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Abstract. In this study, a deterministic mathematical model of Ebola transmission is analyzed under random ef-

fects. A recent compartmental model of Berge et al. incorporates both direct and indirect transmission in the

model. We assume the parameters of this model are normally distributed random variables to investigate the

random behavior of disease transmission. Random differential transformation method is used to obtain the ap-

proximate expectation of disease recovery. Furthermore, the approximation for expected recovery is modified by

using Laplace-Padé method. Comparison of results indicate that the Laplace-Padé modification provides a better

approximation. We also interpret the long term random behavior of the disease dynamics using simulation results.
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1. Introduction

Mathematical models play an important role in many fields of science as they have become

an essential part of the scientific analysis method. Analyzing an unknown event through the

use of equation systems to understand the nature of the phenomena as well as to predict the

possible future dynamics of the event is a vital component of todays scientific investigations.

Epidemiology, medicine and biochemistry are among some of the fields which mathematical

models are extensively used in. Results from models consisting of systems of deterministic

differential equations constitute a considerable part of the studies that are carried out in these

fields. The parameters of the models are assumed to be constant values for these deterministic

analyses. However, some components of the events being modelled may have random behavior

in real life. For instance, Ebola Virus Disease has been modeled by using deterministic systems

([1], [2]) although there are various studies in the literature which present the random nature of

some disease dynamics ([3], [4], [5], [6]).

Ebola Virus Disease (EVD), which passes to humans from animals, is a fatal disease. It was

first discovered in 1976 in Africa. The 2014-2016 Ebola outbreak in West Africa has become

the most deadly Ebola epidemic since the discovery of the virus ([7]), resulting in the death

of 2544 out of 3814 cases in Guinea alone ([8]). However, the experimental rVSV-ZEBOV

vaccine has proven to be successful in a trial led by World Health Organization (WHO) in 2015

([7]).

The random nature of certain components for Ebola Virus Disease can be found in the recent

modeling studies. The study of J. Bartlett et al. presents various values for disease infection

rates ranging from 0 to 0.153 and death rates ranging from 0 to 0.0032 in a SIR based model for

EVD ([3]). The study of WHO Ebola response team gives random results for the basic repro-

duction number of EVD for different countries, such as a mean value of 1.85 for Liberia with

a 95% confidence interval (1.72,1.94) ([4]). A 2014 report on the epidemiological dynamics

of Ebola by T. House gives a mean value of 1.49 years for the time period between consecutive

Ebola outbreaks ([5]). Similarly, a study by G. Chowell and H. Nishiura states that the propor-

tion of death in the first 9 months of the epidemic in West Africa has a mean value of 70.8%

with a 95% confidence interval (68.6,72.8) ([6]).
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In light of these random dynamics for various components of EVD, we propose a random

model for EVD based on the deterministic model of T. Berge et al. ([2]). We transform the

parameters of the deterministic equation system into random variables using random effect

terms. This approach for obtaining systems of random differential equations for modeling in-

fectious disease dynamics has been presented and used by the authors for various diseases ([9],

[10]). The predictions based on the results of deterministic studies, which ignore the random

nature of certain aspects of epidemics, can cause serious problems in battling the disease. A

report in 2015 from WHO experts in Guinea states that the scale of the Ebola outbreak was

underestimated by offical data ([11]). Using random differential equations for modeling disease

dynamics enables us to model the random behavior of the disease in the equation system. We in-

vestigate the new random system by using approximate results obtained by random Differential

Transformation Method (rDTM) ([12], [13]) along with simulations to interpret the randomness

of the event. The approximations from rDTM are also modified by using Padé approximants

to improve the results ([14],[15]). Results show that the random model is an efficient tool for

modeling both the disease dynamics and the variations in disease behavior.

2. Ebola Disease Model

The system of deterministic nonlinear ordinary differential equations (1) given by T. Berge

et al. is used in this study ([2]).

dS(t)
dt

= π− (β1I +β2D+λP)S−µS,

dI(t)
dt

= (β1I +β2D+λP)S− (µ +δ + γ)I,

dR(t)
dt

= γI−µR,(1)

dD(t)
dt

= (µ +δ )I−bD,

dP(t)
dt

= σ +ξ I +αD−ηP.
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This system is an original model for EVD since it incorporates both direct and indirect Ebola

transmission in a single equation system. The variables of this system are as follows: S(t) de-

notes the number of susceptible human individuals, I(t) denotes the number of infectious human

individuals, R(t) denotes the number of recovered human individuals, D(t) denotes the number

of Ebola infected and deceased human individuals and P(t) denotes the number of Ebola virus

pathogens. Overall, this system models the change of the compartment populations in time,

which is denoted by t (in days). The model is based on the basic SIR model with the additional

compartments D and P to model indirect disease transmission caused by environmental factors

and etc.

TABLE 1. Parameter values and descriptions

Parameter Description Value

π Susceptible human recruitment rate 10

η Ebola virus decay rate 0.03

ξ Infectious human shedding rate 0.04

α Deceased human shedding rate 0.04

δ Human death-by-disease rate 0.9

β1 Infectious human contact rate 0.006

β2 Deceased human contact rate 0.012

λ Ebola virus contact rate 0.01

γ Human recovery rate 0.06

µ Human natural death rate 0.02

b Deceased human caring duration 0.8

σ Ebola virus recruitment rate variable

We will obtain random parameters for (1) by using the deterministic values of the parameters.

This way, the random parameters will model the random nature of Ebola transmission in the

equation system. Therefore the parameters of the equation system and their values for the

numerical analysis are of great importance to our study. There are a number of possible choices

for the values of the parameters in the referred study. Since we want to present the idea of a
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random model for Ebola transmission, we arbitrarily choose the presented value set ([2]) (Table

1). Note that any of the other values for the original parameters can be used for obtaining the

random model.

The following set of initial values will be used for the numerical investigation of the model

dynamics: S(0) = 15, I(0) = 10, R(0) = 0, D(0) = 10, P(0) = 0. The values of the initial

values, just like the parameter values, have been chosen according to the reference study (σ = 0

will be used) ([2]). The deterministic system, as mentioned before, neglects the randomness

of the parameters. Therefore, the parameters of the equation system (1) will be added random

effect terms that model the neglected randomness in the deterministic system. There are also

several stochastic modeling studies in the literature where stochastic differential equations are

used in modeling studies for various fields ([9], [16], [17], [18], [19]). Stochastic models could

also be considered for modeling the volatility of results in Ebola transmission models.

3. Parameters under Random Effects

The parameters of system (1) will be transformed into random variables to obtain a sys-

tem of random nonlinear differential equations. The parameters are assumed to be normally

(Gaussian) distributed for this study. The motivation for considering random parameters in this

system is to model the possible variations of the disease dynamics. It is known that certain

aspects of the disease such as the infection rate, recovery rate and etc. can change for differ-

ent places/populations. Hence, normally distributed parameters will be used to model these

changes in the equation system. Normal distribution is widely used in scientific research for

random variables for which the exact distribution is unknown. Since we know there are many

factors that affect the values of these parameters and that the exact measure of their variation is

not known, normal distribution is the most reasonable choice. Additionally, normal distribution

is symmetric around its mean, which allows us to let the random parameters assume values

below or above their deterministic values with equal probability.

The parameters of the system (1), π,η ,ξ ,α,δ ,β1,β2,λ ,γ,µ,b,σ , are transformed into ran-

dom variables with normal distribution as follows:
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π
∗ = π + s1χ1, η

∗ = η + s2χ2, ξ
∗ = ξ + s3χ3, α

∗ = α + s4χ4,

δ
∗ = δ + s5χ5, β

∗
1 = β1 + s6χ6, β

∗
2 = β2 + s7χ7, λ

∗ = λ + s8χ8,

γ
∗ = γ + s9χ9, µ

∗ = µ + s10χ10, b∗ = b+ s11χ11, σ
∗ = σ + s12χ12.

Here, the coefficients si, i = (1,12) are the standard deviations of the newly formed ran-

dom parameters π∗,η∗,ξ ∗,α∗,δ ∗,β ∗1 ,β
∗
2 ,λ

∗,γ∗,µ∗,b∗,σ∗ and χi, i = (1,12) are independent

random variables with standard normal distribution. The standard deviations of the random

variables, si, i = (1,12), are determined to be 5% of their corresponding deterministic values, so

that the coefficient of variation (CV) is 5% for each random parameter. We use this specific CV

for each parameter so that we can comment on the CV of each compartment using the numerical

results of the system. The resulting new parameters are rewritten in the system (1) to obtain the

new random system (2):

dS(t)
dt

= (10+0.5χ1)− ((0.006+0.0003χ6)I +(0.012+0.0006χ7)D

+(0.01+0.0005χ8)P)S− (0.02+0.001χ10)S,

dI(t)
dt

= ((0.006+0.0003χ6)I +(0.012+0.0006χ7)D

+(0.01+0.0005χ8)P)S− ((0.02+0.001χ10)+(0.9+0.045χ5)

+(0.06+0.003χ9))I,

dR(t)
dt

= (0.06+0.003χ9)I− (0.02+0.001χ10)R,(2)

dD(t)
dt

= ((0.02+0.001χ10)+(0.9+0.045χ5))I− (0.8+0.04χ11)D,

dP(t)
dt

= (0.04+0.002χ3)I +(0.04+0.002χ4)D− (0.03+0.0015χ2)P.

Note that since σ = 0, this term in (1) does not appear in (2). This is a result of our selection

for the value of σ and this term would take its place in the random model (2) for any other

value of the parameter. The numerical solutions of the system (2) are used to determine the

random behavior of Ebola disease. The approximate random dynamics are investigated by using
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tools of mean square analysis while the long-term dynamics are investigated by Monte-Carlo

simulations.

3.1. Approximate Expectations for Recovery. The first days of the epidemic are important

as they are the initial signs of how wide the infection will spread through the population. The

random model (2) will be used to obtain the approximate expectation of recovery and thus com-

ment about the future of the epidemic using the initial results for this compartment. The details

of the mean square and mean fourth calculus necessary for obtaining approximate analytical

solutions can be found in the literature ([12],[20]).

Random Differential Transformation Method (rDTM) was used to obtain an approximate

solution for the equations in truncated series form. Basically, the truncated series solution for

any stochastic process x(t) is obtained as

x(t) =
n

∑
k=0

X(k)tk,

using X(k), the transformed process for the original process x(t), along with its inverse trans-

form about t0 = 0 ([12], [13]). Random Differential Transform (rDTM) is the random version

of the deterministic DTM and the theorems for the convergence of the approximations have

been well established in the literature ([21], [22]). A list of some of the fundamental operations

of DTM has been given in the literature along with the basic definition of the method ([15]).

The approximate solution obtained with random DTM will also be modified through Laplace

transforms and Padé approximants for a better approximation ([14], [15]). Using the tools of

mean-square calculus and DTM, the expectation and the variance of any random process can be

obtained as ([23], [24]):

E[x(t)] = ∑
n
k=0 E[X(k)]tk,

Var[x(t)] = ∑
n
j=0 ∑

n
i=0 cov(X(i),X( j))t i+ j,

as given by Khudair, Haddad and Khalaf ([25]). Note that the use of random DTM with Laplace-

Padé method for analyzing the statistical properties of a disease model is an original application

of these methods.
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In particular, the approximate solution for the third equation of system (2) obtained by Dif-

ferential Transform Method (dR(t)
dt = γ∗I−µ∗R) is found as

R(t) = 10γ
∗t +

(
1
2

γ
∗(150β

∗
1 +150β

∗
2 −10µ

∗−10δ
∗−10γ

∗)−5µ
∗
γ
∗
)

t2

= 10γ
∗t +(75γ

∗
β
∗
1 +75γ

∗
β
∗
2 −10γ

∗
µ
∗−5γ

∗
δ
∗−5(γ∗)2)t2

using iterations up to n = 2. Here, R(1) = 10γ∗ and R(2) = 75γ∗β ∗1 + 75γ∗β ∗2 − 10γ∗µ∗−

5γ∗δ ∗− 5(γ∗)2 for the series solution. While iterations for n = 2 may not be enough for an

accurate approximation, this example is used for a better understanding of the methodology.

Assuming that the random parameters π∗,η∗,ξ ∗,α∗,δ ∗,β ∗1 ,β
∗
2 , λ ∗,γ∗, µ∗,b∗,σ∗ are indepen-

dent, we use this truncated series approximate solution of R(t) to obtain its expectation as:

E[R(t)] = E[10γ
∗t +(75γ

∗
β
∗
1 +75γ

∗
β
∗
2 −10γ

∗
µ
∗−5γ

∗
δ
∗−5(γ∗)2)t2]

= E[10γ
∗]t +E[75γ

∗
β
∗
1 +75γ

∗
β
∗
2 −10γ

∗
µ
∗−5γ

∗
δ
∗−5(γ∗)2]t2.

Higher moments such as E[(γ∗)2] are needed for all of the parameters, especially for series

solutions with containing n > 2 terms. It is known that for a normally distributed random

variable X with parameters X ∼ N(m,n2), these moments can be obtained through the moment

generation function of normal distribution ([26]):

MX(t) = E[etX ] = emt+ 1
2 n2t2

.

Thus, the first and second moments of the random variable X ∼ N(m,n2) are:

E[X ] = m, E[X2] = m2 +n2.

Using these moments and the fact that E[XY ] = E[X ]E[Y ] for independent random variables X

and Y , the approximate formulas for the expectations can be calculated since

γ
∗ = γ + s9χ9 = 0.06+0.003χ9⇒ γ

∗ ∼ N(0.06,(0.003)2).

Similar calculation for other random parameters and the expectation formula are used to obtain

the expectations of the random variables. For instance, using n = 2, the approximate formula
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for the expectation of R(t) given above can be rearranged as follows:

E[R(t)] = 10E[γ∗]t +(75E[γ∗β ∗1 ]+75E[γ∗β ∗2 ]−10E[γ∗µ∗](3)

−5E[γ∗δ ∗]−5E[(γ∗)2])t2.

Since the accuracy of the formulas increase with the iterations, the expectation of R(t) obtained

by random DTM with iterations for n= 4 can be found as below for a higher accuracy (t denotes

the number of days):

E[R(t)] = 0.6t−0.219045t2 +0.080833275t3−0.02282931889739t4.

This formula is modified for a better approximation to the expected value of the variable. The

details of Laplace-Padé method which was used for the modification has been given by ([14]).

The modified approximate expectation formula of R(t), calculated in Maple software is obtained

as:

E[R(t)] = 5.483588512−4.812982790exp(−0.5867596092t)×

sinh(0.5438515717t)−5.483588512exp(−0.5867596082t)×

cosh(0.5438515717t).

Numerical results for R(t) for the deterministic case is compared with the results of the rDTM

and modified rDTM in Table 2. Note that the calculations for the expectation formulas are

obtained under the assumption of independency for random variables.

The results (Table 2) clearly show that the modified algorithm produces results which suc-

cessfully converge to the expected value of R(t) in the interval [0,2], i.e. the first two days of

infection. The difference between the deterministic results and the modified expected values

indicate the deviations caused by the random effects.

It is possible to find expected values and variances for all of the variables S(t), I(t),R(t),D(t)

and P(t) using mean square calculus and the corresponding formulas. However, it should be

noted that the assumption of independent variables, the nonlinearity of the equations and similar

other factors may decrease the accuracy of the method in large intervals. Therefore, using a

higher number of iterations for various cases may increase the accuracy of the results.
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TABLE 2. Deterministic results for R(t) compared with its approximate expec-

tation formulas obtained by rDTM and modified rDTM (Simulation results are

also included).

t Deterministic rDTM Modified Simulation

0.1 0.0579 0.0579 0.0579 0.0579

0.2 0.1119 0.1118 0.1118 0.1119

0.3 0.1623 0.1623 0.1623 0.1623

0.4 0.2097 0.2095 0.2096 0.2096

0.5 0.2542 0.2539 0.2541 0.2541

0.6 0.2961 0.2956 0.2960 0.2960

0.7 0.3358 0.3349 0.3357 0.3357

0.8 0.3735 0.3718 0.3733 0.3733

0.9 0.4092 0.4065 0.4091 0.4091

1.0 0.4434 0.4390 0.4433 0.4432

1.1 0.4761 0.4691 0.4760 0.4759

1.2 0.5074 0.4969 0.5073 0.5072

1.3 0.5375 0.5222 0.5375 0.5374

1.4 0.5666 0.5448 0.5666 0.5664

1.5 0.5947 0.5644 0.5947 0.5945

1.6 0.6218 0.5807 0.6220 0.6217

1.7 0.6483 0.5934 0.6484 0.6481

1.8 0.6740 0.6021 0.6741 0.6738

1.9 0.6990 0.6062 0.6992 0.6988

2.0 0.7234 0.6052 0.7237 0.7233

3.2. Long Term Random Dynamics. The random behavior of the model components can be

accurately estimated for the first days using the modified algorithm above. However, Monte-

Carlo simulations provide better results for the long term analyses of the random system (2). By
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simulating the numerical results of the random model, we obtain the following characteristics

for the variables.

3.2.1. Expected Values with Deterministic Results. As the figures suggest, the results of the

random model (Figure 1) are very similar to the results of the deterministic model. The deter-

ministic results for the model (1) can be shown on a graph as well to underline the similarity of

the behaviors of the systems.

FIGURE 1. Expected values of the random variables.

The deterministic results (Figure 2) show that number of susceptible humans gets its maxi-

mum value 53.11 at t = 8.689 and its minimum value 15 at t = 0 (t denotes the number of days).

It is also seen that the change in this variable almost stops after t = 100 since S(t) = 20.84 for

t = 100 and S(t) = 20.25 for t = 200. The number of infectious humans, I(t) gets its maximum

and minimum values 12.79 and 3.801 at t = 13.86 and 3.442, respectively. The change in I(t)

almost stops after t = 40, since I(t) = 9.882 at t = 40 and I(t) = 9.792 at t = 200. The number

of recovered humans begins from its minimum value 0 at t = 0 and reaches its maximum value

28.84 at t = 200. The number of Ebola-infected and deceased humans, D(t), gets its minimum

value 4.782 at t = 4.902 and its maximum value 14.34 at t = 15.28. The change in D(t) almost

stops around t = 40 too, since D(t) = 11.38 at t = 40 and D(t) = 11.26 at t = 200. Finally, P(t),

the number of Ebola pathogens, starts from 0 at t = 0 and reach its maximum 28.01 at t = 200.
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FIGURE 2. Deterministic results of model (1).

It is seen that the extremum values for the expectations of the random model are very similar

to the deterministic values. This indicates that the dynamics of the model under random ef-

fects are in accordance with the deterministic model and thus the random model is meaningful.

The difference between the random and deterministic results shows the effects of the random

parameters on the disease dynamics.

max(E(S(t)) = 52.88 at t = 8.667 and min(E(S(t)) = 15 at t = 0. max(E(I(t)) = 12.73

at t = 13.67 and min(E(I(t)) = 3.827 at t = 3.333. max(E(R(t)) = 29.01 at t = 200 and

min(E(R(t)) = 0 at t = 0. max(E(D(t)) = 14.27 at t = 15 and min(E(D(t)) = 4.82 at t = 5.

max(E(P(t)) = 28.1 at t = 200 and min(E(P(t)) = 0 at t = 0. The correspondence between the

extremum values and the times of these values should also be noted.

3.2.2. Standard Deviations, Confidence Intervals and Variation Coefficients. The results for

the confidence intervals (for the expected values) of the random variables are used along with

the coefficient of variations to interpret the randomness of these variables. For this study, ap-

proximately 99% confidence intervals have been used for the random variables (K = 3) with

the form

[E(X(t))−K.σ(X(t)),E(X(t))+K.σ(X(t))]
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where σ(X(t)) denotes the standard deviation of an arbitrary random process X(t). Here, K

determines how many standard deviations will be used to form the confidence interval around

the mean and K = 3 is used. The following graphs are obtained for the 99% confidence intervals

of the random variables S(t), I(t),R(t),D(t),P(t) (Figure 3). The confidence intervals show the

maximum and minimum values that the expectations of the population groups can get through

the infection period.

FIGURE 3. Confidence intervals of the random variables.

The maximum standard deviation of S(t) is obtained at t = 12 with a value of 3.51 (E(S(t)) =

46.06 at t = 12). The standard deviation of I(t) gets its maximum value 1.215 at t = 10.67

(E(I(t)) = 10.52 at t = 10.67). The standard deviation of R(t) gets its maximum value 2.833

at t = 200 (E(R(t)) = 28.84 at t = 200). The standard deviation of D(t) gets its maximum

value 1.397 at t = 11.67 (E(D(t)) = 11.69 at t = 11.67). The standard deviation of P(t) gets its

maximum value 2.53 at t = 200 (E(P(t)) = 28.1 at t = 200).

Hence the maximum values of the coefficient of variations (CV) for the random variables are

(CV=100×std.deviation
expectation ):

CV (S(t)) = 7.6%, CV (I(t)) = 11.5%, CV (R(t)) = 9.8%,

CV (D(t)) = 12.0%, CV (P(t)) = 9.0%.

These values, along with the confidence intervals and the standard deviations, show that the

randomness in the variables are similar to each other, with the randomness of S(t) being lower
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than the others. The coefficient of variation shows the expected deviation in the results as a per-

centage, for instance on day twelve (t = 12), the expected value shows that we should expect 46

susceptible people in the population (E(S(12)) = 46.06), however this number may change by

7.6% in some cases since CV (S(12)) = 7.6%. Standard deviation for S(t) denotes that at t = 12,

the expected number of susceptibles could change by more than 3 people (std(S(12)) = 3.51).

This day sees the highest deviation for the susceptibles meaning the results of the determinis-

tic study would be least accurate at t = 12. The expected number of infectious I(t) = 10.52

at t = 10.67 could also vary by 11.5% since the standard deviation shows that results could

change by more than 1 person (std(I(10.67)) = 1.215). Similar conclusions can be obtained for

all the compartments using the results of expectations and standard deviations. In this study, a

5% randomness has been assumed for all the parameters to model a small volatility in the dis-

ease dynamics. However, more precise data on the random nature of the disease could provide

accurate results on the deviations of the disease dynamics. This means that the same random

equation system could be used with a different set of parameters which have different probabil-

ity distributions and standard deviations to model the random transmission of the disease.

4. Concluding Remarks

In this study, a deterministic model of Ebola Virus Transmission (EVD) presented by T. Berge

et al. was used to investigate the random transmission dynamics of EVD. The random model

was obtained by adding random effects to the parameters of the original deterministic model.

The resulting system of random differential equations has proven to be useful for both modeling

the transmission dynamics of EVD and representing the random behaviour of the disease com-

ponents. The random model was analyzed by using both numerical and approximate analytical

methods to investigate the random behavior of the model. The approximate analytical solution

obtained by random DTM was used to obtain the approximate expectation of disease recovery.

The approximate recovery formula was modified by using the Laplace-Padé algorithm. Com-

parison or results for random DTM and the modification suggests that the modified expectation

converges to the deterministic results on a larger interval.
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The results for the recovered population in the first two days of the disease obtained by

random DTM could be improved by calculating more terms for the truncated series solution.

Similar approximate expectation, variance and confidence interval formulas can be obtained

and modified for all of the compartments in (2). There are also other modification algorithms

for DTM that can be applied to improve the approximations. Formulas for the early random

dynamics of the disease could provide useful results for epidemiological studies on various

other models.

The random model was also simulated to analyze the long term random dynamics of the

model. It was seen that the results of the random model matched the results of the deterministic

model. The minor differences in between these two sets of results showed the effects of the

random parameters. Finally, the confidence intervals and the coefficients of variations were

analyzed for the variables to investigate the individual randomness of the variables of the model.

It was seen that the results for S(t) had smaller deviation. These analyses can be made for any

model and provide valuable results for the investigation of event both on short and long terms.

The results can be improved by using real life data to determine the amount and distributions of

the random effects. Note that modification of the random approximate statistical properties for

the disease through Laplace-Padé technique is an original application and just like the random

modeling approach, could be used to obtain accurate results for numerical characteristics of

various disease models.

It should be noted that the random model can be used instead of the deterministic model since

its expected values obtained from simulation results are almost identical to the deterministic re-

sults. However, in addition, the random model also provides information about the random

behavior of the compartments. The variation coefficients and confidence intervals for the ex-

pected values provide results for the possible deviations in the disease dynamics which can not

be modeled through deterministic equations. These results are meaningful and also crutial for

battling infections. Hence, this approach to modeling infectious diseases would be more prac-

tical for many other diseases. The use of random DTM and the modified algorithm along with

the random modeling approach enables a random investigation of almost all epidemiological

events. The random modeling approach could also be improved by determining the standard
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deviations of the random parameters from real life data, instead of the hypothetical 5% selec-

tion. Various other probability distributions could also be used for the random effects other than

normal distribution, whenever necessary.
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