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Abstract. Cassava mosaic disease (CMD) is caused by cassava mosaic virus (CMV) and is transmitted by the

whitefly vector called Bemisia tabaci. In this paper, the deterministic model for transmission dynamics of CMD is

formulated by considering the whitefly vector, cassava resistant and susceptible breeds, and infected cassava. The

basic reproduction number R0 and sensitivity index for each parameter with respect to basic reproduction number

R0 are computed to determine which parameters are sensitive to the dynamics of cassava mosaic disease. Analysis

shows that the death rate of whitefly vectors, the infection rate for susceptible vectors, the number of vectors that

can be supported and the rate of loss of infected cassava due to disease are the most sensitive parameters to the

dynamics of cassava mosaic disease. Numerical simulation indicates that, cassava new infections increase as the

number of vectors that can be supported increase and acquire cassava mosaic disease. It shows that if control

measures are not considered, then the susceptible breed and cassava resistant breed will be wiped out after five

and ten months respectively. To control the disease, farmers are encouraged to apply control strategies such as

spraying of insecticide, using of vector-resistant varieties, phytosanitation which involve the removal of infected

cassava plants from the farm, crop hygiene and the use of free stem cutting method.
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1. Introduction

Cassava (Manihot esculenta) is one of the crops which was firstly introduced in West Africa

from Brazil at the end of 16th Century by Portuguese and spread to other African countries [3,

19]. Cassava is grown in tropical and subtropical areas which experience low rainfall as the

crop survives in drought climate [10], and this makes cassava a major staple food in the world.

According to FAO, about 700 million people depend on cassava as their main food in Africa

[20]. Production of cassava in Africa is becoming low due to a number of causes, notably pests

and diseases [6]. Cassava Brown Streak Disease (CBSD) and Cassava Mosaic Disease (CMD)

are the most important biotic constraints which have led to decrease in yields [13, 1]. Cassava

mosaic virus (CMV) contaminates the cassava leaves and is transmitted by the whitefly vector

called Bemisia tabaci [3]. There are other 500 different plants including weeds and crops which

are host to whitefly vector [15, 17]. Different causes for transmission of cassava mosaic disease

have been reported, this includes the use of infected cassava stem, the use of infected plant

materials by the farmers [12] as well as the use of CBSD resistant breed which later becomes

vulnerable to cassava mosaic disease [22, 25].

The infected cassava plant is characterized by leaf mosaic patterns and it can persist during

the premature stage of cassava leaf development. The cassava leaves which are infected by

the disease are warped, reduced in size and distorted with yellow color separating the ordinary

green color which is the health part of the leaves. They then deteriorate and the new leaves bend

[7]. Tanzania is among the countries that face this problem and the disease has been spreading

at a fast rate leading to food shortages [24]. According to Tanzania Commissions for Science

and Technology (COSTECH) production of cassava in Tanzania is only 8t/ha which is lower

compared to 20t/ha that can be produced, the main causes of lower production are pests and

diseases.

Studies have been conducted to analyze the transmission dynamics of cassava mosaic disease

and the impact of different control strategies. Holt et al: [8] studied the model with susceptible

and infected cassava, and susceptible and infectious vectors. The study show that using infected

cutting tools and elimination of infectious cassava have a little effect on the occurrence of the

disease. Hebert M.P [4], use the Markov chain models to find the probability of eliminating the
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disease by using the stochastic process models.The model was applied to CMV, the numerical

and analytical results show that the vector aggregation is growing in intricacy as a well as the

possibility of a disease to be recognized in host plant. Lawrence et al: [14] use the system

of differential equation to find the equilibrium value of the whitefly vector and the cassava

plants. The result was analyzed using the finite difference method to assess the spatiotemporal

spread of the disease. Results obtained were compared to the field data and the implication of

controlling the CMV through the practical were explored. The study concluded that using of

ACMD resistant strains of cassava and windbreaks will have positive results on cassava yields.

This paper studies the dynamics of cassava mosaic disease by considering cassava resistant

breed which only catch cassava mosaic disease through unhealthy cutting and susceptible breed

which catch mosaic disease through unhealthy cutting and contact with whitefly vectors before

implementing controls.

2. Materials and Methods

2.1. Model Development

The model is formulated by modifying the model which was developed by Holt et al. [8] to

include breed which catches cassava mosaic disease through unhealthy cutting and susceptible

breed that catches mosaic disease through unhealthy cutting and through contact with whitefly

vector. The model consists of two groups of population. The first group includes the cassava

population (NC) which is divided into resistant (Sr) and Susceptible (SC) breeds, and infected

cassava (IC). Second group includes the whitefly vector population (NV ) which consists of

susceptible vector (SV ) and infectious vector (IV ).

Cassava resistant breed is replanted at a rate r1 and is infected by cassava mosaic disease

through unhealthy cutting at a rate β1 and they are harvested at a rate ρ1. The term k1, represents

the maximum plants for cassava resistant breed which can be planted. Cassava susceptible

breed is replanted at a rate r2, and is infected by cassava mosaic disease following contact with

infected whitefly vector and unhealthy cutting at a rate β2 while it is harvested at a rate ρ2.

The maximum plants of cassava susceptible breed that can be planted is k2. Infected cassava
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flourish following infection of cassava resistant breed through unhealthy cutting at a rate β1,

and infection of cassava susceptible breed through unhealthy cutting and contact with infected

whitefly vector at a rate β2 and they decrease due to the effect of cassava mosaic disease at a

rate a and harvested at a rate ρ3. Susceptible vector is recruited by birth at a rate b and catch

infection following contact with infected cassava at a rate β2. Also, k3 is the maximum number

of vectors that can be supported. Infected vector is recruited when susceptible vector catch

infection following contact with infected cassava at a rate β3 and γ is the death rate of whitefly

vector.

2.2. Assumptions of the Model

The model assumes that, all whitefly vectors are born susceptible to cassava mosaic disease.

The replanted cassava for both breeds are susceptible to CMD. The whitefly vector cannot

transmit cassava mosaic disease to cassava resistant breed except through unhealthy cutting.

Cassava susceptible breed gets cassava mosaic disease through contact with infected whitefly

and through unhealthy cutting. Susceptible vectors can be infected when they come into

contact with the infected cassava. The interaction between cassava and vector population is

shown in Figure 1. Variables and parameters are described in Table 1 and 2 respectively.

TABLE 1. Variables’ Descriptions

Variables Description

Sr Cassava resistant breed at time t.

SC Cassava susceptible breed at time t.

IC Infected cassava at time t.

SV Susceptible vectors at time t.

IV Infectious vectors at time t.
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TABLE 2. Parameters’ Descriptions

Parameters Description

r1 The rate of planting cassava resistant breed

ρ1 The rate of harvesting cassava resistant breed

β1 The rate of infection for cassava resistant breed.

r2 The rate at which cassava susceptible breed is replanted.

ρ2 The rate at which cassava susceptible breed is harvested

β2 The rate at which cassava susceptible breed is infected

ρ3 The rate at which infected cassava is harvested

a The rate of loss of infected cassava due to disease

b Recruitment rate for whitefly.

β3 Vector infection rate

γ The death rate of whitefly vectors

kl The maximum number of resistant breed that can be planted.

k2 The maximum number of susceptible breed that can be planted

k3 Maximum number of vectors that can be supported

FIGURE 1. Compartmental Model for the transmission dynamics of Cassava

Mosaic Disease
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2.3. Model equations for the two groups

dSr

dt
= r1Sr

(
1− Sr

k1

)
−β1SrIV −ρ1Sr,(1a)

dSC

dt
= r2SC

(
1− SC

k2

)
−β2SCIV −ρ2SC,(1b)

dIC

dt
= β2ScIv +β1SrIv−ρ3Ic−aIc,(1c)

dSV

dt
= b(SV + IV )

(
1− SV + IV

k3

)
−β3SV IC− γSV ,(1d)

dIV

dt
= β3SV IC− γ IV ,(1e)

Subject to Sr > 0,SC > 0, IC ≥ 0,SV ≥ 0, IV ≥ 0.

The total population of cassava is given as Sr +SC + IC = NC and the total population of vector

is given as NV = SV + IV .

2.4. Basic Properties of the Model
Invariant Region: Metzer matrix is used to show the feasible region, in which the variables are

positive ∀t ≥ 0. To deduce the feasible region; the model system (1a)-(1e) can be written as:

(2)
dx
dt

= Ax+F,

where x = (Sr,SC, IC,SV , IV )
T and a constant term F = (0,0,0,0,0)T such that:

(3) Ax =



−q1 0 0 0 0

0 −q2 0 0 0

β1IV β2IV −q3 0 (β2SC +β1Sr)

0 0 0 −q4 (b−2 (SV+IV )
k3

)

0 0 0 β3IV −γ


,

for;

q1 = β1IV +ρ1− r1

(
1−2 Sr

k1

)
, q2 = β2IV +ρ2− r2

(
1−2 SC

k2

)
,
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q3 = ρ3 +a, q4 = γ +β3IC−b−2 (SV+IV )
k3

.

In equation (3), A is a Metzler matrix ∀x ∈ R5 and due to the fact that F ≥ 0, the model system

(1a) - (1e) is positive invariant in R5 and F is Lipschitz continuous. Therefore the feasible

region Ω is a set of Ω = {Sr,SC, IC,SV , IV ∈ R5} with initial condition Sr > 0, SC > 0, IC ≥ 0,

SV > 0, IV ≥ 0 .

Positivity of the solutions:

Let the initial condition be Sr(0),SC(0), IC(0),SV (0), IV (0), the solutions Sr,Sc, Ic,Sv, Iv of the

model system (1a) - (1e) are positive ∀t > 0. We show that, the solution of the model system

(1a) - (1e) are positive by starting with equation (1a) that:

(4)
dSr

dt
≥−(β1SrIV +ρ1Sr).

Separate the variables and integrate both sides of the equation,

(5)
∫ 1

Sr
dSr ≥

∫
−(β1Iv +ρ1)dt,

(6) ln(Sr)≥−(β1Iv +ρ1) t +C.

This give the values of Sr as:

(7) Sr(t)≥ Ae−(β1Iv+ρ1)t .

At initial condition time, t = 0, equation (7) above becomes

(8) Sr(0)≥ A,

Therefore

(9) Sr (t)≥ Sr (0)e−(β1Iv+ρ1)t .

Thus, Sr(0)≥ 0, ∀t > 0.
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Apply the same procedure to the remaining equations (1b), (1c), (1d) and (1e):

We get

(10) SC (t)≥ SC (0)e−(β2Iv+ρ2)t .

(11) IC (t)≥ IC (0)e−(ρ3+a)t .

(12) SV (t)≥ SV (0)e−(β3Ic+γ)t .

(13) Iv (0)≥ Iv (0)e−γt .

Here we conclude that, the requirement to study the dynamics of CMD is satisfied considering

that, all the solutions of the model (1a) - (1e) are positive and bounded in the region:

(14) Ω = {Sr(t),SC(t), IC(t),SV (t), IV (t)}.

2.5. Cassava Mosaic Free Equilibrium

The steady state when there is no cassava mosaic disease is called cassava mosaic free equi-

librium. We compute cassava mosaic free equilibrium when Ic = Iv = 0. At this state, the total

cassava plants is the sum of susceptible and resistant breeds. However, the population of the

vector at this state consists of susceptible whitefly vector. Cassava mosaic free equilibrium is

given by:

(15) F0 = (Sr,SC, IC,SV , IV ) =
(
(r1−ρ1)k1

r1
,
(r2−ρ2)k2

r2
,0,

(b− γ)k3

b
,0
)
.

2.6. Basic Reproduction Number R0

The basic reproduction number is denoted by R0. It refers to an expected number of secondary

infections from an infected whitefly when introduced into a susceptible population of cassava

plants [5]. If R0 > 1, the infectious whitefly can transmit the cassava mosaic disease to more
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than one cassava plants, and if R0 < 1, an infectious whitefly transmits the cassava mosaic

disease to less than one cassava plants, hence the disease is dying out. The basic reproductive

number will be determined by next generation matrix [11] as follows:

Assume that, fi (x) is the rate of cassava and whitefly new infections and Vi (x) = V−i (x)−

V+
i (x) where V+

i (x) are the terms that are transferred into the compartment and V−i (x) are the

terms that are transferred out of the compartment such that: [5].

(16) F =
∂ fi (x0)

∂
(
x j
) and V =

∂Vi (x0)

∂
(
x j
) ,

where i, j = 1,2, ...,m and x0 indicates the cassava mosaic free equilibrium. From the model

system (1a)- (1e), fi and Vi are defined by:

(17) fi =


β SrIV +β2SCIV

β3SV IC


and

(18) Vi =


ρ3 +aIC

γIV

 .

Matrices F and V are obtained by differentiating equation (17) and (18) respectively, with re-

spect to Ic and Iv so that:

(19) F =


0 β Sr +β2SC

β3SV 0


and

(20) V =


ρ3 +aIC 0

0 γ

 .
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The next generation matrix is given by:

(21) FV−1 =


0 β2SC+β1Sr

γ

β3SV
ρ3+a 0

 .

The basic reproduction number R0 for cassava plants and vector is a dominant eigenvalue of

the next generation matrix FV−1 [18]. The basic reproduction number R0 is therefore given by:

(22) R0 =

√
β3 (b− γ)k3

b(ρ3 +a)γ

(
(r1−ρ1)k1β1

r1
+

(r2−ρ2)k2β2

r2

)
.

From equation (22), basic reproduction number R0 is determined by all parameters from the

model. The basic reproduction number R0 increases in proportion to β3,b,k3,β1,β2,k1,r1,k2

and r2, and decreases as γ,ρ3,ρ2,a and ρ1 increase.

3 . Sensitivity analysis

Sensitivity index of a parameter tells how a parameter is sensitive to the disease. In this

section, sensitivity index of each parameter with respect to basic reproduction number R0 is

derived to determine how each parameter influences the disease. If f is a parameter in repro-

duction number R0 then, sensitivity index of f with respect to R0 is given by:

(23) ϒ
R0
f =

dR0

df
× f

R0
.

3.1. Parameters Adoption

Parameter values from the literature and assumed ones are used. Table 3 summarizes the

parameter values, range and their sources.
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TABLE 3. Parameter Values.

Parameters Value Range Source

r1 0.025day−1 Assumed

ρ1 0.005day−1 Assumed

β1 0.0012vector−1day−1 Assumed

r2 0.2day−1 0.025−0.2 [14]

ρ2 0.003day−1 0.002−0.004 [8]

β2 0.003vector−1day−1 0.002−0.032 [8]

ρ3 0.003day−1 0.002−0.004 [8]

a 0.033day−1 0−0.033 [8]

b 0.5vector−1day−1 0.1-1.0 [26]

β3 0.002plant−1day−1 0.002−0.032 [8]

γ 0.0782day−1 0.06−0.18 [8]

k1 3000 [21]

k2 2000 Assumed

k3 350 0-2500 [8]

Using forward normalized sensitivity index for each parameter with respect to basic repro-

duction number R0, sensitivity index for β2 is derived as follows:

(24) ϒ
R0
β2

=
dR0

dβ2
× β2

R0
,

(25)
dR0

dβ2
= 1/2

β3 (b− γ)k3 (r2−ρ2)k2

r2b(ρ3 +a)γ

1√
β3(b−γ)k3
b(ρ3+a)γ

(
(r1−ρ1)k1β1

r1
+ (r2−ρ2)k2β2

r2

) .
Full computation gives:

(26) ϒ
R0
β2

=+0.3362.
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We apply the same method to obtain sensitivity indices for other parameters. Table 4 sum-

marizes sensitivity indices for all parameters with respect to basic reproduction number R0.

TABLE 4. Sensitivity Indices.

Parameters Sensitivity index Parameters Sensitivity index

β3 +0.5000 r2 +0.0051

β1 +0.1638 γ −0.5927

β2 +0.3362 ρ3 −0.0417

k3 +0.5000 ρ2 −0.0051

b +0.0927 ρ1 −0.0410

k1 +0.1638 a −0.4583

r1 +0.0410 k2 +0.3362

From the Table 4 parameters β2,β3,β1,k1,k2,k3,b,r1,r2 have positive indices, this means

that the basic reproduction number R0 increase in proportion to these parameters. Parameters

a, ρ1, ρ2, ρ3 and γ have negative indices. This means that the basic reproduction number R0

decrease when a, ρ1, ρ2, ρ3 and γ increase. The most sensitive parameter is the death rate of

whitefly vectors γ , the increase of this parameter decrease the basic reproduction number R0.

4 . Global Stability of Cassava Mosaic Free Equilibrium

The global stability of cassava mosaic free equilibrium is established by approach used by

Castillo-Chavez [2]. When this approach is used, system (1a) - (1e) is written as follows:

(27)
dX1

dt
= H(X1−XF0)+H1X2,

(28)
dX2

dt
= GX2,

where X1 presents the noninfectious classes and X2 infectious classes. X(F0) present mosaic

free equilibrium. Mosaic free equilibrium is said to be globally asymptotically stable if eigen-

values of matrix H are negative and matrix G is a Metzler matrix [9]. We thus define X1,X2 and
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XF0 by:

(29) X1 =


Sr

SC

SV

 .

(30) X2 =

IC

IV

 .

(31) XF0 =



(r1−ρ1)k1
r1

(r2−ρ2)k2
r1

0
(b−γ)k3

b

0


.

Matrices H1 and H are defined by:

(32) H1 =


0 −β1Sr

0 −β2SC

−β3SV b− 2b(SV+IV )
k3


and

(33) H =


−q1 0 0

0 −q2 0

0 0 −q3

 ,

where

q1 = (r1 +2 r1Sr
k1

+β1IV +ρ1), q2 = (r2 +2 r2SC
k2

+β2IV +ρ2), q3 = (b+ 2b(SV+IV )
k3

+β3IC + γ).

Matrix H has negative eigenvalues and matrix G is Metlzer matrix since elements in the main

diagonal are negative and the off diagonal elements are positive provided the rate of planting

cassava is greater than the rate at which they are harvested and the recruitment rate of whitefly

vectors is greater than their death rate. Therefore, when the basic reproduction number R0,
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is less than one (R0 < 1) and greater than one (R0 > 1), then the disease free equilibrium is

globally asymptotically stable and unstable respectively.

5 . Global Stability of Cassava Mosaic Free Equilibrium

Due to non-linear nature of the model, it is not possible to obtain cassava mosaic equilibrium

explicitly. To prove existence of cassava mosaic equilibrium, we state and prove the following

theorem:

Theorem: Cassava mosaic equilibrium exists if S∗r > 0,S∗C > 0, I∗C > 0,S∗V > 0, I∗V > 0.

Proof: Approach in Tumwine et al. [23] and Massawe et al: [16] is adopted in proving existence

of cassava mosaic equilibrium. We use the sum of cassava plants and whitefly vectors when their

rate of change is zero. When we consider total cassava plants at cassava mosaic equilibrium,

we have:

(34) r1S∗r

(
1− S∗r

k1

)
+ r2S∗C

(
1−

S∗C
k2

)
−ρ1S∗r −ρ2S∗C− (ρ3 +a) I∗C.

This lead to :

(35) ρ1S∗r +ρ2S∗C +(ρ3 +a) I∗C = r1S∗r

(
1− S∗r

k1

)
+ r2S∗C

(
1−

S∗C
k2

)
.

Since S∗r < k1,S∗C < k2 and all the parameters are positive.

Then:

(36) r1S∗r

(
1− S∗r

k1

)
+ r2S∗C

(
1−

S∗C
k2

)
> 0,

showing that: S∗r > 0,S∗C > 0 and I∗C > 0. Using the same approach for whitefly vector we have

S∗V > 0 and I∗V > 0. This shows that cassava mosaic equilibrium exists.

5.1. Global Stability of Cassava Mosaic Equilibrium
The global stability of cassava mosaic equilibrium is investigated by logarithmic Lyapunov

function which is given by:

(37) L = ∑Gi (Pi−Pi
∗lnPi) ,
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where G1, is a positive constant which is to be chosen carefully, Pi is a variable in a compartment

i and P∗ present a compartment variable at equilibrium point. Using system (37) the Lyapunov

function is defined by;

(38)

L(SrSC, IC,SV , IV ) = G1 (Sr−Sr
∗lnSr)

+G2 (SC−SC
∗lnSC)

+G3 (IC− IC∗lnIC)

+G4 (SV −SV
∗lnSV )

+G5 (IV − IV ∗lnIV ) .

Differentiate the Lyapunov function (38) above with respect to time, we get

(39)

dL
dt

=G1

(
1− S∗r

Sr

)
dSr

dt
+G2

(
1−

S∗C
SC

)
dSC

dt
+G3

(
1−

I∗C
IC

)
dIC

dt

+G4

(
1−

S∗V
SV

)
dSV

dt
+G5

(
1−

I∗V
IV

)
dIV

dt

From equations (39), we have:

(40)

dL
dt

=G1

(
1− S∗r

Sr

)
(r1Sr

(
1− Sr

k1

)
−β1SrIV −ρ1Sr)

+G2

(
1−

S∗C
SC

)
(r2SC

(
1− SC

k2

)
−β2SCIV −ρ2SC)

+G3

(
1−

I∗C
IC

)
(β2SCIV +β1SrIV −ρ3IC−aIC)

+G4

(
1−

S∗V
SV

)
(b(SV + IV )

(
1− SV + IV

k3

)
−β3SV IC− γSV )

+G5

(
1−

I∗V
IV

)
(β3 SV IC− γ IV ).
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At cassava mosaic equilibrium, equation (40) becomes:

(41)

dL
dt

=−G1ρ1
(Sr−S∗r )

2

Sr
−G2ρ2

(
SC−S∗C

)2

SC
−G3(ρ3 +a)

(
IC− I∗C

)2

IC
−G4γ

(SV −S∗V )
2

SV

−G5γ
(IV − I∗V )

2

IV
−G1β1

(Sr−S∗r )(SrIV −S∗r I∗V )
Sr

−G2β2
(SC−SC∗)

(
SCIV −S∗CI∗V

)
Sr

−G4β3
(SV −S∗V )(SV IC−S∗V I∗V )

SV
,

this simplifies to:

(42)

dL
dt

=−G1ρ1
(Sr−S∗r )

2

Sr
−G2ρ2

(
SC−S∗C

)2

SC
−G3(ρ3 +a)

(
IC− I∗C

)2

IC
−G4γ

(SV −S∗V )
2

SV

−G5γ
(IV − I∗V )

2

IV
+F(Ω),

where:

(43)
F(Ω) =−G1β1

(Sr−S∗r )(SrIV −S∗r I∗V )
Sr

−G2β2

(
SC−S∗C

)(
SCIV −S∗CI∗V

)
Sr

−G4β3
(SV −S∗V )

(
SV IC−S∗V I∗C

)
SV

.

The function F(Ω) is negative or zero in Ω, therefore dL
dt ≤ 0 in Ω and it is zero for Ω = Ω∗.

Since dL
dt = 0 when Ω = Ω∗ and dL

dt ≤ 0 in Ω then the largest invariant set in Ω when dL
dt = 0 is

a singleton Ω∗ which is cassava mosaic equilibrium point. By LaSalles invariant principle, the

casssava mosaic equilibrium Ω∗ is globally asymptotically stable when R0 > 1.

6. Numerical Simulation of the Basic Model

In this section, we simulate model system (1) to determine the long term impact of cassava

mosaic disease. We simulate the dynamics of cassava mosaic disease by considering sensitive

parameters.
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The dynamics of cassava mosaic disease is demonstrated in Figure 2. All susceptible vectors

contract the disease before five months, this is reflected by susceptible cassava which also de-

crease due to the disease. Cassava resistant breed takes longer to get cassava mosaic disease as

demonstrated in Figure 2. Figure 3 illustrates cassava and vector populations.
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FIGURE 3. Vector and Cassava Population

The variation of sensitive parameters shows that cassava mosaic disease increase

proportionally to recruitment rate of whitefly vectors and decreases as the rate of loosing

infected cassava increases. All classes are demonstrated in Figures below as follows.

Figure 4 demonstrates the variation of the rate of loss of infected cassava to the infected

classes. It shows the behavior of infected cassava and infected vectors when the parameter a

vary, the increase of a lead to the decrease of infected cassava and the decrease of infected
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vector.
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(A) Infected cassava.
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FIGURE 4. Variation of loss of infected cassava rate in infected class.

Figure 5, shows the variation of vector mortality rate γ to the infectious vector and infected

cassava class, if the rate of vector mortality increase the number of infected vector and infected

cassava decreases.
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FIGURE 5. Variation of vector mortality rate in infectious class.

From Figure 6 the graphs demonstrate the variation of vector carrying capacity k3 to the

susceptible class of cassava and susceptible class of vector. The graphs show as the carrying

capacity of whitefly vectors increase the number of susceptible cassava breed decrease, the

number of susceptible vector increase.
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(A) Susceptible breed.

0 5 10 15 20 25
0

50

100

150

200

250

Time[Months]

S
u

s
c
e

p
ti
b

le
  

v
e

c
to

r

 

 

k3 = 350, R0 = 42.9395
k3 = 500, R0 = 51.3225
k3 = 600, R0 = 56.2210

(B) Susceptible vector.

FIGURE 6. Variation of vector carrying capacity to the susceptible class.

Figure 7 shows the impact of varying the carrying capacity of susceptible breed of cassava

to the infected cassava class and infected vector . It shows that as the carrying capacity of

susceptible breed increases the number of infected cassava and infected vector increases.
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(A) Infected cassava.
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FIGURE 7. Variation of cassava susceptible breed carrying capacity to the in-

fected class.

7. Conclusion

In this paper, the deterministic model for transmission dynamics of CMD which includes

population of cassava and whitefly vector is presented and analyzed. The sensitivity analysis

was performed to identify sensitive parameters. Analysis shows that the number of vectors

that can be supported, the rates at which vectors acquire disease and the carrying capacity of

susceptible cassava breed, play important role in the transmission dynamics of cassava mosaic
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disease. New infections will increase as the carrying capacity of susceptible cassava and the

rate of infection of vectors increases. To improve cassava productivity, campaigns to eradicate

cassava mosaic disease should focus on strategies which reduce vectors’ population. These

strategies include spraying insecticide, use of vector-resistant varieties, phytosanitation which

involve the removal of infected cassava plants from the place that will be used for the new

plantings, crop hygiene and the use of free stem cutting method.
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