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Abstract. A cooperative system of May type incorporating partial closure for the populations and non-selective

harvesting is proposed and studied in this paper. The locally stability property of the equilibria are determined by

analyzing the Jacobian matrix of the system about the equilibria. By using the comparison theorem of the differ-

ential equation, sufficient conditions which ensure the global attractivity of the boundary equilibria are obtained.

By using the iterative method, we are able to show that the conditions which ensure the existence of the unique

positive equilibrium is enough to ensure its global attractivity. Our study shows that the intrinsic growth rate and

the fraction of the stocks for the harvesting plays crucial role on the dynamic behaviors of the system. Numeric

simulations are carried out to show the feasibility of our results.

Keywords: cooperation; species; Lyapunov function; global stability.

2010 AMS Subject Classification: 34C25, 92D25, 34D20, 34D40

1. Introduction

Cooperation, one of the basic relationship between the species, has been studied by many

scholars during the last decades, see [2]-[35] and the references cited therein. Topics such as
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the global attractivity of the positive equilibrium ( [2]-[13], [22, 23]), the persistent property

of the system ([14]-[30]), the existence and stability property of the positive periodic solu-

tion ([31]-[36]), the existence of the positive almost periodic solution ([8]), the influence of

the feedback control variables ([14, 15, 17, 18, 19, 20, 21, 24, 27]), the influence of the stage

structure([13],[33]), the influence of the harvesting([2, 3, 4]), the influence of the implusive([10]),

the combine effect of the predator-prey-mutualist ([28, 29]) are investigated, and many excel-

lent results are obtained.

May [2] suggested the following set of equations to describe a pair of mutualist:

dN1

dt
= rN1

[
1− N1

K1 +αN2

]
,

dN2

dt
= rN2

[
1− N2

K2 +βN1

]
,

(1.1)

where N1,N2 are the densities of the species, respectively. r, Ki, α, β , i = 1,2 are positive

constants. The system admits an unique positive equilibrium (N∗1 ,N
∗
2 ), which is globally stable

if αβ < 1, and the system will ”run away”, with both populations growing unboundedly large

if αβ ≥ 1. To overcome the “run away” problem, May further considered the density restriction

of the species and proposed the following system:

ẋ = r1x
[
1− x

K1 +α1y
− ε1x

]
,

ẏ = r2y
[
1− y

K2 +α2x
− ε2y

]
,

(1.2)

where ri, Ki, αi, εi, i = 1,2 are positive constants. He showed that system (1.2) has a global sta-

bility equilibrium point. Since then, many scholars ([2, 3, 4]) also done works on this direction.

Based on the model (1.1) and (1.2), Wei and Li[2] proposed the following cooperative system

with harvesting

ẋ = x
(

r1−b1x− a1x
y+ k1

)
−Eqx,

ẏ = y
(

r2−b2y− a2y
x+ k2

)
,

(1.3)

where x and y denote the densities of two populations at time t. The parameters r1,r2,a1,a2,b1,

b2,k1,k2,E,q are all positive constants. By applying the comparison theorem of differential

equations and constructing a suitable Lyapunov function, they obtained sufficient conditions

which ensure the persistent and stability of the positive equilibrium, respectively. Xie, Chen
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and Xue[3] argued that the conditions in [2] is too complex, and by using the iterative method,

they showed that

r1 > Eq (1.4)

is enough to ensure the system (1.3) admits a unique globally attractive positive equilibrium.

This result greatly improve the main results of [2]. Recently, Chen, Wu and Xie[4] argued that

the discrete time models governed by difference equations are more appropriate than the con-

tinuous ones when the populations have nonoverlapping generations, corresponding to system

(1.3), they further proposed the following discrete cooperative model incorporating harvesting:

x(k+1) = x(k)exp
{

r1−Eq−b1x(k)− a1x(k)
y(k)+ k1

}
,

y(k+1) = y(k)exp
{

r2−b2y(k)− a2y(k)
x(k)+ k2

}
,

(1.5)

where x(k),y(k) are the population density of the species x and y at k-generation. By using the

iterative method and the comparison principle of difference equations, they also obtained a set

of sufficient conditions which ensure the global attractivity of the interior equilibrium of the

system. It bring to our attention that all of the paper [2]-[4] are considered the harvesting of the

first species, without harvesting of the second species, this seems unrealistic, since generally

speaking, in the harvesting process, human being will try to obtain as many resources as possi-

ble, with as little cost as possible.

On the other hand, as was pointed out by Chakraborty, Das and Kar[36], the study of resource-

management including fisheries, forestry and wildlife management has great importance, it is

necessary to harvest the population but harvesting should be regulated, such that both the e-

cological sustainability and conservation of the species can be implemented in a long run.

Recently, Lin[37] investigated the dynamic behaviors of the following two species commen-

sal symbiosis model with non-monotonic functional response and non-selective harvesting in a

partial closure
dx
dt

= x
(

a1−b1x+
c1y

d1 + y2

)
−q1Emx,

dy
dt

= y(a2−b2y)−q2Emy,

where ai,bi,qi, i = 1,2 c1, E, m(0 < m < 1) and d1 are all positive constants, where E is the

combined fishing effort used to harvest and m(0 < m < 1) is the fraction of the stock available
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for harvesting. His studied shows that depending on the range of the parameter m, the system

may be collapse, or partial survival, or the two species could be coexist in a stable state. He

also showed that if the system admits a unique positive equilibrium, then it is globally asymp-

totically stable. Recently, Chen[38] also studied the influence of non-selective harvesting to a

Lotka-Volterra amensalism model incorporating partial closure for the populations, and he also

founded that the dynamic behaviors of the system becomes complicated.

Stimulated by the works of [2]-[4], [36]-[38], in this paper, we will study the dynamic be-

haviors of the following non-selective harvesting May cooperative system incorporating partial

closure for the populations

ẋ = x
(

r1−b1x− a1x
y+ k1

)
−Eq1mx,

ẏ = y
(

r2−b2y− a2y
x+ k2

)
−Eq2my,

(1.6)

where x and y denote the densities of two populations at time t. The parameters r1,r2,a1,a2,b1,

b2,k1,k2,E,qi are all positive constants and have the same meaning as that of the system (1.3).

E is the combined fishing effort used to harvest and m(0 < m < 1) is the fraction of the stock

available for harvesting.

We will try to give a thoroughly analysis of the dynamic behaviors of the above system.

The paper is arranged as follows. We investigate the existence and locally stability property

of the equilibria of system (1.2) in the next section. In section 3, By applying the differential

inequality theory and the iterative method, we are able to investigate the global stability property

of the boundary equilibrium and the positive equilibrium, respectively. Section 4 presents some

numerical simulations concerning the stability of our model. We end this paper by a briefly

discussion.

2. Local stability of the equilibria

The system always admits the boundary equilibrium O(0,0).

If r2 >Emq2 holds, the system admits the boundary equilibrium A(0,y1), where y1 =
k2(r2−Emq2)

b2k2 +a2
.

If r1 >Emq1 holds, the system admits the boundary equilibrium B(x1,0), where x1 =
k1(r1−Emq1)

b1k1 +a1
.

If r1 > Emq1 and r2 > Emq2 hold, then the system admits a unique positive equilibrium
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(x∗,y∗), x∗ is the unique positive solution of the equation

A1x2 +A2x+A3 = 0, (2.1)

where

A1 = b1(r2−Emq2)+b1b2k1 +a1b2,

A2 = −E2q1q2m2 +E(q1r2 +q2r1 +b2k1q1−b1k2q2

+b1b2k1k2 +a1b2k2 +a2b1k1 +b1k2r2−b2k1r1 +a1a2− r1r2,

A3 = (Emq1− r1)
(

k2(r2−Emq2)+a2k1 +b2k1k2

)
,

and

y∗ =
(r2−Emq2)(k2 + x∗)

b2k2 +b2x∗+a2
.

We shall now investigate the local stability property of the above equilibria.

The variational matrix of the system of Eq. (1.2) is

V (x,y) =

 B1 − a1x2

(y+ k1)2

a2y2

(x+ k2)2 B2

 , (2.2)

where

B1 = r1−Eq1m−b1x− a1x
y+ k1

− x
(

b1 +
a1

y+ k1

)
,

B2 = r2−Eq2m−b2y− a2y
x+ k2

− y
(

b2 +
a2

x+ k2

)
.

Theorem 2.1 Assume that

m > max
{ r1

Eq1
,

r2

Eq2

}
(2.3)

holds, then O(0,0) is locally stable.

Proof. From (2.2) we could see that the Jacobian matrix of the system about the equilibrium

point O(0,0) is given by  r1−Emq1 0

0 r2−Emq2

 . (2.4)

The eigenvalues of the matrix are λ1 = r1−Emq1,λ2 = r2−Emq2. Hence, if r < Emq1 and

s < Emq2 holds, then λ1 < 0,λ2 < 0, consequently O(0,0) is locally stable. This ends the proof

of Theorem 2.1.
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Theorem 2.2 Assume that

r2

Eq2
< m <

r1

Eq1
(2.5)

holds, then B(x1,0) is locally stable.

Proof. From (2.2) we could see that the Jacobian matrix of the system about the equilibrium

point B(x1,0) is given by

 Emq1− r1
a1(Emq1− r1)

2

(b1k1 +a1)2

0 r2−Emq2

 .

The eigenvalues of the matrix are λ1 = Emq1−r1,λ2 = r2−Emq2. Under the assumption (2.4),

λi < 0, i = 1,2, and so, B(x1,0) is locally stable. This ends the proof of Theorem 2.2.

Theorem 2.3 Assume that

r1

Eq1
< m <

r2

Eq2
(2.6)

holds, then A(0,y1) is locally stable.

Proof. From (2.2) we could see that the Jacobian matrix of the system about the equilibrium

point A(0,y1) is given by 
r1−Emq1 0

a2(Emq2− r2)
2

(b2k2 +a2)2 Emq2− r2

 . (2.7)

Under the assumption (2.6), the two eigenvalues of the matrix satisfies λ1 = r1−Emq1 < 0,λ2 =

Emq2− r2 < 0. consequently A(0,y1) is locally stable. This ends the proof of Theorem 2.3.

Theorem 2.4 Assume that m < min
{ r2

Eq2
,

r1

Eq1

}
holds, then C(x∗,y∗) is locally stable.

Proof. Noting that the equilibrium point C(x∗,y∗) satisfies the equation

r1−b1x∗− a1x∗

y∗+ k1
−Eq1m = 0,

r2−b2y∗− a2y∗

x∗+ k2
−Eq2m = 0,

(2.8)
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The Jacobian matrix about the equilibrium C is given by

 −x∗
(

b1 +
a1

y∗+ k1

) (x∗)2a1

(k1 + y∗)2

(y∗)2a2

(k2 + x∗)2 −y∗
(

b2 +
a2

x∗+ k2

)
 . (2.9)

The characteristic equation of (2.9) is[
λ + x∗

(
b1 +

a1

y∗+ k1

)]
·
[
λ + y∗

(
b2 +

a2

x∗+ k2

)]
− (x∗)2a1

(k1 + y∗)2 ·
(y∗)2a2

(k2 + x∗)2 = 0,

which is equivalent to

λ
2 +
[
x∗
(

b1 +
a1

y∗+ k1

)
+ y∗

(
b2 +

a2

x∗+ k2

)]
+ x∗y∗

(
b1b2 +b1

a2

x∗+ k2
+b2

a1

y∗+ k1

)
= 0.

Therefore, the two eigenvalues of the above matrix satisfies

λ1 +λ2 =−x∗
(

b1 +
a1

y∗+ k1

)
− y∗

(
b2 +

a2

x∗+ k2

)
< 0,

λ1 ·λ2 = x∗y∗
(

b1b2 +b1
a2

x∗+ k2
+b2

a1

y∗+ k1

)
> 0.

Consequently,

λ1 < 0, λ2 < 0.

Hence, C(x∗,y∗) is locally stable.

This ends the proof of Theorem 2.4.

3. Global attractivity

This section try to obtain some sufficient conditions which ensure the global asymptotical

stability of the equilibria.

As a direct corollary of Lemma 2.2 of Chen[39], we have

Lemma 3.1. If a > 0,b > 0 and ẋ≥ x(b−ax), when t ≥ 0 and x(0)> 0, we have

liminf
t→+∞

x(t)≥ b
a
.
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If a > 0,b > 0 and ẋ≤ x(b−ax), when t ≥ 0 and x(0)> 0, we have

limsup
t→+∞

x(t)≤ b
a
.

Theorem 3.1

(1) Assume that

m > max
{ r1

Eq1
,

r2

Eq2

}
(3.1)

holds, then O(0,0) is globally attractive;

(2) Assume that

r2

Eq2
< m <

r1

Eq1
(3.2)

holds, then B(x1,0) is globally attractive;

(3) Assume that

r1

Eq1
< m <

r2

Eq2
(3.3)

holds, then A(0,y1) is globally attractive;

(4) Assume that

m < min
{ r2

Eq2
,

r1

Eq1

}
(3.4)

holds, then C(x∗,y∗) is globally attractive.

Proof.

(1) It follows from m > max
{ r1

Eq1
,

r2

Eq2

}
that there exists enough small ε > 0 such that

r1−Eq1m <−ε, r2−Eq2m <−ε. (3.5)

From the first equation of system (1.6) and the positivity of the solution, by using (3.5), we have

dx
dt

= x
(

r1−b1x− a1x
y+ k1

)
−Eq1mx

< (r1−Eq1m)x

< −εx,

(3.6)

Hence

x(t)< x(0)exp{−εt}→ 0 as t→+∞. (3.7)
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From the second equation of system (1.6) and the positivity of the solution, by using (3.5), we

have
dy
dt

= y
(

r2−b2y− a2y
x+ k2

)
−Eq2my

< (r2−Eq2m)y

< −εy,

(3.8)

Hence

y(t)< y(0)exp{−εt}→ 0 as t→+∞. (3.9)

(2) By using the condition m >
r2

Eq2
, similarly to the analysis of (3.8)-(3.9), we have

y(t)→ 0 as t→+∞. (3.10)

For arbitrary enough small ε > 0, it follows from (3.10) that there exists a T1 > 0, such that

y(t)< ε as t > T1.

For t > T1, from the first equation of system (1.6), we have

dx
dt

= x
(

r1−b1x− a1x
y+ k1

)
−Eq1mx

< x
(

r1−b1x− a1x
ε + k1

)
−Eq1mx

= x
(

r1−Eq1m− (b1 +
a1

ε + k1
)x
)
.

(3.10)

it follows from (3.10) and Lemma 3.1 that

limsup
t→+∞

x(t)≤ r1−q1Em

b1 +
a1

ε + k1

. (3.11)

On the other hand, from the first equation of system (1.6), we also have

dx
dt

> x
(

r1−b1x− a1x
k1

)
−Eq1mx

= x
(

r1−q1Em− (b1 +
a1x
k1

)x
)
,

(3.12)

it follows from (3.12) and Lemma 3.1 that

liminf
t→+∞

x(t)≥ r1−q1Em

b1 +
a1

k1

. (3.13)
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It follows from (3.11) and (3.13) that

r1−q1Em

b1 +
a1x
k1

≤ liminf
t→+∞

x(t)≤ limsup
t→+∞

x(t)≤ r1−q1Em

b1 +
a1

ε + k1

. (3.14)

Since ε is any arbitrary small positive constants, setting ε → 0 in (3.14) leads to

lim
t→+∞

x(t) =
r1−q1Em

b1 +
a1

k1

=
k1(r1−Emq1)

b1k1 +a1
= x1.

(3) By using the condition m >
r1

Eq1
, similarly to the analysis of (3.5)-(3.7), we have

x(t)→ 0 as t→+∞. (3.15)

For arbitrary enough small ε > 0, it follows from (3.15) that there exists a T2 > 0, such that

x(t)< ε as t > T2.

For t > T2, from the second equation of system (1.6), we have

dy
dt

= y
(

r2−b2y− a2y
x+ k2

)
−Eq2my

< y
(

r2−b2y− a2y
ε + k2

)
−Eq2my

= y
(

r2−Eq2m− (b2 +
a2

ε + k2
)y
)
.

(3.16)

It follows from (3.16) and Lemma 3.1 that

limsup
t→+∞

y(t)≤ r2−q2Em

b2 +
a2

ε + k2

. (3.17)

On the other hand, from the second equation of system (1.6), we also have

dy
dt

> y
(

r2−b2y− a2y
k2

)
−Eq2my

= y
(

r2−q2Em− (b2 +
a2y
k2

)y
)
.

(3.18)

It follows from (3.18) and Lemma 3.1 that

liminf
t→+∞

y(t)≥ r2−q2Em

b2 +
a2

k2

. (3.19)
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It follows from (3.17) and (3.19) that

r2−q2Em

b2 +
a2

k2

≤ liminf
t→+∞

y(t)≤ limsup
t→+∞

y(t)≤ r2−q2Em

b2 +
a2

ε + k2

. (3.20)

Since ε is any arbitrary small positive constants, setting ε → 0 in (3.20) leads to

lim
t→+∞

y(t) =
r2−q2Em

b2 +
a2

k2

=
k2(r2−Emq2)

b2k2 +a2
= y1.

(4) By the first equation of system (1.6), we have

ẋ(t)≤ x(t)(r1−Eq1m−b1x(t)).

From Lemma 3.1, it follows that

limsup
t→+∞

x(t)≤ r1−Eq1m
b1

. (3.21)

Hence, for enough small ε > 0
(

ε < min
{(r1−Eq1m)k1

k1b1 +a1
,
(r2−Eq2m)k2

k2b2 +a2

})
, it follows from

(3.21) that there exists a T ′1 > 0 such that

x(t)<
r1−Eq1m

b1
+ ε

def
= M(1)

1 for all t > T ′1. (3.22)

Similarly, for above ε > 0, it follows from the second equation of system (1.6) that there exists

a T1 > T ′1 such that

y(t)<
r2−Eq2m

b2
+ ε

def
= M(1)

2 for all t > T1. (3.23)

(3.23) together with the first equation of system (1.6) implies

ẋ = x
(

r1−b1x− a1x
y+ k1

)
−Eq1mx

≤ x
(

r1−Eq1m−b1x− a1x

M(1)
2 + k1

)
for all t > T1.

(3.24)

Therefore, by Lemma 2.1, we have

limsup
t→+∞

x(t)≤ r1−Eq1m

b1 +
a1

M(1)
2 + k1

.
(3.25)
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That is, for ε > 0 be defined by (3.21)-(3.22), there exists a T ′2 > T1 such that

x(t)<
r1−Eq1m

b1 +
a1

M(1)
2 + k1

+
ε

2
def
= M(2)

1 > 0 for all t > T ′2. (3.26)

It follows from (3.22) and the second equation of system (1.6) that

ẏ = y
(

r2−b2y− a2y
x+ k2

)
−Eq2my

≤ y
(

r2−Eq2m−b2y− a2y

M(1)
1 + k2

) (3.27)

Therefore, by Lemma 3.1, we have

limsup
t→+∞

y(t)≤ r2−Eq2m

b2 +
a2

M(1)
1 + k2

.
(3.28)

That is, for ε > 0 be defined by (3.22) and (3.23), there exists a T2 > T
′

2 such that

y(t)<
r2−Eq2m

b2 +
a2

M(1)
1 + k2

+
ε

2
def
= M(2)

2 > 0 for all t > T2.
(3.29)

From the first equation of system (1.6) and the positivity of y(t),

ẋ = x
(

r1−b1x− a1x
y+ k1

)
−Eq1mx

≥ x
(

r1−Eq1m−b1x− a1x
k1

)
for all t > T2.

(3.30)

Therefore, by Lemma 3.1, we have

liminf
t→+∞

x(t)≥ r1−Eq1m

b1 +
a1

k1

.
(3.31)

Hence, for ε > 0 be defined by (3.21)-(3.22), there exists a T ′3 > T2 such that

x(t)>
r1−Eq1m

b1 +
a1

k1

− ε
def
= m(1)

1 , for all t > T ′3. (3.32)

Similarly, it follows from the second equation of system (1.6) that there exists a T3 > T ′3 such

that

y(t)>
r2−Eq2m

b2 +
a2

k2

− ε
def
= m(1)

2 , for all t > T3. (3.33)
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(3.33) together with the first equation of system (1.6) implies that

ẋ = x
(

r1−b1x− a1x
y+ k1

)
−Eq1mx

≥ x
(

r1−Eq1m−b1x− a1x

m(1)
2 + k1

)
for all t > T3.

(3.34)

Therefore, by Lemma 3.1, we have

liminf
t→+∞

x(t)≥ r1−Eq1m

b1 +
a1

m(1)
2 + k1

.
(3.35)

That is, for ε > 0 be defined by (3.21)-(3.22), there exists a T ′4 > T3 such that

x(t)>
r1−Eq1m

b1 +
a1

m(1)
2 + k1

− ε

2
def
= m(2)

1 > 0, for all t > T ′4. (3.36)

Similarly, by the second equation of system (1.6), for ε > 0 be defined by (3.21)-(3.22), there

exists a T4 > T ′4 such that

y(t)>
r2−Eq2m

b2 +
a2

m(1)
1 + k2

− ε

2
def
= m(2)

2 > 0, for all t > T4.
(3.37)

Noting that
a1

M(1)
2 + k1

> 0,
a2

M(1)
1 + k2

> 0, it immediately follows that

M(2)
1 =

r1−Eq1m

b1 +
a1

M(1)
2 + k1

+
ε

2
<

r1−Eq1m
b1

+ ε = M(1)
1 ;

M(2)
2 =

r2−Eq2m

b2 +
a2

M(1)
1 + k2

+
ε

2
<

r2−Eq2m
b2

+ ε = M(1)
2 .

(3.38)

Also, since m(1)
1 > 0,m(1)

2 > 0, it follows that
a1

m(1)
2 + k1

<
a1

k1
,

a2

m(1)
1 + k2

<
a2

k2
, and so

m(2)
1 =

r1−Eq1m

b1 +
a1

m(1)
2 + k1

− ε

2
>

r1−Eq1m

b1 +
a1

k1

− ε = m(1)
1 ;

m(2)
2 =

r2−Eq2m

b2 +
a2

m(1)
1 + k2

− ε

2
>

r2−Eq2m

b2 +
a2

k2

− ε = m(1)
2 .

(3.39)
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Repeating the above procedure, we get four sequences M(n)
i ,m(n)

i , i = 1,2,n = 1,2, · · · , such that

for n≥ 2

M(n)
1 =

r1−Eq1m

b1 +
a1

M(n−1)
2 + k1

+
ε

n
;

M(n)
2 =

r2−Eq2m

b2 +
a2

M(n−1)
1 + k2

+
ε

n
;

m(n)
1 =

r1−Eq1m

b1 +
a1

m(n−1)
2 + k1

− ε

n
;

m(n)
2 =

r2−Eq2m

b2 +
a2

m(n−1)
1 + k2

− ε

n
.

(3.40)

Obviously,

m(n)
i < xi(t)< M(n)

i for all t ≥ T2n, i = 1,2.

We claim that sequences M(n)
i , i = 1,2 are strictly decreasing, and sequences m(n)

i , i = 1,2 are

strictly increasing. To proof this claim, we will carry out by induction. Firstly, from (3.38) and

(3.39) we have

M(2)
i < M(1)

i , m(2)
i > m(1)

i , i = 1,2.

Let us assume now that our claim is true for n, that is,

M(n)
i < M(n−1)

i , m(n)
i > m(n−1)

i , i = 1,2. (3.41)

Then
a1

M(n)
2 + k1

>
a1

M(n−1)
2 + k1

,
a2

M(n)
1 + k2

>
a2

M(n−1)
1 + k2

. (3.42)

From (3.42) and the expression of M(n)
i , it immediately follows that

M(n+1)
1 =

r1−Eq1m

b1 +
a1

M(n)
2 + k1

+
ε

n+1
<

r1−Eq1m

b1 +
a1

M(n−1)
2 + k1

+
ε

n
= M(n)

1 ,

M(n+1)
2 =

r2−Eq2m

b2 +
a2

M(n)
1 + k2

+
ε

n+1
<

r2−Eq2m

b2 +
a2

M(n−1)
1 + k2

+
ε

n
= M(n)

2 .
(3.43)

Also, it follows from (3.41) that m(n)
i ≥ m(n−1)

i , i = 1,2. Then

a1

m(n)
2 + k1

<
a1

m(n−1)
2 + k1

,
a2

m(n)
1 + k2

<
a2

m(n−1)
1 + k2

. (3.44)
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From (3.44) and the expression of m(n)
i , it immediately follows that

m(n+1)
1 =

r1−Eq1m

b1 +
a1

m(n)
2 + k1

− ε

n+1
>

r1−Eq1m

b1 +
a1

m(n−1)
2 + k1

− ε

n
= m(n)

1 ,

m(n+1)
2 =

r2−Eq1m

b2 +
a2

m(n)
1 + k2

− ε

n+1
>

r2−Eq1m

b2 +
a2

m(n−1)
1 + k2

− ε

n
= m(n)

2 .
(3.45)

Therefore,

lim
t→+∞

M(n)
1 = x, lim

t→+∞
M(n)

2 = y,

lim
t→+∞

m(n)
1 = x, lim

t→+∞
m(n)

2 = y

Letting n→+∞ in (3.40), we obtain

b1x+
a1x

y+ k1
= r1−Eq1m,

b2y+
a2y

x+ k2
= r2−Eq2m;

b1x+
a1x

y+ k1
= r1−Eq1m,

b2y+
a2y

x+ k2
= r2−Eq2m.

(3.46)

(3.46) shows that (x,y) and (x,y) are positive solutions of the equations

b1x+
a1x

y+ k1
= r1−Eq1m,

b2y+
a2y

x+ k2
= r2−Eq2m,

(3.47)

Already, we had showed in the previous section that under the assumption r1 > Eq1m,r2 >

Eq2m, (3.47) has a unique positive solution C(x∗,y∗). Hence, we conclude that

x = x = x∗, y = y = y∗,

that is

lim
t→+∞

x(t) = x∗ lim
t→+∞

y(t) = y∗.

Thus, the unique interior equilibrium C(x∗,y∗) is globally attractive.

This completes the proof of Theorem 3.1.

4. Numeric simulations
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Now let’s consider the following example.

Example 4.1. Consider the following May cooperative system incorporating partial closure for

the populations

ẋ = x
(

2− x− 2x
y+1

)
−4 · 2

3
·mx,

ẏ = y
(

2− y− 2y
x+1

)
−4 · 3

4
·mx,

(4.1)

here we choose r1 = r2 = 2,b1 = b2 = 1,k1 = k2 = 1,a1 = a2 = 2,E = 4,q1 =
2
3 ,q2 =

3
4 . The

parameters r1,r2,a1,a2,b1,b2,k1,k2,E,qi,m are all positive constants.

(1) Take m = 0.8, then

m > max
{ r1

Eq1
,

r2

Eq2

}
= 0.75,

and so, from Theorem 3.1, O(0,0) is globally attractive, see Fig.1, Fig. 2;

(2) Take m = 0.7, then
2
3
=

r2

Eq2
< m <

r1

Eq1
=

3
4

hold, then B(0.04341686731,0) is globally attractive, see Fig.3, Fig. 4;

(3) Take m = 0.2, then

m <
r2

Eq2
=

2
3

and

m <
r1

Eq1
=

3
4

hold, then C(0.6596762984,0.6349050103) is globally attractive, see Fig.5, Fig. 6;
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FIGURE 1. Dynamics behaviors of the first species in

system (4.1). Here, we take the initial condition-

s (x1(0),x2(0)) = (0.5,1.2),(1.5,1),(0.2,0.5) and (1,0.6),

m = 0.8, respectively.

FIGURE 2. Dynamics behaviors of the second species

in system (4.1). Here, we take the initial condition-

s (x1(0),x2(0)) = (0.5,1.2),(1.5,1),(0.2,0.5) and (1,0.6),

m = 0.8, respectively.
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FIGURE 3. Dynamics behaviors of the first species

in system (4.1). Here, we take the initial con-

ditions (x1(0),x2(0)) = (0.05,1.2),(0.5,1),(0.2,0.5) and

(0.01,0.6), m = 0.7, respectively.

FIGURE 4. Dynamics behaviors of the second species

system (4.1). Here, we take the initial condition-

s (x1(0),x2(0)) = (0.05,1.2),(0.5,1),(0.2,0.5) and

(0.01,0.6), m = 0.7, respectively.
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FIGURE 5. Dynamics behaviors of the first species in

system (4.1). Here, we take the initial condition-

s (x1(0),x2(0)) = (0.5,1.2),(1.5,1),(0.2,0.5) and (1,0.6),

m = 0.2, respectively.

FIGURE 6. Dynamics behaviors of the second species

in system (4.1). Here, we take the initial condition-

s (x1(0),x2(0)) = (0.5,1.2),(1.5,1),(0.2,0.5) and (1,0.6),

m = 0.2, respectively.
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5. Conclusion

Wei and Li[2] had considered the influence of the harvesting to the May cooperative system,

however, they only considered the harvesting of the first species. In this paper, stimulated by

the works of Chakraborty, Das, Kar[36], we propose the May cooperative system with both

non-selective harvesting and partial closure for the populations, i. e., system (1.6).

Some interesting property about the system (1.6) and the influence of parameter m are ob-

tained.

(1) Depending on the fraction of the stock available for harvesting, i. e., depending on the

interval in which m is located,

m > max
{ r1

Eq1
,

r2

Eq2

}
,

r2

Eq2
< m <

r1

Eq1
,

r1

Eq1
< m <

r2

Eq2
,m < min

{ r2

Eq2
,

r1

Eq1

}
,

the two species could be coexist in the long run, or some of the species is extinct, while the

other one is permanent, or two of the species are both driven to extinction. That is, the fraction

of the stock available for harvesting plays crucial role on the dynamic behaviors of the system.

Obviously, those conditions are very simple and easily testified.

(2) Another amazing finding is that the conditions of Theorem 2.1 and 3.1 are independent of

ki and ai, i = 1,2. Though ki,ai, i = 1,2 have influence on the final density of the both species,

those parameters have no influence on the persistent property of the system. If the intrinsic

growth rate of the species (ri, i = 1,2) are enough large, and the harvesting is limited to suitable

area, then two species could survival in the long run.
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