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Abstract. The human stress response is controlled largely by the hypothalamic pituitary adrenal (HPA) axis.

Models predicting the levels of the hormones involved are very often not analytically solvable because of nonlinear

complexity. A simplified HPA axis model with the minimum nonlinear terms including the glucocorticoid receptor

(GR) is proposed. Quantitative analysis and numerical simulation related oscillating solutions are both investigated

in this model.
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1. Introduction

The activity of the hypothalamic pituitary adrenal (HPA) axis involves the consecutive release

of corticotrophin releasing hormone (CRH) in the hypothalamus, adrenocorticotropic hormone

(ACTH) in the pituitary, and cortisol (O) in the adrenal glands. These are released in sequence in
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response to stressors, and their levels shortly after a stressor are of interest for medical purposes,

specifically in treating depression and PTSD. Additionally, their baseline levels oscillate with a

period of approximately 24 hours, another factor of interest for the same reasons. The traditional

model of this axis exhibits feedback inhibition in that O down regulates the production of both

CRH and ACTH [1].

Gupta et al. [2] proposed a model for the HPA axis that involved an additional variable, the

glucocorticoid receptor (R or GR), whose levels are pertinent to those of the other hormones.

In particular, GR binds to cortisol, which causes GR to dimerize. This newly-bound glucocor-

ticoid receptor (OR) then down regulates the production of ACTH and up regulates that of GR.

Thus, there is an added step that controls the extent to which cortisol inhibits ACTH production

in the pituitary, while cortisol still directly inhibits CRH production in the hypothalamus. The

inclusion of this GR creates a bistability in the axis, with both the normal low GR concentration

state and the alternate high GR concentration state. The latter is associated with a downstream

decrease in the levels of O, a state known as hypocortisolism. Hypocortisolism is often associ-

ated with post-traumatic stress disorder (PTSD) [3], as well as a number of inflammatory and

autoimmune diseases, including rheumatoid arthritis and certain allergic conditions [4].

A number of newer models have also incorporated a state of hypercortisolism, which is often

associated with major depression [5]. This is not always the case, however, because individuals

with depression tend to have much greater variance in their cortisol levels than do individuals

who are healthy or those who have PTSD [6] [7]. Xiao [8] presented a theoretical model for

HPA axis considering GR as the only negative feedback term for CRH and ACTH. The moti-

vation behind this simplified model is to create one which retains the negative feedback feature

of the HPA axis model using the newly-bound OR while providing more analytic insight into

equilibrium stability and oscillation solutions related to circadian rhythm of hormone concen-

trations.

The organization of this paper is as follows. Section 2 introduces the formulation of the

model. Section 3 describes the quantitative analysis of this model including existence and

stability of equilibriums. Parameter estimations and numerical simulations are given in Section

4. The paper ends with a discussion in Section 5.
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2. Builing the model

In this section, we build the model based on plausible assumptions first, then we apply nondi-

mensionalzation to further simplify the system.

Model Formulation

In developing the simplified model of HPA axis, two assumptions were made: (i) this model

takes into account a linear production of GR and the rate of its degradation. As for the other

hormones involved, this model makes certain simplifications, with the rate of change of each

enzyme essentially depending on either the level of stress (in the case of CRH) or the level of the

enzyme that came before it (in the cases of ACTH and CORT); and (ii) the negative feedback to

CRH uses the linear inhibition with bound glucocorticoid receptor (OR). The simplified model

is formulated as follows:

dCRH
dT

= Kc(1−
OR
Ki1

)−KcdCRH

dACT H
dT

= KaCRH(1− OR
Ki2

)−KadACT H

dO
dT

= KoACT H −KodO

dR
dT

= KrO−KrdR

(1)

where CRH is the concentration of corticotrophin releasing hormone, O is the concentra-

tion of cortisol, R is the concentration of glucocorticoid receptor, Ki1 is the negative feedback

strength of OR on CRH, Kc is the production rate constant of CRH, and Kcd is the degrada-

tion constant of CRH. Based on the second assumption, we propose that CRH production is

regulated by the bounded glucocorticoid receptor OR. ACTH is the concentration of adrenocor-

ticotropic hormone, and it is positively regulated by the concentration of CRH, which stimulates

its production; its production is down regulated by its own degradation as well as the presence of

OR. Thus, we arrive at second equation in Equation 1. Ki2 is the negative feedback strength of

OR on ACTH, Ka is the production rate constant of ACTH, and Kad is the degradation constant

of ACTH.
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The concentration of O is generally considered to be determined by the concentration of

ACTH (which increases the rate of its production) as well as its own concentration because it

expresses negative feedback with itself. Both of these concepts are present in the Sriram model

[5], and they lead to the third equation. In this equation, Ko is the production rate of O and Kod

is its degradation rate. According to the aforementioned Gupta model [2], when O binds to GR

to create the bounded complex OR, the newly-bounded OR then up-regulates the production of

GR. We therefore simplify this mechanism to say that O directly up regulates the production

of GR. When we additionally include the degradation of GR, we arrive at the forth equation

in this system. In this equation, Kr is the linear production term of GR, and Krd is the linear

degradation term thereof.

TABLE 1. Parameters of Simplified HPA axis model

Parameter Description Units

kc production rate constant of CRH µg∗dL−1 ∗h−1

ka production rate constant of ACTH h−1

ko production rate constant of O h−1

kr production rate constant of GR h−1

kcd degradation constant of CRH h−1

kad degradation constant of ACTH h−1

kod degradation constant of O h−1

krd degradation constant of GR h−1

ki1 negative feedback strength of OR on CRH (µg∗dL−1)2

ki2 negative feedback strength of OR on ACTH (µg∗dL−1)2

Nondimensionalization

Define new system parameters in order to simplify (1):

c = (
Ka

Krd
)2
√

Kr

Ki2Krd
CRH , a =

Ka

Krd

√
Kr

Ki2Krd
ACT H

o =

√
Kr

Ki2Krd
O , r =

√
Krd

Ki2Kr
R , t = KrdT
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kod =
Kod

Krd
, kad =

Kad

Krd
, kcd =

Kcd

Krd

kc =
Kc(Ka)

2

(Krd)3

√
Kr

Ki2Krd
, kc1 =

Kc(Ka)
2

Ki1(Krd)3

√
Kr

Ki2Krd

And thus (1) becomes:

dc
dt

= kc − kc1or− kcdc

da
dt

= c− cor− kada

do
dt

= a− kodo

dr
dt

= o− r

(2)

3. Model Analysis

In this section, we offer the qualitative analysis of this system.

Existence of Equilibrium

The equilibrium of system (2) satisfies the following system of algebra equation

kc − kc1or− kcdc = 0

c− cor− kada = 0

a− kodo = 0

o− r = 0

(3)

where all parameters are positive .

After substitutions in (3), we obtain

kc − kc1o2 =
kadkcdkodo

1−o2

c =
kadkcdkodo

1−o2

a = kodo

r = o

(4)
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where the first equation in (4) can be written as

o4 − (
kc

kc1
+1)o2 − kadkcdkod

kc1
o+

kc

kc1
= 0

so if there exist positive real roots for the above equation, then the system will have positive

equilibrium under condition, 1−o2 > 0. Set:

A =
kc

kc1
, B =

kadkcdkod

kc1

then we have

o4 − (A+1)o2 −Bo+A = 0

Theorem 1. System (2) has a unique positive equilibrium.

Proof. From second equation of (4), we can have only if 0 < o < 1 will make the equilibrium

positive which stands for the concentration of hormone CRH.

Based on Descartes’ Rule of Signs, there are two sign changes in positive - root case:

f (x) = x4 − (A+1)x2 −Bx+A

and there are two sign changes in negative-root case:

f (−x) = x4 − (A+1)x2 +Bx+A

So we have the following conclusion: the corresponding polynomial will have 2 negative real

roots, 2 complex roots, or 2 positive real roots, 2 complex roots, or 2 positive real roots and 2

negative real roots, or 4 complex roots.

Since f (0) = A > 0 and f (1) = B < 0, based on Intermediate Value Theorem, we can get that

there exists at least one positive real root in the interval (0,1). Then for the polynomial, there

will be two positive real roots for sure,and there exists only one positive real root on the interval

(0,1). Hence we prove that system (2) has a unique positive equilibrium.

�

Determination of Oscillation Solution

Denote the equilibrium of (2) as (c0,a0,o0,r0). The Jacobian matrix of (2) is as follows:
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−kcd 0 −kc1r0 −kc1o0

1 −kad −c0r0 −c0o0

0 1 −kod 0

0 0 1 −1


The associated characteristic equation is given by

λ
4 +a1λ

3 +a2λ
2 +a3λ +a4 = 0

where

a1 = kad + kcd + kod +1,

a2 = kad + kcd + kod + kadkcd + kodkcd + kadkod + c0r0,

a3 = c0o0 + c0r0 + kadkcd + kodkcd + kadkod + kc1r0 + c0kcdr0 + kadkcdkod,

a4 = kc1o0 + kc1r0 + c0kcdo0 + c0kcdr0 + kadkcdkod,

It’s easy to see that a1,a2,a3,a4 are all positive since all parameters are positive, so we can

conclude there is no non-negative real root for the characteristic equation based on Descartes’

Rule of Signs. And the corresponding equation will have 0 real negative roots, 4 complex roots,

or 2 real negative roots, 2 complex roots, or 4 negative real roots. From the Routh-Hurwitz

criterion, if two conditions, a1a2 −a3 > 0 and a1a2a3 > (a3)
2 +(a1)

2a4, are satisfied, then the

equilibrium (c0,a0,o0,r0) in (2) is local asymptotically stable.

However, since circadian rhythm is a key feature in HPA axis, we would like to see if periodic

solution can appear in this system or not. Liu (1994) [9] presented a criterion for supercritical

Hopf Bifurcation related to Routh-Hurwitz criterion and the appearance of stable limit cycles

can be interpreted as the circadian rhythm in this system. The Hopf bifurcation occurs when

∆n−1 = 0 [9], which for our model is when:

∆3 =


a1 a3 0

1 a2 a4

0 a1 a3

= 0

and we have a1a2a3 = (a3)
2 +(a1)

2a4.
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FIGURE 1. Bifurcation analysis was carried out with kc1 as the bifurcation pa-

rameter. All the other four parameters were kept constant throughout the simula-

tion. All five parameters are set to 1 to get a stable steady state. As kc1 increases,

Hopf bifurcation was found where kc1 is approximately 16.23.

.

4. Numerical Analysis

The derived condition above is very difficult to simplify, requiring numerical analysis under

certain parameter values. In this section, we will use XPPAUT, Matlab, and R to implement the

numerical analysis.

Bifurcation Diagram

Bifurcation analyses through software XPPAUT [10] is carried out by varying kc1, the neg-

ative feedback term for CRH, as the bifurcation parameter and O as the dynamical variable.

Bifurcation diagram is shown in Figure 1, and Hopf point occurs when kc1 increase. Also, as

we can see from the diagram, the periodic behavior of o is only valid for a small regime, since

we require the solutions to be positive.

Parameter Estimation
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FIGURE 2. Parameter Estimation for first normal subjects with scaled raw Cor-

tisol data. All the data is scaled between 0 to 1 to fit the restriction of o shown

above. The circadian rhythm can be captured during the first 24 hours and then

the simulation goes out of bound quickly.

The cortisol data used to calibrate the model was extracted from Yehuda et al. [11] using the

web-based software WebPlotDigitalizer (https://automeris.io/WebPlotDigitizer/). Yehuda et al.

have collected data by sampling at approximately 30 minutes from 10:00 AM for a 24 hour

period from three different groups: normal subjects, subjects with depression with PTSD and

subjects with PTSD. To calibrate and evaluate the simplified model, we only use cortisol data

from two normal subjects.

In this work, we use the package FME, available in the statistical software R. The parameter

estimation is an iterative process of numeric solving the ODE and adjusting the values of the

parameters based on the squared distance between the empirical and the predicted valued, ob-

tained from the working model. The process will be terminated when the sum of squared errors

do not improve significantly. As shown in Figure 2 and 3, the solution of cortisol has oscillation

and can capture the circadian rhythm in the first 24 hours. However, the two estimation went

out of bound in different pace in a short time frame.
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FIGURE 3. Parameter Estimation for second normal subjects with scaled raw

Cortisol data. All the data is scaled between 0 to 1 to fit the restriction of o

shown above. The circadian rhythm can be captured during the first 24 hours

and then the simulation goes out of bound in a slow pace.

5. Discussion

We have derived a simplified HPA axis model with glucocorticoid receptor considered. After

nondimensionalization for the system, when 0 < o < 1, there exists a unique positive equilib-

rium which is locally stable under a certain condition. Also, under another condition there exists

a Hopf bifurcation point on bifurcation parameter kc1, where the appearance of limit cycles can

be interpreted as the circadian rhythm of the secretion of hormone. However, we can apply

the parameter estimation based on the data, it shows that our system only capture the circadian

rhythm in one period. After short oscillation the system will go out of bound. Two reasons can

cause this situation to occur: 1) The structure of this model is over simplified. Most of the HPA

axis models contain highly nonlinear terms such as Michaelis-Menten kinetics or Hill equations

to describe the negative feedback and the degradation of those hormones, which lead the oscil-

lation more stable; 2) The mechanism of Hopf bifurcation need more depth exploration. We
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only derive the condition which can make the occurrence of Hopf bifurcation, the period and

the altitude of the limit cycles haven’t been studied thoroughly.
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