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Abstract. A stage-structured predator-prey model with Allee effect on predator species and harvesting on prey

species is introduced and studied. The local stability of the positive equilibrium is discussed by the sign of eigen-

value. Furthermore, by using the iterative method, some suitable sufficient conditions for the global attractivity

of the equilibria are obtained. Our results show that the Allee effect has no influence on the local stability and

global attractivity of the interior equilibrium, such a result is different from the known results. Furthermore, nu-

meric simulations show the interior equilibrium spends a much longer time to achieve the stable state due to the

Allee effect.
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1. Introduction
In the classical predator-prey model, many scholars assumed that each prey species has the

same fertility and survivability, but this is not realistic. As is well known, there exist numerous

species whose individual have a life history that divide them into two stages: the mature and
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immature. In fact, the species exhibit different characteristic at different stages. Hence, there is

much practical significance to consider the difference of species stage.

Since the pioneer work of Aiello and Freedman [1] on the single species stage-structured

models, the stage-structured model have been extensively studied by many scholars see [1], [2],

[3], [5], [9], [11], [16]-[20], [22], [25], [28], [29] and the references cited therein.

In [2], Song and Chen proposed the predator-prey system with stage structure and optimal

harvesting.

ẋi(t) = αxm(t)− γxi(t)−αe−γτxm(t− τ),

ẋm(t) = αe−γτxm(t− τ)−βx2
m(t)−a1xm(t)y(t)−Exm(t),

ẏ(t) = y(t)
(
− r+a2xm(t)−by(t)

)
,

(1.1)

where xi(t), xm(t), y(t) can be described as the immature and mature prey, the predator densi-

ties at time t, e−γτ denotes the surviving rate of immaturity to reach maturity. E can be regarded

as the harvesting effort. All parameters of system (1.1) are positive constants. Song and Chen

showed that stage structure of the prey and optimal harvesting play an important role in the

stability of the system (1.1).

In 1931, Allee [13] found that the population growth rate is negative or decreasing func-

tion at low population size, which is now called as the Allee effect. The Allee effect can be

caused by a variety of biological and environmental factors: lack of mates, low rate of mat-

ing success, social dysfunction of reproduction, food exploitation and inbreeding depression

etc. During the last decade, many scholars ([4], [6], [7], [8], [10], [12], [13], [14], [26], [27], [30])

investigated the dynamic behaviors of the population model incorporating the Alleee effect.

Merdan [6] introduced a predator-prey population dynamics system subject to Allee effect

on the prey population.

ẋ(t) =
x(t)

β + x(t)
rx(t)

(
1− x(t)

)
−ax(t)y(t),

ẏ(t) = y(t)a
(
x(t)− y(t)

)
,

where
x(t)

β + x(t)
is the term for Allee effect and β > 0 can be called the Allee effect constant. His

results showed that the Allee effect on the prey population decreases the population densities
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of both species at the stable steady-state solutions and the system spends a much longer time to

achieve its stable steady-state solution as increases in the Allee effect.

Guan, Liu and Xie [7] argued that the higher the hierarchy in the food chain, the more likely

it is to become extinct. They proposed the following predator prey model with predator species

subject to Allee effect:

dx
dt

= rx(1− x)−axy,
dy
dt

= a
y

β + y
y(x− y),

where β is positive constant, represents the Allee effect of the predator species, r,a are positive

constants. Unlike the results of Merdan[6], they showed that the Allee effect has no influence

on the final density of the predator and prey species.

Recently, Wu, Li and Lin[8] proposed the following two species commensal symbiosis model

with Holling type functional response and Allee effect on the second species

dx
dt

= x
(

a1−b1x+
c1yp

1+ yp

)
,

dy
dt

= y(a2−b2y)
y

u+ y
,

where ai,bi, i = 1,2 p, u and c1 are all positive constants, p ≥ 1. They also showed that the

unique positive equilibrium is globally stable and the system always permanent, consequently,

Allee effect has no influence on the final density of the species.

It bring to our attention that to this day, still no scholar investigate the influence of the Allee

effect on the stage structure model, also, since the creatures of higher rank are more likely to

die out or have Allee effect, due to the lack of food, it is necessary to investigated the predator

prey system incorporating Allee effect to predator species.

In this paper, base on the works of Song and Chen [2], we propose the stage-structured

predator-prey model with Allee effect on predator species and harvesting on prey species.

ẋi(t) = αxm(t)− γxi(t)−αe−γτxm(t− τ),

ẋm(t) = αe−γτxm(t− τ)−βx2
m(t)−a1xm(t)y(t)−Exm(t),

ẏ(t) =
y2(t)

A+ y(t)

(
− r+a2xm(t)−by(t)

)
,

(1.2)



4 TINGTING LI, XIAOYAN HUANG, XIANGDONG XIE

the initial conditions for system (1.2) take the form

xi(θ) = φm(θ)≥ 0, xm(θ) = φm(θ)≥ 0, y(θ) = ϕ(θ)≥ 0,−τ ≤ θ < 0,

xi(0)> 0, xm(0)> 0, y(0)> 0,

where
(
φi(θ), φm(θ), ϕ(θ)

)
∈C
(
[−τ, 0], R3

+

)
, xi(t), xm(t), y(t) can be described as the imma-

ture and mature prey, the predator densities at time t. α,γ,τ,β ,a1,E,r,a2,b are defined as in

system (1.1). All the parameters of system (1.2) are positive. B(y) =
y

A+ y
is the term for Allee

effect and A > 0 is called the Allee effect constant. According to biological fact, the function

B(y) satisfies the following conditions:

(1)If y = 0 then B(y) = 0, that is, there is no reproduction without partners;

(2)Ḃ(y)> 0 for y ∈ (0,∞), that is, the Allee effect decreases as predator population increases.

(3) lim
y→∞

B(y) = 1, that is, the Allee effect vanishes at high densities.

For the continuity of the solutions to system (1.2), in this paper, we require

xi(0) =
∫ 0

−τ

αe−γs
φm(s)ds. (1.3)

Now integrating both sides of the first equation of system (1.2) over (0,t),we obtain that

xi(t) =
∫ t

t−τ

αe−γ(t−s)xm(s)ds. (1.4)

From (1.4), one could easily see that the dynamic behaviors of xi(t) is determined by xm(t).

Hence, we only need to analyse the the following subsystem of the system (1.2).

ẋm(t) = αe−γτxm(t− τ)−βx2
m(t)−a1xm(t)y(t)−Exm(t),

ẏ(t) =
y2(t)

A+ y(t)

(
− r+a2xm(t)−by(t)

)
,

xm(θ) = φm(θ)≥ 0, y(θ) = ϕ(θ)≥ 0,−τ ≤ θ < 0,

xm(0) > 0,y(0)> 0.

(1.5)

2. Local stability
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According to the equations of system (1.5), if E <
a2αe−γτ −β r

a2
, then system (1.5) admits

three nonnegative equilibria.

E0(0,0), E1(
αe−γτ −E

β
,0), E2(x∗m,y

∗),

where x∗m =
a1r+b(αe−γτ −E)

a1a2 +βb
, y∗ =

a2(αe−γτ −E)−β r
a1a2 +βb

.

Lemma 2.1. Assume φ(θ)≥ 0 is continuous on θ ∈ [−τ,0], xm(0), y(0)> 0, then the solutions

of system (1.5) with initial condition are positive for all t > 0.

Proof. The proof of xm(t)> 0 for all t > 0 is similar to the proof of Theorem 2.1 in [25], so we

omit its proof.

Now, we prove y(t) > 0 for all t. Integrating both sides of the second equation of system

(1.5) over (0, t),we obtain that

y(t) = y(0)exp
∫ t

0

y(s)
(
− r+a2xm(s)−by(s)

)
A+ y(s)

ds > 0.

Theorem 2.1. Assume that E <
a2αe−γτ −β r

a2
, then the positive equilibrium point E2(x∗m,y

∗)

is locally stable.

Proof. The variational matrix of the system (1.5) at the equilibrium point E2(x∗m,y
∗) is

V (E2) =

 αe−(γ+λ )τ −2βx∗m−a1y∗−E −a1x∗m

a2y∗2

A+ y∗
−by∗2

A+ y∗

 .

The characteristic equation at the equilibrium point E2 is

F(λ ,τ) = (λ −αe−(γ+λ )τ +2βx∗m +a1y∗+E)(λ +
by∗2

A+ y∗
)+

a1a2x∗my∗2

A+ y∗
= 0.

It is easy to check that λ =− by∗2

A+ y∗
does not satisfy the above equation, so we have

F(λ ,τ) = (λ +
by∗2

A+ y∗
)G(λ ) = 0,
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where

G(λ ) = λ −αe−(γ+λ )τ +2βx∗m +a1y∗+E +
a1a2x∗my∗2

(A+ y∗)(λ +
by∗2

A+ y∗
)

,

which implies that all solutions of F(λ ,τ) = 0 are given by

G(λ ) = λ −αe−(γ+λ )τ +2βx∗m +a1y∗+E +
a1a2x∗my∗2

(A+ y∗)(λ +
by∗2

A+ y∗
)

= 0.

We declare that Reλ < 0. We will prove it by contradiction. Suppose that Reλ ≥ 0, we can

obtain

Reλ = αe−γτe−Re(λ )τ cos(Imλ )τ−2βx∗m−a1y∗−E

−
a1a2x∗my∗2

[
(A+ y∗)Reλ +by∗2

][
(A+ y∗)Reλ +by∗2

]2
+
[
Imλ (A+ y∗

]2
= αe−γτe−Re(λ )τ cos(Imλ )τ−βx∗m−αe−γτ

−
a1a2x∗my∗2

[
(A+ y∗)Reλ +by∗2

][
(A+ y∗)Reλ +by∗2

]2
+
[
Imλ (A+ y∗

]2
≤ −βx∗m−

a1a2x∗my∗2
[
(A+ y∗)Reλ +by∗2

][
(A+ y∗)Reλ +by∗2

]2
+
[
Imλ (A+ y∗

]2
< 0.

It is a contradiction, hence, Reλ < 0. Above analysis shows that under the conditions of Theo-

rem 2.2 the positive equilibrium E2 is locally asymptotically stable.

3. Global attractivity

Lemma 3.1. ([11])Consider the following equation:

ẋ(t) = ax(t− τ)−bx(t)− cx2(t), (3.1)

where a, c, τ > 0, b≥ 0, and x(t)> 0, f or− τ≤ t≤ 0.

(1)If a > b, then lim
t→∞

x(t) =
(a−b)

c
.

(2)If a≤ b, then lim
t→∞

x(t) = 0.

Lemma 3.2.([23]) Consider the following equation

Ṅ = NF(N). (3.2)
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Assume that function F(N) satisfies the following conditions.

(1)There is a N∗, such that F(N∗) = 0.

(2)For all N∗ > N > 0, F(N)> 0.

(3)For all N > N∗ > 0, F(N)< 0.

Then the system (3.2) is global stability.

Lemma 3.3. Consider the following equation

ẏ(t) =
y2(t)

A+ y(t)

(
− r+a2K−by(t)

)
, (3.3)

where A, r, a2, b, K are positive constants. Assume that r < a2K, then

lim
t→∞

y(t) =
a2K− r

b
.

Proof.

ẏ(t) =
y2(t)

A+ y(t)

(
− r+a2K−by(t)

)
= y(t)

(−ry(t)+a2Ky(t)−by2(t)
A+ y(t)

)
= y(t)F

(
y(t)
)
.

Let

F(y) = F1(y)F2(y),

where

F1(y) =
y

A+ y
,

F2(y) =−r+a2K−by. (3.4)

Clearly, if y > 0, then F1(y)> 0.

According to (3.4) and the assumptions, we obtain

F2(0) =−r+a2K > 0,

Ḟ2(y) =−b < 0.

Hence, there exists a y∗=
a2K− r

b
such that for all 0< y< y∗, F2(y)> 0, for all y∗< y, F2(y)<

0.
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Above analysis shows that

(1)There exists a y∗ =
a2K− r

b
such that F(y∗) = 0.

(2) for all 0 < y < y∗, F(y)> 0.

(3)for all y∗ < y, F2(y)< 0.

It follow from Lemma 3.2 that lim
t→∞

y(t) =
a2K− r

b
.

Lemma 3.4.([24])(Fluctuation lemma)Let x(t) be a bounded differentiable function on [α,∞).

Then there exist sequences τn→ ∞ and σn→ ∞ such that

(1)ẋ(τn)→ 0 and x(τn)→ limsup
t→∞

x(t) = x as n→ ∞.

(2)ẋ(σn)→ 0 and x(σn)→ liminf
t→∞

x(t) = x as n→ ∞.

Lemma 3.5. Assume that a2K ≤ r, then system (3.3) admits a unique nonnegative equilibrium

y = 0, which is globally asymptotically stable.

Proof. Let y(t) be any nonnegative solution of system (3.3). According to a2K ≤ r, we obtain

ẏ(t) < 0, which implies that y(t) is a bounded differentiable function. By Lemma 3.4, there

exist sequences τn→ ∞, such that y(τn)→ limsup
t→∞

y(t) = y. From system (3.3), we obtain

ẏ(t) |t=τn=
y2(τn)

A+ y(τn)

(
− r+a2K−by(τn)

)
.

Let n→ ∞, we have

0 =
y2

A+ y

(
− r+a2K−by

)
.

From the above equation, we obtain y = 0 or y =
a2K− r

b
. It follows from a2K < r that y =

a2K− r
b

< 0, which is not the nonnegative equilibrium, hence, 0≤ liminf
t→∞

y(t)≤ limsup
t→∞

y(t) =

y = 0.

Theorem 3.1. Assume that αe−γτ ≤ E, then E0(0,0) is globally attractive.

Proof. It follows from the first equation of the system (1.5) that

ẋm(t) ≤ αe−γτxm(t− τ)−βx2
m(t)−Exm(t). (3.5)

Consider the following system

u̇(t) = αe−γτu(t− τ)−βu2(t)−Eu(t), t ≥ 0,

u(t) = ϕ(t),−τ ≤ t ≤ 0.
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It follows from αe−γτ ≤ E and Lemma 3.1 that lim
t→∞

u(t) = 0. By the comparison principle,

we obtain xm(t) ≤ u(t), t ≥ 0. Therefore, lim
t→∞

xm(t) = 0. That is, for any sufficiently small ε >

0, without lose of generality, we may assume that 0 < ε < r/a2, there exists a T ∗1 > 0 such that

xm(t)< ε, t ≥ T ∗1 . (3.6)

From the second equation of system (1.5) and (2.6), we obtain

ẏ(t)≤ y(t)
(
− r+a2ε−by(t)

)
, t ≥ T ∗1 . (3.7)

Let P0 = −r+a2ε , then P0 < 0. From Lemma 3.5, lim
t→∞

y(t) = 0. Hence, there exists a T ∗2 > T ∗1

such that

y(t)< ε, t ≥ T ∗2 . (3.8)

Above analysis shows that if αe−γτ ≤ E, then E0(0,0) is globally attractive.

Theorem 3.2. Assume
a2αe−γτ −β r

a2
≤ E < αe−γτ hold, then E1(

αe−γτ −E
β

,0) is globally

attractive.

Proof. It follows from the first equation of the system (1.5) that

ẋm(t) ≤ αe−γτxm(t− τ)−βx2
m(t)−Exm(t). (3.9)

Consider the following system

u̇(t) = αe−γτu(t− τ)−βu2(t)−Eu(t), t ≥ 0,

u(t) = ϕ(t),−τ ≤ t ≤ 0.

It follows E < αe−γτ and Lemma 3.1 that lim
t→∞

u(t) =
αe−γτ −E

β
. By the comparison principle,

we obtain xm(t)≤ u(t), t ≥ 0. Therefore, limsup
t→+∞

xm(t)≤
αe−γτ −E

β
. That is, for any sufficiently

small ε > 0, without lose of generality, we may assume that 0 < ε <
rβ −a2(αe−γτ −E)

2βa2
, there

exists a T̃1 > 0 such that

xm(t)<
αe−γτ −E

β
+ ε, t ≥ T̃1. (3.10)

From the second equation of system (1.5) and (3.10), we obtain

ẏ(t)≤ y(t)
(
− r+a2(

αe−γτ −E
β

+ ε)−by(t)
)
, t ≥ T̃1. (3.11)
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Let P1 =−r+
a2(αe−γτ −E)

β
+a2ε, then P1 ≤ 0. From Lemma 3.5, lim

t→∞
y(t) = 0. Hence, there

exists a T̃2 > T̃1 such that

y(t)< ε, t ≥ T̃2. (3.12)

It follows from the first equation of the system (1.5) that

ẋm(t) ≥ αe−γτxm(t− τ)−βx2
m(t)−a1xm(t)ε−Exm(t). (3.13)

Consider the following system

u̇(t) = αe−γτu(t− τ)−βu2(t)−a1u(t)ε−Eu(t),

u(t) = ϕ(t), T̃2 ≤ t ≤ T̃2 + τ.

According to αe−γτ > E and Lemma 3.1, we obtain that lim
t→∞

u(t) =
αe−γτ −E

β
. By the com-

parison principle, we obtain xm(t)≥ u(t), t ≥ T̃2. Hence, for the above ε , there exists a T̃3 > T̃2

such that

xm(t)>
αe−γτ −E

β
− ε, t ≥ T̃3. (3.14)

Above analysis shows that if
a2αe−γτ −β r

a2
≤E <αe−γτ holds, then E1(

αe−γτ −E
β

,0) is glob-

ally attractive.

Theorem 3.3. Assume a1a2r < βbr < a2b(αe−γτ −E) hold, then the unique positive equilib-

rium of the system (1.5) is globally attractive.

Proof. It follows from the first equation of the system (1.5) that

ẋm(t) ≤ αe−γτxm(t− τ)−βx2
m(t)−Exm(t). (3.15)

Consider the following system

u̇(t) = αe−γτu(t− τ)−βu2(t)−Eu(t), t ≥ 0,

u(t) = ϕ(t),−τ ≤ t ≤ 0.

It follows Lemma 3.1 that lim
t→∞

u(t) =
αe−γτ −E

β
. By the comparison principle, we obtain

xm(t) ≤ u(t), t ≥ 0. Therefore, for any sufficiently small ε > 0, without lose of generality, we
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may assume that

ε < min
{bβ −a1a2

(
a2(αe−γτ −E)−β r

)
βa2(a1a2 +a1b+bβ )

,
(bβ −a1a2)(αe−γτ −E)+a1β r

βa1(a2 +b)

}
,

there exists a T1 > 0 such that

xm(t)<
αe−γτ −E

β
+ ε = ū1, t ≥ T1. (3.16)

From the second equation of system (1.5) and (3.16), we obtain

ẏ(t)≤ y(t)
(
− r+a2u1−by(t)

)
, t ≥ T1.

Let P2 =−r+a2u1 =
a2αe−γτ −a2E−β r

β
+a2ε, then P2 > 0. From Lemma 3.3, there exists a

T2 > T1 such that

y(t)<
a2ū1− r

b
+ ε = v̄1, t ≥ T2. (3.17)

From (3.17) and the first equation of system (1.5), we obtain

ẋm(t)≥ α−γτxm(t− τ)−βx2
m(t)−a1x(t)v1−Exm(t), t ≥ T2 + τ.

Consider the following system

u̇(t) = α−γτu(t− τ)−βu2(t)−a1u(t)v1−Eu(t), t ≥ T2 + τ,

u(t) = ϕ(t), T2 ≤ t ≤ T2 + τ.

Let
P3 = α−γτ −E−a1v1

=
(bβ −a1a2)(α

−γτ −E)+a1β r
βb

− a1(a2 +b)ε
b

.

For the above ε , we obtain P3 > 0. It follows from Lemma 3.1 that lim
t→∞

u(t)=
αe−γτ −a1v1−E

β
.

By the comparison principle, we have xm(t) ≥ u(t), t ≥ T2 + τ. there exists a T3 > T2 + τ > 0

such that

xm(t)>
αe−γτ −a1v1−E

β
− ε = u1. (3.18)

From (3.16) and (3.18), we obtain

u1 < u1. (3.19)



12 TINGTING LI, XIAOYAN HUANG, XIANGDONG XIE

From (3.18) and the second equation of system (1.5), we obtain

ẏ(t)≥ y2(t)
A+ y(t)

(
− r+a2u1−by(t)

)
, t ≥ T3.

Let

P4 = −r+a2u1

=
(bβ −a1a2)

(
a2(αe−γτ −E)− rβ

)
bβ 2 − a2ε(a1a2 +a1b+bβ )

bβ
.

For the above ε , we obtain P4 > 0. By comparison principle and Lemma 3.3, there exists a

T4 > T3 such that

y(t)>
a2u1− r

b
− ε = v1, t ≥ T4. (3.20)

From (3.17), (3.19) and (3.20), we obtain

v1 < v1. (3.21)

From (3.20) and the first equation of system (1.5), we obtain

ẋm(t)≤ α−γτxm(t− τ)−βx2
m(t)−a1x(t)v1−Exm(t), t ≥ T4 + τ.

From (3.21), we obtain 0 < P3 = αe−γτ −a1v1−E < αe−γτ −a1v1−E. Hence, by the similar

arguments as above, for the above ε > 0, there exists a T5 > T4 + τ > 0 such that

xm(t)<
αe−γτ −E−a1v1

β
+

ε

2
= u2. (3.22)

From (3.16) and (3.22), we can have

u1 > u2. (3.23)

From (3.22) and the second equation of system (1.5), we obtain

ẏ(t)≤ y2(t)
A+ y(t)

(
− r+a2u2−by(t)

)
, t ≥ T5.

From (3.18), (3.21) and (3.22), we obtain

u2 > u1 (3.24)
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From (3.24), we obtain a2u2− r > a2u1− r = P4 > 0. Hence, by comparison theorem and

Lemma 3.3, there exists a T6 > T5 such that

y(t)<
a2u2− r

b
+

ε

2
= v2, t ≥ T6. (3.25)

From (3.18), (3.23) and (3.25), we obtain

v2 < v1. (3.26)

From (3.25) and the first equation of system (1.5), we obtain

ẋm(t)≥ αe−γτxm(t− τ)−βx2
m(t)−a1xm(t)v2−Exm(t), t > T6 + τ.

From (3.26), we obtain αe−γτ −a1v2−E > αe−γτ −a1v1−E = P3 > 0. Hence, by the similar

arguments as above, for the above ε , there exists a T7 > T6 + τ > 0 such that

xm(t)>
αe−γτ −a1v2−E

β
− ε

2
= u2. (3.27)

According to (3.21), (3.26) and (3.27), we obtain

u2 > u1. (3.28)

From (3.27) and the second equation of system (1.5), we obtain

ẏ(t)≥ y2(t)
A+ y(t)

(
− r+a2u2−by(t)

)
, t ≥ T7.

From (3.28), we obtain −r+ a2u2 > −r+ a2u1 = P4 > 0. Hence, by comparison theorem and

Lemma 3.3, there exists a T8 > T7 such that

y(t)>
a2u2− r

b
− ε

2
= v2, t ≥ T8. (3.29)

From (3.20), (3.28) and (3.29) we obtain

v2 > v1. (3.30)

Repeating the above steps, we can obtain four sequences {un}∞
n=1, {un}∞

n=1,

{vn}∞
n=1, {vn}∞

n=1, and t ≥ T4n > 0, such that

un =
αe−γτ −a1vn−1−E

β
+

ε

n
, vn =

a2un− r
b

+
ε

n
, (3.31)
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un =
αe−γτ −a1vn−E

β
− ε

n
, vn =

a2un− r
b

− ε

n
. (3.32)

We can obtain that

0 < u1 < u2 < · · ·< un < xm(t)< un < · · ·< u2 < u1,

0 < v1 < v2 < · · ·< vn < y(t)< vn < · · ·< v2 < v1.

Hence, the limits of {un}∞
n=1, {un}∞

n=1, {vn}∞
n=1, {vn}∞

n=1 exist. Set

u = lim
n→∞

un, v = lim
n→∞

vn, u = lim
n→∞

un, v = lim
n→∞

vn.

It follow from (3.31) and (3.32) that

u =
αe−γτ −a1v−E

β
, v =

a2u− r
b

, (3.33)

u =
αe−γτ −a1v−E

β
, v =

a2u− r
b

. (3.34)

From (3.33) and (3.34), we obtain

bαe−γτ −bE−a1a2u+a1r = βbu,

bαe−γτ −bE−a1a2u+a1r = βbu,

which is equivalent to

(a1a2−bβ )(u−u) = 0.

Since a1a2 < bβ , it immediately follows that u = u. Consequently v = v. That is

lim
t→∞

xm(t) = x∗m, lim
t→∞

y(t) = y∗.

Hence, E2(x∗m,y
∗) is global asymptotic stability.

4. Examples

Now let us consider the following examples.

The following examples show the feasibility of main results.
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Example 4.1 Consider the following system

ẋm(t) = 3e−1xm(t−5)− x2
m(t)− xm(t)y(t)−2xm(t),

ẏ(t) =
y2(t)

0.5+ y(t)

(
−3+0.2xm(t)−0.5y(t)

)
,

(4.1)

where corresponding to system (1.5), we take α = 3, γ = 0.2, τ = 5, β = 1, a1 = 1, E = 2, A =

0.5, r = 3, a2 = 0.2, b = 0.5. Clearly, 1.103≈ αe−γτ < E = 2.Hence, it follows from Theorem

3.6 that E0(0,0) is globally attractive. Numeric simulation (Figure 1) also supports this asser-

tion.
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time t
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 y

x
m

y

FIGURE 1. Dynamic behaviors of system (4.1) with the initial conditions(
xm(θ),y(θ)

)
= (1.5,0.1),(0.8,0.25) and (0.1,0.6) for −5≤ θ < 0 .

Example 4.2 Consider the following system

ẋm(t) = 3e−1xm(t−5)− x2
m(t)− xm(t)y(t)−0.5xm(t),

ẏ(t) =
y2(t)

0.5+ y(t)

(
−3+0.2xm(t)−0.5y(t)

)
,

(4.2)

where corresponding to system (1.5), we take α = 3, γ = 0.2, τ = 5, β = 1, a1 = 1, E = 0.5, A=

0.5, r = 3, a2 = 0.2, b = 0.5, Hence−13.897 ≈ a2αe−γτ −β r
a2

< E = 0.5 < αe−γτ ≈ 1.103.

Hence, it follows from Theorem 3.7 that E1(
αe−γτ −E

β
,0) is globally attractive. Numeric sim-

ulation (Figure 2) also supports this assertion.
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FIGURE 2. Dynamic behaviors of system (4.2) with the initial conditions(
xm(θ),y(θ)

)
= (0.1,0.5),(0.6,0.25) and (0.3,0.6) for −5≤ θ < 0 .

Example 4.3 Consider the following system

ẋm(t) = 10e−3xm(t−15)−0.3x2
m(t)−0.1xm(t)y(t)−0.1xm(t),

ẏ(t) =
y2(t)

A+ y(t)

(
−0.4+0.5xm(t)− y(t)

)
,

(4.3)

where corresponding to system (1.5), we take α = 10, γ = 0.2, τ = 15, β = 0.3, a1 = 0.1, E =

0.1, r = 0.4, a2 = 0.5, b = 1. One could easily verify that

0.02 = a1a2r < βbr = 0.12 < a2b(αe−γτ −E)≈ 0.199.

Hence, it follows from Theorem 3.8 that E2(x∗m,y
∗) is globally attractive. Numeric simulation

(Figure 3) also supports this assertion. Furthermore, we define the different values of Allee effect

A = 0, A = 2, A = 4. Numerical simulations (Figure 4, 5) show that the system takes a longer

time to reach its stable steady-state solution, as the Allee effect increases and the equilibrium

densities of both species at the stable steady state do not change.

0 50 100 150 200 250 300 350
0

0.5

1

1.5

time t

so
lut

ion
 x m an

d y
 

x
m

y

FIGURE 3. Dynamic behaviors of system (4.3) with the initial conditions(
xm(θ),y(θ)

)
= (0.1,0.5),(0.6,0.25) and (0.3,0.6) for −15≤ θ < 0 .
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FIGURE 4. Time-population density graphs of the prey population with and

without Allee effects, denoted by A1 = 2 and A2 = 4. The initial conditions

in both graphs are xm(θ) = 0.3 and y(θ) = 0.6, for −15≤ θ < 0.
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FIGURE 5. Time-population density graphs of the predator population with and

without Allee effects, denoted by A1 = 2 and A2 = 4. The initial conditions in

both graphs are xm(θ) = 0.3 and y(θ) = 0.6, for −15≤ θ < 0.

5. Discussion

In this paper, we consider the dynamic behaviors of the stage-structure predator-prey model

with Allee effect on predator species and harvesting on prey species. We discuss the global at-

tractivity of the system. Our results show the harvesting and stage structure play an important

role in the dynamic behaviors of the system. If αe−γτ < E, then E0 is globally attractive. That

is, both two species of system goes extinct. If αe−γτ > E >
a2αe−γτ −β r

a2
, then E1 is glob-

ally attractive, which implies the predator goes extinct and the prey exists. If a1a2r < βbr and

E <
a2αe−γτ −β r

a2
then E2 is global attractive, which implies the two species of system could

be coexistence in a stable state. Numeric simulations also support our findings.
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In[6], Merdan showed that the Allee effect plays an important role in the local stability and

reduces the population densities of both species at the stable steady-state solutions. In [26], Ce-

lik showed that the positive equilibrium moves from instability to stability under the Allee effect

on prey population. However, our results differ from their results. In our paper, one interesting

finding is that the Allee effect has no effect on the local stability of the system and does not

change both species at the stable steady-state solutions(see Fig.4 and Fig.5). Furthermore, from

the Figure 4 and 5, we see that the system spends a much longer time to achieve its stable

steady-state solution as increases in the Allee effect.
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