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Abstract. A Holling-Tanner system with ratio-dependence functional response is revisited in this paper. By de-

veloping the new analysis technique, two set of new conditions which ensure the global attractivity of the positive

equilibrium of the system are obtained. Our results essential improving the main results of Liang and Pan [Quali-

tative analysis of a ratio-dependent Holling-Tanner model, J. Math. Anal. Appl. 334 (2007) 954-964].
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1. Introduction

Leslie-Gower type predator-prey system has been extensively investigated during the last

decades, see [1]-[20]. Liang and Pan [1] proposed the following ratio-dependent Holling-Tanner
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model
dx
dt

= rx
(
1− x

k

)
− mx

Ay+ x
y,

dy
dt

= y
[
s(1−h

y
x
)
]
,

x(0) > 0, y(0)> 0,

(1.1)

where r,k,m,A,s,h are all positive constants. The system is equivalent to the following system

dx
dt

= x
(
1− x

)
− xy

ay+ x
,

dy
dt

= δy
(
β − y

x

)
,

x(0) > 0, y(0)> 0,

(1.2)

where a =
rA
m
,δ =

sh
m
,β =

m
hr

.

Concerned with the persistent and stability property of the system (1.2), obtained the follow-

ing results.

Theorem A. If the condition a > 1 holds, then system (1.2) is permanent.

Theorem B.Assume that the following condition holds:

aβ +1 > max
{

β ,
1
δ

}
, (1.3)

then the positive equilibrium E∗(x∗,y∗) is globally asymptotically stable in the interior of the

first quadrant.

Now let’s consider the following example.

Example 1.1.
dx
dt

= x
(
1− x

)
− xy

2y+ x
,

dy
dt

= 1
10y
( 1

10 −
y
x

)
,

x(0) > 0, y(0)> 0.

(1.4)

Here, we take a = 2,δ = 1
10 ,β = 1

10 , hence, we have aβ +1 = 1
5 +1, β = 1

10 ,
1
δ
= 10. therefore,

aβ +1 < max
{

β ,
1
δ

}
. (1.5)
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That is, condition (1.3) in Theorem B did not holds, however, numeric simulations (Fig. 1)

shows that system (1.4) admits a unique globally attractive positive equilibrium E∗(11
12 ,

11
120).

Above example shows that it is necessary to revisit the stability property of the positive

FIGURE 1. Dynamic behavior of system (1.4) with the ini-

tial condition (x(0),y(0)) = (0.1,0.1), (0.1,0.3), (0.1,0.5),

(0.1,0.01), (1.5,0.01), (1.5,0.3) and (1.5,0.5), respectively.

equilibrium of system (1.2). Indeed, by using a new method which is very different to that of

[1], we could establish the following results:

Theorem 1.1. Assume that a ≥ 2 holds, then the positive equilibrium E∗(x∗,y∗) of (1.2) is

globally asymptotically stable in the interior of the first quadrant.

Theorem 1.2. Assume that 1 < a≤ 2 holds, assume further that

a2
β −aβ +a−2 > 0 (1.6)

and

aβ −1−β > 0 (1.7)

hold, then the positive equilibrium E∗(x∗,y∗) of (1.2) is globally asymptotically stable in the

interior of the first quadrant.
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Remark 1.1. Note that conditions (1.6) and (1.7) are independent of δ , that is, δ has no in-

fluence to the stability property of the system, hence, Theorem 1.1 and 1.2 are thoroughly new

results, and can be seen as the essential improving the main results of [1], since our results

reflect some more essential property of the system (1.2).

Remark 1.2. Theorem 1.1 shows that for almost all of the parameters (only require a ≥ 2) of

the system (1.2), two species could be coexist in a stable state, this seems very interesting, a can

be seen as the most important parameters in the system. Theorem 1.2 shows that for the case

1 < a < 2, if β is enough large, i. e., the intrinsic growth rate of the predator species is enough

large, then two species could also possible coexist in a stable state.

The paper is arranged as follows: In Section 2, some useful Lemmas are established and then

we prove the main results in Section 3. In Section 4, two examples together with their numeric

simulations are presented to illustrate the feasibility of the main results. We end this paper by

a briefly discussion. For more works on Leslie-Gower predator-prey model, one could refer to

[1-16] and the references cited therein.

2. Lemmas

Now we state and prove several useful Lemmas.

Lemma 2.1. Assume that a > 1, then system

dx
dt

= x
(

1− x− B
x+aB

)
(2.1)

admits a unique positive equilibrium x∗(B) which is globally attractive, where B is some positive

constant.

Proof. The positive equilibrium of system (2.1) satisfies the equation

1− x− B
x+aB

= 0. (2.2)

which is equivalent to

x2 +(Ba−1)x+B−Ba = 0. (2.3)
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Obviously, under the assumption a > 1, system (2.3) has a unique positive solution

x∗(B) =
−(Ba−1)+

√
(Ba−1)2−4B(1−a)

2
. (2.4)

Set F(x) = 1− x− B
x+aB

, since F(0) = r− c
d
> 0 and F(x∗) = 0, from the continuity of the

function F(x), it follows that

F(x)> 0 for all x ∈ (0,x∗)

and

F(x)< 0 for all x ∈ (x∗,+∞),

and so applying Theorem 2.1 in [2] to system (2.1), one could see that x∗ is globally stable, i.

e., lim
t→+∞

x(t) = x∗. This ends the proof of Lemma 2.1.

Lemma 2.2. Let x∗(B) be defined by (2.4), assume that a > 1 and (1.6) holds, then x∗(B), B ∈

[β (1− 1
a),β ] is a strictly decreasing function of B.

Proof. Since x∗(B) is the positive solution of (2.3). Let’s consider the function

F(x∗,B) = (x∗)2 +(Ba−1)x∗+B−Ba, x∗ ∈ (1− 1
a
,1], B ∈ [β (1− 1

a
),β ]. (2.5)

Noting that

∂F
∂x∗

= Ba+2x∗−1≥ β (1− 1
a
)a+2(1− 1

a
)−1 =

a2β −aβ +a−2
a

> 0, (2.6)

and
∂F
∂B

= ax∗−a+1 > a(1− 1
a
)−a−1 = 0. (2.7)

Then, it follows from implicit function theorem that

dx∗

dB
=−

∂F
∂x∗
∂F
∂B

< 0. (2.8)

Hence, x∗(B) is the strict decreasing function of B. This ends the proof of Lemma 2.2.

Remark 2.1. (1.6) can be rewrite as follows

aβ (a−1)+a−2 > 0.

Obviously, if a≥ 2 holds, then above inequality holds, i. e., under the assumption of Theorem

1.1, the conclusion of Lemma 2.2 holds.
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Lemma 2.3. Let (x(t),y(t)) be any positive solution of the system (1.2), then

limsup
t→+∞

x(t)≤ 1, limsup
t→+∞

y(t)≤ β .

Proof. From the first equation of (1.2) we have

dx
dt
≤ x
(
1− x

)
, (2.9)

and so,

limsup
t→+∞

x(t)≤ 1. (2.10)

For any ε > 0 enough small, it follows from (2.10) that there exists a T > 0 such that x(t) <

1+ ε. and so, from the second equation of system (1.2), we have

dy
dt
≤ δy

(
β − y

1+ ε

)
, (2.11)

thus

limsup
t→+∞

y(t)≤ β (1+ ε). (2.12)

Setting ε → 0 leads to

limsup
t→+∞

y(t)≤ β . (2.13)

This ends the proof of Lemma 2.3.

Lemma 2.4. Let (x(t),y(t)) be any positive solution of the system (1.2), Assume that a > 1

holds, then

liminf
t→+∞

x(t)≥ 1− 1
a
, liminf

t→+∞
y(t)≥ β (1− 1

a
).

Proof. From the first equation of (1.2) we have

dx
dt
≥ x
(
1− x− 1

a

)
, (2.14)

thus

liminf
t→+∞

x(t)≥ 1− 1
a
. (2.15)

For any ε > 0 enough small (ε < 1
2(1−

1
a)), it follows from (2.15) that there exists a T1 > T

such that x(t)> 1− 1
a − ε. and so, from the second equation of system (1.2), we have

dy
dt
≥ δy

(
β − y

1− 1
a − ε

)
, (2.16)
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and so,

liminf
t→+∞

y(t)≥ β (1− 1
a
− ε). (2.17)

Setting ε → 0 leads to

liminf
t→+∞

y(t)≥ β (1− 1
a
). (2.18)

This ends the proof of Lemma 2.4.

3. Proof of the main results

Proof of Theorem 1.1. Let (x(t),y(t)) be any positive solution of system (1.2), let ε > 0 be

any positive constant enough small which satisfies

β
−
(
a(β + ε)−1

)
+

√(
a(β + ε)−1

)2−4(1−a)(β + ε)

2
− (β +1)ε > 0.

It follows from Lemma 2.3 that there exists a T > 0 such that for all t ≥ T ,

x(t)< 1+ ε
def
= M(1)

1 . (3.1)

y(t)< β + ε
def
= M(1)

2 . (3.2)

(3.2) together with the first equation of (1.2) leads to

ẋ(t)≥ x
(

1− x−
M(1)

2

x+aM(1)
2

)
for all t ≥ T. (3.3)

Consider the auxiliary equation

v̇(t) = v
(

1− v−
M(1)

2

v+aM(1)
2

)
. (3.4)

Since

1−
M(1)

2

aM(1)
2

= 1− 1
a
> 0, (3.5)

According to Lemma 2.1, (3.4) admits a unique positive equilibrium

v11 =
−(aM(1)

2 −1)+
√
(aM(1)

2 −1)2−4(1−a)M(1)
2

2
, (3.6)
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which is globally attractive. Hence, by using differential inequality theory, there exists a T11 > T

such that

x(t)> v11− ε
def
= m(1)

1 > 0 for all t ≥ T11. (3.7)

(3.7) together with the second equation of (1.2) leads to

dy
dt
≥ δy

(
β − y

m(1)
1

)
, (3.8)

and so

liminf
t→+∞

y(t)≥ βm(1)
1 . (3.9)

That is, for above ε > 0, there exists a T12 > T11 such that

y(t)> βm(1)
1 − ε

def
= m(1)

2 > 0 for all t ≥ T12. (3.10)

It follows from (3.1),(3.2), (3.7) and (3.10) that for all t ≥ T12,

0 < m(1)
1 < x(t)< M(1)

1 , 0 < m(1)
2 < y(t)< M(1)

2 . (3.11)

(3.11) together with the first equation of (1.2) leads to

ẋ(t)≤ x
(

1− x−
m(1)

2

x+am(1)
2

)
for all t ≥ T12. (3.12)

Consider the auxiliary equation

v̇ = v
(

1− v−
m(1)

2

v+am(1)
2

)
. (3.13)

Since

1−
m(1)

2

am(1)
2

= 1− 1
a
> 0, (3.14)

According to Lemma 2.1, equation (3.13) admits a unique positive equilibrium

v21 =
−(am(1)

2 −1)+
√
(am(1)

2 −1)2−4(1−a)m(1)
2

2
, (3.15)

which is globally attractive. Hence, by using differential inequality theory, there exists a T21 >

T12 such that

x(t)< v21 +
ε

2
def
= M(2)

1 for all t ≥ T21. (3.16)
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Since

v21 =
−(am(1)

2 −1)+
√

(am(1)
2 −1)2−4(1−a)m(1)

2

2

=
−(am(1)

2 −1)+
√

(am(1)
2 +1)2−4m(1)

2

2

<
−(am(1)

2 −1)+
√

(am(1)
2 +1)2

2
= 1,

(3.17)

it follows from (3.1) and (3.17) that

M(2)
1 < M(1)

1 . (3.18)

From (3.18) and the second equation of (1.2), we know that for t ≥ T21,

dy
dt
≤ δy

(
β − y

M(2)
1

)
, (3.19)

and so

limsup
t→+∞

y(t)≤ βM(2)
1 . (3.20)

That is, for above ε > 0, there exists a T22 > T21 such that

y(t)< βM(2)
1 +

ε

2
def
= M(2)

2 for all t ≥ T22. (3.21)

It follows from (3.2), (3.18) and (3.21) that

M(2)
2 < M(1)

2 . (3.22)

Substituting (3.22) into the first equation of system (1.2), we obtain

ẋ(t)≥ x
(

1− x−
M(2)

2

x+aM(2)
2

)
for all t ≥ T22.

Similarly to the analysis of (3.3)-(3.7), there exists a T23 > T22 such that

x(t)> v22−
ε

2
def
= m(2)

1 > 0 for all t ≥ T23. (3.23)

where

v22 =
−(aM(2)

2 −1)+
√
(aM(2)

2 −1)2−4(1−a)M(2)
2

2
. (3.24)

From (3.22) and Lemma 2.2, we have

m(2)
1 > m(1)

1 . (3.25)
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From (3.23) and the second equation of (1.2), we know that for t ≥ T23,

ẏ(t)≥ δy
(

β − y

m(2)
1

)
, (3.26)

thus,

liminf
t→+∞

y(t)≥ βm(2)
1 . (3.27)

That is, for above ε > 0, there exists a T24 > T23 such that

y(t)> βm(2)
1 −

ε

2
def
= m(2)

2 for all t ≥ T24. (3.28)

From (3.10), (3.25) and (3.28) we have

m(2)
2 > m(1)

2 . (3.29)

It follows from (3.18),(3.22), (3.25) and (3.29) that for all t ≥ T24,

0 < m(1)
1 < m(2)

1 < x(t)< M(2)
1 < M(1)

1 ,

0 < m(1)
2 < m(2)

2 < y(t)< M(2)
2 < M(1)

2 .
(3.30)

Repeating the above procedure, we get four sequences M(n)
i ,m(n)

i , i = 1,2,n = 1,2, .... such that

M(n)
1 = vn1 +

ε

n
, m(n)

1 = vn2−
ε

n
, (3.31)

vn1 =
−(am(n−1)

2 −1)+
√
(am(n−1)

2 −1)2−4(1−a)m(n−1)
2

2
. (3.32)

vn2 =
−(aM(n)

2 −1)+
√
(aM(n)

2 −1)2−4(1−a)M(n)
2

2
. (3.33)

βm(n)
1 −

ε

n
= m(n)

2 , βM(n)
1 +

ε

n
= M(n)

2 . (3.34)

Now, we go to show that the sequences M(n)
i is strictly decreasing, and the sequences m(n)

i is

strictly increasing for i = 1,2 by induction. Firstly, from (3.30), we have

m(1)
i < m(2)

i , M(2)
i < M(1)

i , i = 1,2. (3.35)

Let us suppose that

m(n−1)
i < m(n)

i , M(n)
i < M(n−1)

i , i = 1,2. (3.36)

It then follows from Lemma 2.2, (3.32) and (3.33) that

vn1 > v(n+1)1. (3.37)
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From (3.31) we have

M(n)
1 > M(n+1)

1 . (3.38)

By using (3.38), it follows from (3.34) that

M(n)
2 > M(n+1)

2 . (3.39)

It then follows from Lemma 2.2, (3.32) and (3.39) that

v(n+1)2 > vn2. (3.40)

(3.40) and (3.31) show that

m(n+1)
1 > m(n)

1 .

From the relationship of m(n)
1 and m(n)

2 , we have

m(n+1)
2 > m(n)

2 . (3.41)

Therefore, we have

0 < m(1)
1 < m(2)

1 < · · ·< m(n)
1 < x(t)< M(n)

1 < · · ·< M(2)
1 < M(1)

1 ,

0 < m(1)
2 < m(2)

2 < · · ·< m(n)
2 < y(t)< M(n)

2 < · · ·< M(2)
2 < M(1)

2 .
(3.42)

Hence, the limits of M(n)
i and m(n)

i , i = 1,2,n = 1,2, ... exist. Denote that

lim
n→+∞

M(n)
1 = x, lim

n→+∞
m(n)

1 = x, lim
n→+∞

M(n)
2 = y, lim

n→+∞
m(n)

2 = y. (3.43)

Then x≥ x,y≥ y. Letting n→+∞ in (3.31)-(3.34), we obtain

x =
−(ay−1)+

√
(ay−1)2−4(1−a)y

2
.

x =
−(ay−1)+

√
(ay−1)2−4(1−a)y

2
.

βx = y, βx = y.

(3.44)

(3.44) is equivalent to

x2 +(ay−1)x+ y(1−a) = 0,

x2 +(ay−1)x+ y(1−a) = 0,

βx = y, βx = y.

(3.45)
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Consequently

x2 +(aβx−1)x+βx(1−a) = 0,

x2 +(aβx−1)x+βx(1−a) = 0.
(3.46)

And so,

(x− x)
(
x+ x−1−β (1−a)

)
= 0. (3.47)

From Lemma 2.4 and a≥ 2 we have

x+ x−1−β (1−a)> 2(1− 1
a
)−1−β (1−a)≥ β (a−1)> 0.

Hence, it follows from (3.47) that

x = x.

Also, from (3.45) we have

y = y.

Under the assumption of Theorem 1.1, system (1.2) admits a unique positive solution (x∗,y∗),

hence x = x = x∗,y = y = y∗. That is to say,

lim
t→+∞

x(t) = x∗, lim
t→+∞

y(t) = y∗. (3.48)

This ends the proof of the Theorem 1.1.

Proof of Theorem 1.2. Similarly to the proof of Theorem 1.1, we can finally obtain (3.45)-

(3.47). Assume that x 6= x, then from (3.47) we have

x =−x+1+β (1−a), (3.49)

and

x = 1+β (1−a)− x. (3.50)

Substituting (3.49) and (3.50) to (3.46) leads to

A1x2 +A2x+A3 = 0,

A1x2 +A2x+A3 = 0,
(3.51)
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where

A1 = aβ −1,

A2 = (aβ −1)(aβ −β −1),

A3 = −β (a−1)(aβ −β −1).

And so, x and x are the positive solution of the equation

A1x2 +A2x+A3 = 0. (3.52)

From (1.7) one could see that A1 > 0 and A3 < 0. Hence, (3.52) had unique positive solution,

this shows that x = x, the rest of the proof is similar to that of the proof of Theorem 1.1, and we

omit the detail here. This ends the proof of Theorem 1.2.

4. Numeric example

Now let’s consider the following example.

Example 4.1

ẋ(t) = x
(

1− x− y
x+ 3

2 y

)
,

ẏ(t) =
1

10
y
(

5− y
x

)
.

(4.1)

Corresponding to system (1.2), one has

a =
3
2
, δ =

1
10

, β = 5,

Again, in this case

aβ +1 =
17
2

<
1
δ
= 10.

Hence, Theorem A in [1] could not be applied to this system. However, one could easily verify

aβ −β −1 =
3
2
> 0,

and

a2
β −aβ +a−2 =

13
4

> 0.

Hence, from Theorem 1.2, system (4.1) admits a unique globally attractive positive equilibrium

( 7
17 ,

35
17). numeric simulations (Fig.2) also support this findings.
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FIGURE 2. Dynamic behavior of the solution (x(t),y(t))

of system (4.1) with the initial condition (x(0),y(0)) =

(0.1,0.3), (0.4,4), (0.1,4), (1,3), (1,0.5) and (1,0.01), re-

spectively.

5. Discussion

In this paper, we revisit the Holling-Tanner system with ratio-dependence, which was pro-

posed by Liang and Pan[1]. By developing some new analysis technique and using the new

method, we obtain the sufficient conditions which ensure the global attractivity of the positive

equilibrium.

Theorem 1.1 seems very interesting since it shows that for system (1.2), for a ∈ [2,+∞), the

system always admits a unique positive equilibrium, which is globally attractive. Theorem 1.2

shows that for the case 1 < a < 2, one could still obtain a the conditions which is independent

of δ , to ensure the global attractivity of the positive equilibrium.
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