different aspects of this problem. In [8], the authors

proposed a semidefinite programming (SDP) to find the optimal strategies of resource allocation

in an undirected network. [9] uses a linear-fractional optimization program to find the optimal

investment on disease awareness in a social network. In [10], Borgs et al. provides a probabilis-

tic analysis for the case of a given contact network to characterize the optimal allocation of a

fixed amount of antidote. [11] provided a eigenvalue sensitivity analysis ideas to design optimal

strategies of allocation resource to control the spread of a virus. The relationship between the

recovery parameters and distributed approach is explored in [12]. Our work is based on [13]

and [14], in which a continuous-time time Markov processes, called the N-intertwined model,

is used to analyze and control the spread of a SEIV epidemic model.
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This paper’s layout is as follows. In section 2, some important notation and background need

to be introduced. In section 3, we formulate two resource allocation problems for epidemic

propagation in the network. In section 4, a convex optimization framework is used to efficiently

solve the allocation problems both on strongly connected graphs and general directed graphs

(not necessarily strongly connected). In section 5, simulations illustrate our results.

2. Notation and preliminaries

Some graph-theoretical nomenclature and the dynamic spreading model need to be intro-

duced in this section.

2.1 Graph Theory

Let G = (V ,E ) denote an directed graph, where V = {v1, ·,vn} denote the set of n nodes

and E ⊆ V ×V denote the set of ordered pairs of nodes called directed edges. An edge from e j

pointing towards ei denote as (e j,ei). Let N in
i = { j : (e j,ei) ∈ E } denote the in-neighborhood

of node i. A directed graph is strongly connected if and only if there is a directed path from e j

to ei for every pair of nodes ei,e j ∈ V .

The adjacency matrix of a digraph G , denoted by UG = [ui j], is an n× n matrix defined

entry-wise as ui j = 1 if edge (ei,e j) ∈ E , and ui j = 0 otherwise. Hence, the adjacency matrix

UG = [ui j] is always nonnegative. An nonnegative adjacency matrix is irreducible if and only

if its associated graph is strongly connected. Given an n× n matric Z, the sets of eigenvalues

and corresponding eigenvectors of Z are defined as λ1(Z), ·,λn(Z) and η1(Z), ·,ηn(Z), where

we order eigenvalues in decreasing order of their real parts, i.e., R(λ1) ≥R(λ2) ≥ · ≥R(λn).

λ1(Z) and η1(Z) are called the dominant eigenvalue and eigenvector of Z. ρ(Z) is defined as

the spectral radius of Z and equal to the maximum modulus across all eigenvalues of Z.

It should be note that we only consider unweighted digraphs in this paper, hence, the adja-

cency matrix is always nonnegative.

2.2 Stochastic heterogeneous SEIS model
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The Susceptible-Exposed-Infected-Susceptible epidemic model is a variant of the SIS model

by including a state of ”exposed” which the node has been exposed to the disease and is con-

tagious, but is not aware of the contagion. This model is a continuous-time markov process

and each node in the network can be in one out of three possible states. Consider a network of

n individuals described by the adjacency matrix UG = [ui j], and the parameters are defined as

follows:

βi : infection rate that the susceptible node i transitions to the exposed state by contact with

its exposed neighbors.

αi : infection rate that the susceptible node i become exposed by contact with its infected

neighbors.

γi : the rate at which the exposed node i be infected.

δi : the recovery rate of node i.

Let vk(τ)∈ {0,1} and v j(τ)∈ {0,1}. Where vk(τ) = 1 indicates that node k is in the infected

sate and other states of node k at time τ denote as vk(τ) = 0. Similarly, v j(τ) = 1 indicates

that node j is in the exposed sate, and v j(τ) = 0 otherwise. Three possible types of stochastic

transitions during the time interval [τ +∆τ):

a): Assuming node i is in the susceptible state at time τ . This node can switch to the

exposed state during the small time interval [τ,τ + ∆τ) with a probability that de-

pends on: (i) its infection rates βi and αi; (ii) the strength of its incoming connec-

tions {ui j, for j ∈ N in
i }; (iii) the states of its in-neighbors {v j(τ), for j ∈ N in

i } and

{vk(τ), for k ∈N in
i }. Formally, the probability of this transition is given by

P(vi(τ +∆τ) = e | vi(τ) = s,V (τ)) = βi ∑
j∈N in

i

ui jv j(τ)∆τ +αi ∑
k∈N in

i

ui jvk(τ)∆τ +o(∆τ),

where ∆τ > 0 is an arbitrarily small time interval, and V (τ) = (vi(τ), i = 1, ·,n).

b): Assuming node i in exposed state, the probability of i transit to infected in the time

interval [τ,τ +∆τ) is given by

P(vi(τ +∆τ) = i | vi(τ) = e,V (τ)) = γi∆τ +o(∆τ).
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c): Assuming node i is infected, the probability of i recovering back to the susceptible

state in the time interval [τ,τ +∆τ) is given by

P(vi(τ +∆τ) = s | vi(τ) = i,V (τ)) = δi∆τ +o(∆τ).

The Markov process with 3n states described in the above is very hard to analyze due to

the exponential size of the state space. Therefore, we use a mean-field approximation of its

dynamics. This approximation is widely used in the field of epidemic analysis and control,

since it performs numerically well for many realistic network topologies.

Let hi and gi denote the probabilities of node i to be exposed and infected, respectively.

Then, the probabilities of node i to be susceptible is 1−hi−gi. Using the Kolmogorov forward

equations and a mean-field approach, one can approximate the dynamics of the epidemic spread

using a system of 2n ordinary differential equations, as follows:

ḣi = (1−hi−gi)(βi ∑
j∈N in

i

ui jh j +αi ∑
j∈N in

i

ui jg j)− γihi, (2.1)

ġi = γihi−δigi, (2.2)

for i = 1, ·,n.

We can write the mean-field approximation equations in matrix form as Ḣ

Ġ

=

 BU−R CU

R −E

 H

G

−
 F

0

 , (2.3)

where H = (h1, ·,hn)
T , G = (g1, ·,gn)

T , B = diag(βi), C = diag(αi), R = diag(γi), E =

diag(δi), F = ( f1, ·, fn)
T , fi = (hi +gi)(βi ∑ j∈N in

i
ui jh j +αi ∑ j∈N in

i
ui jg j).

Proposition 1 Consider the heterogeneous SEIS epidemic model in (2.3) and assume that UG ≥

0 and βi,αi,γi,δi > 0. Letting L =

 BU−R CU

R −E

. Then, if the largest real part of the

eigenvalues of L satisfies

R[λ1(L)]≤−ς , (2.4)

for some ς > 0, the disease-free equilibrium is globally exponentially stable, and ς is called

exponential decay rate.
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Proof: Define X = [H G]T and F = [F 0]T , we are able to rewrite the nonlinear system

(2.3) as

Ẋ = LX −F .

Since Ẋ = LX −F ≤ LX , the linear dynamic system

Ẋ = LX

upper-bounds the nonlinear dynamical system (2.3). Therefore, the spread rate of the nonlinear

system can be bound by controlling the maximum eigenvalue of L. The spectral result of L

is a sufficient condition for the mean-field approximation of the SEIS model to be globally

exponentially stable.

Lemma 1.1. Suppose that E is a uniformly convex Banach space and 0 < p ≤ tn ≤ q < 1 for

all n ∈ N. Suppose further that {xn} and {yn} are sequences of E such that

limsup
n→∞

‖xn‖ ≤ r, limsup
n→∞

‖yn‖ ≤ r,

lim
n→∞
‖tnxn +(1− tn)yn‖= r

hold for some r ≥ 0, then limn→∞ ‖xn− yn‖= 0.

Lemma 1.2. Let {rn}, {sn} and {tn} be three nonnegative sequences satisfying the following

conditions

rn+1 ≤ (1+ sn)rn + tn, ∀n≥ 1.

If ∑
∞
n=1 sn < ∞ and ∑

∞
n=1 tn < ∞, then limn→∞ rn exists.

3. Problem formulation

To control the spread of an epidemic in a given network, the work of proposing an efficient

optimization framework to find the optimal resource distribution is very significant. In this

paper, we consider two types of resources:

1) preventive resource (e.g. vaccines to reduce infection rate βi,αi),

2) corrective resources (e.g. antidotes to help increase recovery rates δi).
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We can distribute resources to modify the parameters β ,α,δ , and γ , within the feasible ranges

as follows:
0 < β

i
≤ βi ≤ β̄i, 0 < α i ≤ αi ≤ ᾱi,

0 < γ
i
≤ γi ≤ γ̄i, 0 < δ i ≤ δi ≤ δ̄i,

where β
i

and α i are the minimum possible infection rates for node i. They can be achieved

by allocating a large amount of vaccines at node i. β̄i and ᾱi are the maximal infection rates

without any preventive resource for node i. Similarly, the δ i is a natural recovery rate of node

i, and δ̄i is the maximal recovery rate which is achieved with enough corrective resources. For

convenience, let ∇ = {β ,α,γ,δ} denote as the global set of parameters.

3.1. The cost of preventive and corrective resources

We define three cost functions, the vaccination cost function fi(βi), gi(αi) and treatment cost

function hi(δi). The cost functions are node-dependent and present the following properties:

(1) Assuming the vaccination cost fi(βi) and gi(αi) are monotonically decreasing in the

interval [β
i
, β̄i], [α i, ᾱi], respectively. Antidote cost gi(δi) is monotonically increasing

with regard to δi.

(2) In the absence of investment, fi(β̄i) = gi(ᾱi) = hi(δ i) = 0.

Apart from the above properties, we assume the cost functions have the following forms to

obtain a tractable convex framework.

fi(βi) =
β
−1
i − β̄

−1
i

β
−1
i
− β̄

−1
i

, gi(αi) =
α
−1
i − ᾱ

−1
i

α
−1
i − ᾱ

−1
i

, hi(δi) =
(1−δi)

−1− (1−δ i)
−1

(1− δ̄i)−1− (1−δ i)
−1

.

Note that we have normalized these cost functions to have values in the interval [0,1].

Therefore, the cost functions of preventive resource, fi(βi), gi(αi) and the corrective resource

cost, hi(δi), are twice differentiable and satisfies the following constrain:

f
′′
i (βi)≥−

2
βi

f
′
i (βi),

g
′′
i (αi)≥−

2
αi

g
′
i(αi),

h
′′
i (δi)≥−

2
1−δi

h
′
i(δi).
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Notice that, since fi, gi are monotonically decreasing, hi is monotonically increasing, we have

that f
′
i < 0, g

′
i < 0 and h

′
i > 0. The results implies that f

′′
i > 0, g

′′
i > 0 and h

′′
i < 0. Therefore,

the assumption is stronger than convexity.

3.2. Problem statements

In this section we present two types of resource allocation problems for SEIS model:

(1) the budget-constrained allocation problem. Our aim is finding the optimal allocation of

vaccination and antidotes to maximize the exponential decay rate ς when given the total

budget T > 0.

(2) the rate-constrained allocation problem. Given the exponential decay rate ς , find the

cost-optimal distribution of vaccines and antidotes to eradicate the disease with decay

rate greater than equal to ς .

Problem 1(Budget-constrained allocation) Given the total budget T , this problem can be state

as the following optimization problem:

max
∇

ς (3.1)

s.t. R[λ1(L)]≤−ς , (3.2)

n

∑
i=1

fi(βi)+gi(αi)+hi(δi)≤ T, (3.3)

β
i
≤ βi ≤ β̄i, (3.4)

α i ≤ αi ≤ ᾱi, (3.5)

δ i ≤ δi ≤ δ̄i,

γ
i
≤ γi ≤ γ̄i,

(3.6)

for all i = 1, ·,n, where (3.3) is the budget constraint.

Problem 2 (Rate-constrained allocation) Given a desire decay rate ς̃ , the rate-constrained allo-

cation is formulated as follows:

min
∇

n

∑
i=1

fi(βi)+gi(αi)+hi(δi) (3.7)



A GEOMETRIC PROGRAMMING APPROACH 9

s.t. R[λ1(L)]≤−ς̃ , (3.8)

β
i
≤ βi ≤ β̄i, (3.9)

α i ≤ αi ≤ ᾱi, (3.10)

δ i ≤ δi ≤ δ̄i,

γ
i
≤ γi ≤ γ̄i,

(3.11)

for all i = 1, ·,n, where (3.8) constrains the decay rate to ς̃ .

In the following section we propose an approach to solve these problems in polynomial time.

4.A convex framework for optimal resource allocation

A convex formulation can be use to solve both the rate-constrained allocation problem and the

budget-constrained problem in unweighted, directed networks using GP. We first solve problems

in the strongly connected digraphs, then extend the results to general digraphs.

Some important concepts need to be briefly reviewed. Denote n decision variables ξ =

(ξ1, ·,ξn), ξi > 0. In the context of geometric programs, a monomial function h(ξ ) is defined as

a real-valued function of the form h(ξ ) = aξ
k1
1 ξ

k2
2 ·ξ kn

n , where a > 0 and ki ∈R for all i = 1, ·,n.

The sum of monomials is defined as the polynomial function, i.e., q(ξ ) = ∑
I
i=1 aiξ

k1,i
1 ξ

k2,i
2 ·ξ kn,i

n

with ai > 0 and k j,i ∈ R for all j ∈ {1, ·,n} and i ∈ {1, ·, I}.

A geometric problem is an optimization problem of the form:

minimize f (ξ )

subject to qi(ξ )≤ 1, i = 1, ·,m,

hi(ξ ) = 1, i = 1, ·, p,

(4.1)

where f (ξ ) and qi(ξ ) are polynomial functions, hi(ξ ) are monomials.

Note that polynomials and monomials are convex in log-scale, therefore f is a convex func-

tion in log-scale. The quasiconvex optimization problem GP can be transformed to a convex

problem based on a logarithmic change of variable ϕi = logξi, and a logarithmic transformation
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of the objective and constraint functions. After this transformation, the GP in (4.1) takes the

form as follows:

minimize F(ϕ)

subject to Qi(ϕ)≤ 0, i = 1, · · · ,m,

cT
i ϕ + logbi = 0, i = 1, ·, p,

(4.2)

where F(ϕ) = log f (expϕ) and Qi(ϕ) = logqi(expϕ). Also, assuming that hi(ξ ) = biξ
c1,i
1

ξ
c2,i
2 · · ·ξ

cn,i
n , the equality constraint after the logarithmic change in variable can be obtained

with ci = (c1,i, ·,cn,i)
T . Note that since f (ξ ) is a polynomial, therefore, convex in log-scale,

F(ϕ) is a convex function. Also, since qi(ξ ) is a polynomial, Qi(ϕ) is also a convex function.

In summary, (4.2) is a convex optimization problem in standard form and can be efficiently

solved in polynomial time.

In the following section, we show how to transform our problems into GPs. In our transfor-

mation, the theory of nonnegative matrices and the Perron-Frobenius lemma are very useful.

4.1 GP for strongly connected digraphs

For a strongly connected digraph J , its adjacency matrix Z is irreducible. Then the fol-

low lemma holds for the spectral radius of the adjacency matrix of any unweighted, strongly

connected digraph.

Lemma 1 (Perron-Frobenius):Z is a nonnegative, irreducible matrix. Then, the following state-

ments about its spectral radius ρ(Z) hold:

(1) ρ(Z)> 0 is a simple eigenvalue of Z,

(2) Zω = ρ(Z)ω, for some ω > 0,

(3) ρ(Z) = inf{λ ∈ R : Mω ≤ λω for ω = (ω1, ·,ωn)
T and ωi > 0}.

Based on the above results, we have the following result:

Proposition 2: Consider the n×n nonnegative, irreducible matrix Z(x) with entries being either

polynomials or 0 with domain ξ ∈Ω, where Ω is defined as Ω =
⋂m

i=1{ξ > 0 : fi(ξ )≤ 1}, fi is



A GEOMETRIC PROGRAMMING APPROACH 11

polynomials. Then, we can solve the following GP via minimize λ1(Z(ξ )):

minimize λ

subject to
n

∑
j=1

Zi j(ξ )ω j/(λωi)≤ 1, i = 1, ·,n,

fi(ξ )≤ 1, i = 1, ·, p.

(4.3)

Based on the above results, assuming that the contact graph J is strongly connected, we can

solve both the budget-constrained and the rate-constrained problems.

Theorem 1(Solution to the budget-constrained problem): For strongly connected digraphs,

problem 2 can be solved by the following GP

min
∇

λ

subject to
n

∑
j=1

ui j(βiη j +αiω j)+(k− γi)ηi ≤ ληi,

γiηi + δ̂iωi ≤ λωi,

n

∑
i=1

fi(βi)+gi(αi)+hi(δ̂i)≤ T,

β
i
≤ βi ≤ β̄i, α i ≤ αi ≤ ᾱi,

k−δ i ≤ δ̂i ≤ k− δ̄i, γ
i
≤ γi ≤ γ̄i,

(4.4)

for all i ∈ {1, ·,n}, where δ ∗i = k− δ̂ ∗i and λ ∗1 (L)≤ λ ∗− k.

Proof: First, note that the matrix L is not a nonnegative, we can define a nonnegative matrix

from L by simply adding a constant k =max{γi, δ̄i} for i= 1, ·,n. Let R̂= diag{k}−diag{γi}≥

0 and Ê = diag{k}−diag{δi} ≥ 0. We then obtain

L̂=

 BU + R̂ CU

R Ê

 .
Notice that the matrix L̂ is nonnegative and k = max{γi, δ̄i} for i = 1, ·,n. Then, according

to proposition 2, we have that maximizing ς in (3.1) is equivalent to minimizing λ1(L̂) under
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budget constraints. We can minimizing λ1(L̂) by solving the following GP:

min
∇

λ

subject to L̂

 η

ω

≤ λ

 η

ω

 ,
∑

n
i=1 fi(βi)+gi(αi)+hi(δi)≤ T,

β
i
≤ βi ≤ β̄i, α i ≤ αi ≤ ᾱi,

δ i ≤ δi ≤ δ̄i, γ
i
≤ γi ≤ γ̄i,

for all i ∈ {1, ·,n}. The matrix L̂ is nonnegative and irreducible if the adjacency matrix UJ

corresponding to a strongly connected digraph. Therefore, applying proposition 2, the first

constraint can be rewrite as the following two constraints:

∑
n
j=1 ui j(βiη j +αiω j)+(k− γi)ηi ≤ ληi,

γiηi + δ̂iωi ≤ λωi,

for all i ∈ {1, ·,n}, where δ̂i = k− δi. After the above change of variables, the problem (2)

rewrite as a standard GP form (4.1). We can find the optimal resources allocation in a hetero-

geneous network under the budget constraint.

Theorem 2(Solution to the rate-constrained problem): problem 2 can be solved by solving the

following GP:

min
∇

n

∑
i=1

fi(βi)+gi(αi)+hi(δ̂i)

subject to
n

∑
j=1

ui j(βiη j +αiω j)+(k− γi)ηi ≤ ληi,

γiηi + δ̂iωi ≤ λωi,

β
i
≤ βi ≤ β̄i, α i ≤ αi ≤ ᾱi,

k− δ̄i ≤ δ̂i ≤ k−δ i, γ
i
≤ γi ≤ γ̄i,

(4.5)

for all i∈{1, ·,n}, where δ ∗i = k− δ̂ ∗i , k=max
{

ς̃ , δ̄i f or i = 1, ·,n
}

and its optimal cost fi(β
∗
i )+

gi(α
∗
i )+hi(δ̂i

∗
).

Proof: The proof is similar to the one for theorem 1, so we omit it.
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In this section, we have provided the solutions to problems for strongly digraphs. Then we

show how to extend it to general connected digraphs.

4.2 GP for general connected digraphs

The adjacency matrix U is irreducible if and only if its graph is strongly contact. So the

Perron-Frobenius lemma is not applicable to digraphs that are not strongly connected. For

general digraphs, the statements in the P-F lemma are weaken, as follows:

Lemma 2 (Perron-Frobenius):Z is a n×n nonnegative matrix. Then, the following statements

about its spectral radius ρ(Z) hold:

(1) ρ(Z)≥ 0 is an eigenvalue of Z,

(2) Zω = ρ(Z)ω, for some ω ≥ 0,

(3) ρ(Z) = inf{λ ∈ R : Zω ≤ λω for ω = (ω1, ·,ωn)
T and ωi > 0}.

Note that the components of ω in proposition 2 are strictly positive, however, the components

of ω in lemma 2 are nonnegative. So if we want to use GP, this issue must be resolved. Defined

the sets Θ = {i : ηi 6= 0 and ωi 6= 0}. Hence the variables for i /∈ Θ can be excluded from the

GP’s in theorems 1 and 2. Hence the allocation problems can be split into two different sets of

decision variables.

Rate-Constrained Allocation Problem for General Digraphs: If i /∈Θ, the optimization prob-

lem holds for the variables:

min
∇

∑i/∈Θ fi(βi)+gi(αi)+hi(δ̂i)

subject to β
i
≤ βi ≤ β̄i,

α i ≤ αi ≤ ᾱi, k− δ̄i ≤ δ̂i ≤ k−δ i.

Thus, for fi, gi decreasing and hi increasing, it is obviously that the minimum investment for all

i /∈Θ correspond to the optimal infection rates β̄i, ᾱi and optimal recovery rate δ i.

Theorem 3: On the other hand, for i ∈Θ, the optimal solution can be obtained from the follow-

ing GP:
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min
∇

∑
i∈Θ

fi(βi)+gi(αi)+hi(δ̂i)

subject to ∑
j∈Θ

ui j(βiη j +αiωi)+(k− γi)ηi ≤ ληi,

γiηi + δ̂iωi ≤ λωi,

β
i
≤ βi ≤ β̄i, α i ≤ αi ≤ ᾱi,

k− δ̄i ≤ δ̂i ≤ k−δ i, γ
i
≤ γi ≤ γ̄i,

(4.6)

for i ∈Θ, where δ ∗i = k− δ̂i
∗

and its optimal cost fi(β
∗
i )+gi(α

∗
i )+hi(δ̂i

∗
).

Theorem 4: Budget-Constrained Allocation Problem for General Digraphs: For i /∈ Θ, it’s

easily to find the optimal spreading and recovery rates are β̄i, ᾱi and δ i. Since fi(β̄i) = gi(ᾱi) =

hi(δ i) = 0, therefore, the total investment equal to ∑i/∈Θ fi(β̄i)+ gi(ᾱi)+ hi(δ i) = 0 on each

one of the nodes with zero eigenvalue. Thus, we can rewrite the budget-constrained allocation

problem as following GP for general digraphs:

min
∇

λ

subject to ∑
j∈Θ

ui j(βiη j +αiωi)+(k− γi)ηi ≤ ληi,

γiηi + δ̂iωi ≤ λωi,

∑
i∈Θ

fi(βi)+gi(αi)+hi(δ̂ )i ≤ T,

β
i
≤ βi ≤ β̄i, α i ≤ αi ≤ ᾱi,

k− δ̄i ≤ δ̂i ≤ k−δ i, γ
i
≤ γi ≤ γ̄i,

(4.7)

for i ∈ Θ, where δ ∗i = k− δ̂i
∗

and λ ∗1 (L) ≤ λ ∗− k. Theorem 3 and 4 provided the solutions to

both two problems for general digraphs.

5. Simulation

We have developed an optimization program for determining optimal-cost parameter dis-

tributions such that the desired equilibrium is stabilized. In this section, we present how the

geometric programming solve the optimization problem of resource allocation by simulating a
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strongly connected digraph with N = 10 nodes. For the decision variables we use the lower and

upper bounds
β = 0.05, α = 0.01, δ = 0.1, γ = 0.05,

β̄ = 0.6, ᾱ = 0.4, δ̄ = 0.8, γ̄ = 0.45,

for all nodes i ∈ 1, ·,N.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

investment on node

 

 

infection rate β
i

infection rate α
i

recovery rate δ
i

FIGURE 1. A plot of infection rate βi (in red), αi (in blue) and recovery rate δi

(in black) achieved at node ni after the investments on preventive and corrective

resources are made on that node.

In Fig.1 we plot the cost functions which are given in subsection 3.1. Here the abscissa is

the amount investment on the node ni and the ordinates are the infection (red and blue line)

and recovery (black line) rates achieved by the investment. As we increase the amount invested

on protection resources from 0 to 1, the infection rate of that node is reduced from (β̄i, ᾱi) to

(β
i
,α i) (red and line). Similarly, as we increase the amount invested on corrective resources at

a node ni, the recovery rate grows from δi to δ̄i (black line).

Fig.2 demonstrates the performance achieved by using the rate-constrained allocation algo-

rithm from Theorem 2. We have that in the optimal allocation some nodes receive no resources

at all; some nodes receive only preventive or corrected resources, and some nodes receive a

mixture of preventive and corrective resources.

6. Conclusion

We have presented a convex optimization framework to find the optimal allocation resources

of the SEIS epidemic model on arbitrary directed graphs. A necessary and sufficient condition
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FIGURE 2. The optimal investment on preventive and corrective resources for

ten nodes in a strongly connected digraph, where the abscissas are nodes and the

ordinates are the amount invested on preventive and corrective resources.

for global exponential stability can be derived from the eigenvalues of a matrix that depends

on parameters of the model and the network structure. Furthermore, We have formulated op-

timization programs for determining optimal resources allocation and reformulating them as

geometric programs that can efficiently solve the optimal resource allocation problem. For fu-

ture work we plan to study the endemic equilibrium which the disease-free equilibrium is not

globally asymptotically stable.
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