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Abstract. In this article, a fractional order model for hepatitis B virus (HBV) infection with capsids and immune

response presented by cytotoxic T lymphocyte (CTL) cells is proposed and investigated. The infection transmission

is modeled by Hattaf-Yousfi functional response and the fractional derivative is in the Caputo sense. First, the well-

posedness of the proposed model is proved in terms of existence, uniqueness, non-negativity and boundness of

solutions. The global asymptotic stability of steady states is established by using suitable Lyapunov functionals and

applying LaSalle’s invariance principle. Numerical simulations are performed to illustrate the analytical results.
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1. Introduction

Hepatitis B is a serious infection caused by the hepatitis B virus (HBV) which is a member

of Hepadnaviridae family of viruses that attacks liver cells namely hepatocytes. According to

the World Health Organization (WHO), an estimated 257 million people are living with HBV
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infection, and 887000 people are dead in 2015 due to HBV complications including cirrhosis

and hepatocellular carcinoma [1]. Therefore, HBV infection still remains a major public health

problem globally.

Mathematical modeling using fractional differential equations (FDEs) is a suitable tool to

describe the dynamics of HBV infection [2, 3, 4]. Further, the immune response exerted by

CTL cells plays an important role in the control of HBV infection. This immune response is

called the cellular immunity and is programmed to kill the infected hepatocytes. Motivated by

these mathematical and biological reasons, we propose the following fractional order model for

HBV infection with cellular immunity:

(1)



DαH(t) = s−µH− f (H,V )V,

Dα I(t) = f (H,V )V −δ I− pIZ,

DαC(t) = aI− (β +δ )C,

DαV (t) = βC− cV,

DαZ(t) = qIZ−σZ,

where H(t), I(t), C(t), V (t) and Z(t) represent the concentrations of uninfected hepatocytes, in-

fected hepatocytes, HBV DNA-containing capsids, virions and CTL cells at time t, respectively.

The uninfected hepatocytes are produced from a source at a constant rate s, die at rate µH and

become infected by virions at rate f (H,V )V . The parameter δ is the death rate for infected hep-

atocytes and capsids. The parameters a, β and c are, respectively, the production rate of capsids

from infected hepatocytes, the rate at which the capsids are transmitted to blood which gets

converted to virions, and the clearance rate of virions. The infected hepatocytes are killed by

CTL cells at rate p while q and σ denote CTL responsiveness rate and decay rate of CTL cells in

absence of antigenic stimulation, respectively. In system (1), the infection transmission is mod-

eled by Hattaf-Yousfi functional response [5] of the form f (H,V ) = kH
α0+α1H+α2V+α3HV , where

α0,α1,α2,α3 ≥ 0 are the saturation factors measuring the inhibitory or psychological effect and

k is a positive constant rate describing the infection process. Finally, Dα is the Caputo fractional

derivative and α is a parameter that describes the order of the fractional time-derivative with

α ∈ (0,1].
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The aim of this paper is to investigate the dynamical behavior of our FDE model presenting

by system (1) that improves and generalizes the mathematical models formulated by ordinary

differential equations (ODEs) in [6, 7] and also the FDE models introduced in [2, 3, 4]. So, the

rest of the paper is organized as follows. In the next section, we prove the well-posedness of the

model and we calculate the threshold parameters for the existence of equilibria. By the method

of Lyapunov functionals, we show the global stabilities of the three equilibria in section 3. The

illustrative numerical simulations are presented in section 4. Finally, we provide in section 5

some concluding remarks.

2. Well-posedness and threshold parameters

In this section, we establish the existence, uniqueness, non-negativity and boundedness of

solutions of our model. For these reasons, we assume that the initial conditions for system (1)

satisfy

(2) H(0) = H0 ≥ 0, I(0) = I0 ≥ 0, C(0) =C0 ≥ 0, V (0) =V0 ≥ 0, Z(0) = Z0.

Theorem 2.1. For any initial conditions satisfying (2), there exists a unique solution of system

(1) defined on [0,+∞). Moreover, this solution remains non-negative and bounded for all t ≥ 0.

Proof. System (1) can be written as follows

DαX(t) = F(X),

where

X(t) =



H(t)

I(t)

C(t)

V (t)

Z(t)


and F(X) =



s−µH− f (H,V )V

f (H,V )V −δ I− pIZ

aI− (β +δ )C

βC− cV

qIZ−σZ


.
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Let

η =



s

0

0

0

0


, A1 =



−µ 0 0 0 0

0 −δ 0 0 0

0 a −(β +δ ) 0 0

0 0 β −c 0

0 0 0 0 −σ


and

B =



0 0 0 0 0

0 0 0 0 −p

0 0 0 0 0

0 0 0 0 0

0 0 0 0 q


.

So, we discuss four cases:

• If α0 6= 0, then system (1) can be written as follows

DαX(t) = η +A1X +
α0V

α0 +α1H +α2V +α3HV
A2X + IBX ,

where

A2 =



−k
α0

0 0 0 0
k

α0
0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


.

Then

(3) ‖DαX(t)‖ ≤ ‖η‖+(‖A1‖+‖V‖‖A2‖+‖I‖‖B‖)‖X‖ .

• If α1 6= 0, we have

DαX(t) = η +A1X +
α1H

α0 +α1H +α2V +α3HV
A3X + IBX ,
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where

A3 =



0 0 0 −k
α1

0

0 0 0 k
α1

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


.

Then

‖DαX(t)‖ ≤ ‖η‖+(‖A1‖+‖A3‖+‖I‖‖B‖)‖X‖ .

• If α2 6= 0, we have

DαX(t) = η +A1X +
α2V

α0 +α1H +α2V +α3HV
A4X + IBX ,

where

A4 =



−k
α2

0 0 0 0
k

α2
0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


.

Then

‖DαX(t)‖ ≤ ‖η‖+(‖A1‖+‖A4‖+‖I‖‖B‖)‖X‖ .

• If α3 6= 0, we have

DαX(t) = η +A1X +
α3HV

α0 +α1H +α2V +α3HV
A5 + IBX ,

where

A5 =



−k
α3

k
α3

0

0

0


.

Then

‖DαX(t)‖ ≤ ‖η‖+‖A5‖+(‖A1‖+‖I‖‖B‖)‖X‖.



6 M. BACHRAOUI, K. HATTAF, N. YOUSFI

Consequently, the second condition of Lemma 4 in [8] is satisfied and system (1) has a unique

solution on [0,+∞).

On the other hand, we have

DαH
∣∣
H=0 = s > 0,

Dα I
∣∣
I=0 = f (H,V )V ≥ 0, for all H,V ≥ 0,

DαC
∣∣
C=0 = aI ≥ 0, for all I ≥ 0,

DαV
∣∣
V=0 = βD≥ 0, for all D≥ 0,

DαZ
∣∣
Z=0 = 0.

It follows from Lemmas 5 and 6 in [8] that the solution of (1) is non-negative.

In order to prove that the solution is bounded, we consider the following function

T (t) = H(t)+ I(t)+
δ

2a
C(t)+

δ (β +δ )

4aβ
V (t)+

p
q

Z(t).

Then we can obtain

DαT (t) = s−µH(t)− δ

2
I(t)− δ (β +δ )

4a
C(t)− cδ (β +δ )

4aβ
V (t)− pσ

q
Z(t)

≤ s− γT (t),

where γ = min{µ, δ

2 ,
β+δ

2 ,c,σ}. Hence,

T (t)≤ T (0)Eα(−γtα)+
s
γ
[1−Eα(−γtα)] ,

where Eα(z) =
∞

∑
k=0

zα

Γ(αk+1)
is the Mittag-Leffler function of parameter α .

Since 0≤ Eα(−γtα)≤ 1 , we get

T (t)≤ T (0)+
s
γ
,

which implies that H, I, C, V and Z are bounded. This completes the proof.

Obviously, system (1) has an infection-free equilibrium E0(H0,0,0,0,0), where H0 =
s
µ

.

Then we define the first threshold parameter called the basic reproduction number as follows

R0 =
βksa

δc(α0µ +α1s)(β +δ )
.
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The other equilibria of system (1) satisfy the following equations

s−µH− f (H,V )V = 0,(4)

f (H,V )V −δ I− pIZ = 0,(5)

aI− (β +δ )C = 0,(6)

βC− cV = 0,(7)

qIZ−σZ = 0.(8)

The last equation (8) implies that either Z = 0 or I =
σ

q
. Each of these cases will lead to one of

the other equilibria.

First, consider the case Z = 0. Then by (4)-(7), we have I =
s−µH

δ
, C =

a(s−µH)

δ (β +δ )
, V =

βa(s−µH)

cδ (β +δ )
and

(9) f
(

H,
βa(s−µH)

cδ (β +δ )

)
=

δc(β +δ )

βa
.

Due to I ≥ 0, we have H ≤ s
µ

. Define

g1(H) = f
(

H,
βa(s−µH)

cδ (β +δ )

)
− δc(β +δ )

βa
.

We have g1(0) =−δc(β+δ )
βa < 0 and g1

(
s
µ

)
= δc(β+δ )

βa (R0−1) and

g′1(H) =
∂ f
∂H
− β µa

cδ (β +δ )

∂ f
∂V

> 0.

When R0 > 1, we deduce that system (1) admits a unique immune-free infection equilibrium

E1(H1, I1,C1,V1,0) with H1 ∈
(

0,
s
µ

)
, I1 =

s−µH1

δ
, C1 =

a(s−µH1)

δ (β +δ )
and V1 =

βa(s−µH1)

cδ (β +δ )
.

For the case when I =
σ

q
, we get C =

σa
q(β +δ )

, V =
βσa

cq(β +δ )
, Z =

q(s−µH)−δσ

qσ
and

f
(

H,
βσa

cq(β +δ )

)
=

cq(β +δ )(s−µH)

βσa
.

Since Z ≥ 0, we have H ≤ s
µ
− σδ

qµ
. Thus, there does not exist any biologically feasible steady

state whenever H >
s
µ
− σδ

qµ
. Let us define the function g2 defined on the interval [0,

s
µ
− σδ

qµ
]
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by

g2(H) = f
(

H,
βσa

cq(β +δ )

)
− cq(β +δ )(s−µH)

βσa
.

Then we can easily obtain that g2(0) =−
cq(β +δ )(s−µH)

βσa
< 0 and

g′2(H) =
∂ f
∂H

+
cqµ (β +δ )

βσa
> 0.

In addition to the threshold parameter R0, we define the CTL immune response reproduction

number R1 by

(10) R1 =
qI1

σ
,

which describes the average number of CTL immune cells activated by infected hepatocytes

in case of successful HBV infection. Here, q denotes the rate of CTL response activation, 1
b

represents the average life expectancy for CTL cells and I1 is the number of infected hepatocytes

at the immune-free equilibrium E1.

If R1 < 1, then I1 <
σ

q , H1 >
s
µ
− σδ

qµ
and

g2

(
s
µ
− σδ

qµ

)
= f

(
s
µ
− σδ

qµ
,

βσa
cq(β +δ )

)
− δc(β +δ )

βa

< f (H1,V1)−
δc(β +δ )

βa
= 0.

Therefore, there is no biological equilibrium when R1 < 1.

If R1 > 1, then H1 <
s
µ
− σδ

qµ
and g2

(
s
µ
− σδ

qµ

)
> 0. Therefore, there exists a unique infection

equilibrium with CTL immune response E2(H2, I2,C2,V2,Z2) with H2 ∈
(

0, s
µ
− σδ

qµ

)
, I2 =

σ

q
,

C2 =
σa

q(β +δ )
, V2 =

βσa
cq(β +δ )

and Z2 =
q(s−µH2)−δσ

pσ
.

Summary of the above discussions gives rise to the following theorem.

Theorem 2.2.

(i) When R0 ≤ 1, model (1) has a unique infection-free equilibrium E0(H0,0,0,0,0), where

H0 =
s
µ

.
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(ii) When R1 ≤ 1 < R0, in addition to E0, model (1) has a unique immune-free infection

equilibrium E1(H1, I1,C1,V1,0), where H1 ∈
(

0,
s
µ

)
, I1 =

s−µH1

δ
, C1 =

a(s−µH1)

δ (β +δ )

and V1 =
βa(s−µH1)

cδ (β +δ )
.

(iii) When R1 > 1, besides E0 and E1, system (1) has a unique infection equilibrium with

CTL immune response E2(H2, I2,C2,V2,Z2), where H2 ∈
(

0,
s
µ
− σδ

qµ

)
, I2 =

σ

q
, C2 =

σa
q(β +δ )

, V2 =
βσa

cq(β +δ )
and Z2 =

q(s−µH2)−δσ

pσ
.

3. Stability analysis

In this section, we analyse the stability of the three equilibria of (1). We first have the follow-

ing result.

Theorem 3.1. The infection-free equilibrium E0 is globally asymptotically stable for R0 ≤ 1

and it becomes unstable for R0 > 1.

Proof. In order to show the first part of this theorem, we consider the following Lyapunov

functional

L0(t) =
α0H0

α0 +α1H0
Φ

(
H
H0

)
+ I +

δ

a
C+

δ (β +δ )

βa
V +

p
q

Z,

where Φ(x) = x− 1− ln(x) for x > 0. Based on the property of fractional derivatives given in

[9], we get

DαL0(t)≤
α0

α0 +α1H0

(
1− H0

H

)
DαH +Dα I +

δ

a
DαC+

δ (β +δ )

βa
DαV +

p
q

DαZ.

By s = µH0, we have

DαL0(t) ≤ −µα0(H−H0)
2

(α0 +α1H0)H
+

δc(β +δ )

βa

(
f (H,V )

f (H,0)
R0−1

)
V − pσ

q
Z

≤ −µα0(H−H0)
2

(α0 +α1H0)H
+

δc(β +δ )

βa
(R0−1)V − pσ

q
Z.

Then DαL0(t)≤ 0 when R0≤ 1. Also, the largest invariant set in {(H, I,C,V,Z) | DαL0(t) = 0}

is the singleton {E0}. By LaSalle’s invariance principale [10], we deduce that E0 is globally

asymptotically stable for R0 ≤ 1.
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It remains to investigate the dynamical property of E0 in case when R0 > 1. For this purpose,

we compute the characteristic equation about E0 that it is given by

(µ +ξ )(σ +ξ )P0(ξ ) = 0,

where P0(ξ ) = ξ 3 +a1ξ 2 +a2ξ +a3 and

a1 = β + c+2δ ,

a2 = δ (β +δ )+ c(2δ +β ) ,

a3 = cδ (β +δ )(1−R0).

We have lim
ξ→+∞

P0(ξ ) = +∞ and P0(0) = cδ (β + δ )(1−R0). Then P0(0) < 0 when R0 > 1.

Hence, there exists a ξ0 ∈ (0,+∞) such that P0(ξ0) = 0, which implies that the characteristic

equation at E0 has a positive root when R0 > 1. Consequently, E0 is unstable whenever R0 > 1.

This completes the proof.

Theorem 3.2. The immune-free infection equilibrium E1 is globally asymptotically stable for

R1 ≤ 1 < R0 and it becomes unstable for R1 > 1.

Proof. In order to establish the global stability part, we define a Lyapunov functional as follows

L1(t) =
α0 +α2V1

α0 +α1H1 +α2V1 +α3H1V1
H1Φ

(
H
H1

)
+ I1Φ

(
I
I1

)
+

δ

a
C1Φ

(
C
C1

)
+

δ (β +δ )

aβ
V1Φ

(
V
V1

)
+

p
q

Z.

The time derivative of L1(t) along the positive solutions of system (1) satisfies:

DαL1(t) ≤
(

1− f (H1,V1)

f (H,V1)

)
DαH +

(
1− I1

I

)
Dα I +

δ

a

(
1−C1

C

)
DαC

+
δ (β +δ )

aβ

(
1− V1

V

)
DαV +

p
q

DαZ.
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By using s = µH1 + f (H1,V1)V1, we get

DαL1(t) ≤ − µ (α0 +α2V1)(H−H1)
2

(α0 +α1H1 +α2V1 +α3H1V1)H
+

pσ

q
(R1−1)Z

+ f (H1,V1)V1

(
5− f (H1,V1)

f (H,V1)
−C1I

CI1
− f (H,V )

f (H1,V1)

V I1

V1I
− CV1

C1V
− f (H,V1)

f (H,V )

)
− f (H1,V1)V1(α0 +α1H)(α2 +α3H)(V −V1)

2

(α0 +α1H +α2V1 +α3HV1)(α0 +α1H +α2V +α3HV )V1
.

Since the arithmetic mean is greater than or equal to the geometric mean, we have

(11) 5− f (Hi,Vi)

f (H,Vi)
−CiI

CIi
− f (H,V )

f (Hi,Vi)

V Ii

ViI
− CVi

CiV
− f (H,Vi)

f (H,V )
≤ 0, for i ∈ {1,2}

Therefore, DαL1(t)≤ 0 if R1≤ 1. In addition, the largest compact invariant set in {(H, I,C,V,Z) | DαL1(t) = 0}

is the singleton {E1}. By the LaSalle’s invariance principale, E1 is globally asymptotically sta-

ble for R1 ≤ 1 < R0.

On the other hand, the characteristic equation at E1 is as follows

(12) (qI1−σ −ξ )P1(ξ ) = 0,

where

(13) P1(ξ ) =

∣∣∣∣∣∣∣∣∣∣∣∣

−µ−V1
∂ f
∂H −ξ 0 0 −V1

∂ f
∂V − f (H1,V1)

V1
∂ f
∂H −δ 0 V1

∂ f
∂V + f (H1,V1)

0 a −(β +δ ) 0

0 0 β −c

∣∣∣∣∣∣∣∣∣∣∣∣
Clearly, the equation (12) has a root ξ1 = qI1−σ . Then, when R1 > 1, we have ξ1 > 0. In this

case, E1 is unstable.

Finally, we investigate the global stability of the third equilibrium E2.

Theorem 3.3. The infection equilibrium with CTL immune response E2 is globally asymptoti-

cally stable when R1 > 1.
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Proof. Consider the following Lyapunov functional

L2(t) =
α0 +α2V2

α0 +α1H2 +α2V2 +α3H2V2
H2Φ

(
H
H2

)
+ I2Φ

(
I
I2

)
+
(δ + pZ2)

a
C2Φ

(
C
C2

)
+

(δ + pZ2)(β +δ )

aβ
V2Φ

(
V
V2

)
+

p
q

Z2Φ

(
Z
Z2

)
.

Calculating the time derivative of L2(t) along the positive solutions of (1), we have

DαL2(t) ≤
(

1− f (H2,V2)

f (H,V2)

)
DαH +

(
1− I2

I

)
Dα I +

(δ + pZ2)

a

(
1−C2

C

)
DαC

+
(δ + pZ2)(β +δ )

aβ

(
1− V2

V

)
DαV +

p
q

(
1− Z2

Z

)
DαZ.

By applying the equality s = µH2 + f (H2,V2)V2, we obtain

DαL2(t) ≤
−µ (α0 +α2V2)(H−H2)

2

(α0 +α1H2 +α2V2 +α3H2V2)H2

+ f (H2,V2)V2

(
5− f (H2,V2)

f (H,V2)
−C2I

CI2
− f (H,V )

f (H2,V2)

V I2

V2I
− CV2

C2V
− f (H,V2)

f (H,V )

)
− f (H2,V2)V2(α0 +α2H)(α2 +α3H)(V −V2)

2

(α0 +α1H +α2V2 +α3HV2)(α0 +α1H +α2V +α3HV )V2
.

From (11), we have DαL2(t)≤ 0. Observe that DαL2(t) = 0 if and only if H = H2, I = I2, C =

C2, V =V2 and Z =Z2. This implies that the largest compact invariant set in {(H, I,C,V,Z) | DαL2(t) = 0}

is the singleton {E2}. If follows from LaSalle’s invariance principale that E2 is globally asymp-

totically stable.

4. Numerical simulations

In this section, we validate our theoretical results by numerical simulations. We solve nu-

merically the nonlinear fractional model (1) by applying the method developed by Odibat and

Momani in [11]. This method is a generalization of the classical Euler’s method.

First, we choose s = 5.04× 105, µ = 0.0039, k = 3× 10−6, δ = 0.00693, p = 0.00064,

a = 150, β = 0.2, c = 0.67, q = 4.4× 10−7, σ = 0.05, α0 = 1, α1 = 0.1, α2 = 0.0001 and

α3 = 0.0000001. In this case, R0 = 0.9367 < 1. According to Theorem 3.1, the infection-free

equilibrium E0(1.2923×108,0,0,0,0) is globally asymptotically stable (see figure 1).
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FIGURE 1. Stability of the infection-free equilibrium E0.
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FIGURE 2. Stability of the immune-free infection equilibrium E1.

Next, we choose k = 3× 10−5 and do not change the other parameter values. For this case,

we obtain R0 = 9.3672 > 1 and R1 = 0.3403 < 1. Applying Theorem 3.2, the immune-free

infection equilibrium E1(1.2916×108,3.8668×104,2.8030×107,8.3672×106,0) is globally

asymptotically stable (see figure 2).

Finally, we change q = 4.4× 10−6 and the other parameters have the same values as in

the second case. By calculation, we have R1 = 3.4028 > 1. Then model (1) has an infection

equilibrium with CTL immune response E2(1.2918×108,1.1364×104,8.2373×106,2.4589×

106,18.4959) which is globally asymptotically stable. Figure 3 illustrates this result.
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FIGURE 3. Stability of the infection equilibrium with CTL immune response E2.

5. Conclusions

In this work, we have proposed a fractional order model for HBV infection with capsids,

cellular immunity and Hattaf-Yousfi functional response that includes the traditional bilinear

incidence rate, the saturated incidence rate, the Beddington-DeAngelis functional response and

the Crowley-Martin functional response. We have derived two critical threshold parameters

that are the basic reproduction number R0 and the CTL immune response reproduction number

R1. We have proved that the global dynamical behaviors of the proposed model are completely

determined by both threshold parameters. More concretely, the infection-free equilibrium E0

is globally asymptotically stable when R0 ≤ 1 which leads to the eradication of virus in the

host. When R0 > 1, two cases arise depending on the value of R1. For R1 ≤ 1, the immune-free

infection E1 becomes globally asymptotically stable and for R1 > 1, the infection equilibrium

with CTL immune response E2 becomes globally asymptotically stable. These results show

that the virus persists in the liver despite the activation or not of the CTL immune response.

Furthermore, the models and results presented in [6, 7] are extended and improved.

According to the above analytical results, we deduce that the order α of the Caputo fractional

derivative does not affect the stability of equilibria. But from the numerical simulations, we

observe that when the value of α decreases (long memory), the solutions of the model converge

rapidly to the steady states. So, the fractional order can affect the time for arriving to the steady
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states and reduces the oscillations (see figures 1, 2 and 3). In addition, we conclude that the

activation of CTL immune response is unable to eliminate the virions in the liver, but plays an

important role in HBV infection by reducing the viral load, increasing the healthy hepatocytes

and decreasing the infected hepatocytes.
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