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Abstract. In this paper, we discuss the connection between Lie symmetry of a SIRS stochastic differential equa-

tions and its integrability. A derived determining equation is obtained and used to find the admitted Lie point

symmetries of the stochastic model. A third dimensional system is reduced into a one dimensional to achieve a

linear model by mean of Symmetry analysis techniques and obtained the corresponding Lie bracket.
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1. INTRODUCTION

In this paper, we introduce stochastic effects into a deterministic SIRS model. In nature,

infection of disease are impacted by diverse complex biological process. Therefore one could

believe on the existence of randomness in the transmission dynamics of the disease. Taking into

consideration the uncertainty aspects, randomness can be presented to the model by replacing

the parameters µ (birth rate), γ (infection rate) and ν (death rate) by µ → µ +σẆ (t), ν →
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ν +σẆ (t), γ → γ +σẆ (t). The system that governed a stochastic SIRS model is given by

dS(t) =
(

µN− βS(t)I(t)
N

+θR(t)−νS(t)
)

dt−σ1S(t)dW1(t)

dI(t) =
(

βS(t)I(t)
N

− γI(t)−νI(t)
)

dt−σ2I(t)dW2(t)(1)

dR(t) =
(

γI(t)−θR(t)−νR(t)
)

dt−σ3R(t)dW3(t)

with suitable initial conditions, where W (t) is a Wiener processes (or Brownian motions), β the

transmission rate. In view of the fact that death rate is so unpredictable, it is therefore important

to introduce environmental noise to the parameter as stated in [2, 3]. It should be acknowledged

that the equivalent noise intensity σ and the Wiener process W (t) are achieved for susceptible

and infected classes. However, the genetic factors that have an impact on infectious individuals

are divergent even in the absence of complete biological information. Given that infectious and

noninfectious individuals required to have different biological system, it is realistic for W (t)

and σ to differ from each and other. In this paper, Kozlov’s approach [8] is used to demonstrate

that if a SIRS stochastic model admits a point symmetry, then it is integrable. In this regards,

the point symmetry establishes a change of variables which linearizes the nonlinear model and

provides explicit solutions of the stochastic differential equations.

This paper is organised as follows. In Section 2 we provide the fundamental characteristics

and definitions for the Lie point symmetries of stochastic differential equations. In Section 3,

we use the preliminary results to find Lie operators of the three dimensional nonlinear system.

The model is reduced to one dimensional equation and performed the Lie symmetry analysis

in Section 4. The Wiener processes term is considered into a reduced equation and study the

resulting equation from the view point of Lie symmetry in Section 5. The integrability of the

reduced stochastic SIRS model is established in Section 6.

2. PRELIMINARIES ON SYMMETRY OF STOCHASTIC DIFFERENTIAL EQUATIONS

This Section focuses on Lie point symmetry transformation of Itô stochastic differential equa-

tion as described in [1]. Furthermore, the idea was extended in [6, 7] by incorporating Brownian

motion on the theory of Lie symmetry by mean of Itô lemma for Poisson Process.
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2.1. One parameter Lie group of transformations.

Let [13]

(2) dxi = fi(x, t)dt +σi(x, t)dWi

be a Itô stochastic differential equations driven by Wiener process, with fi(x, t) and σi(x, t)

representing drift vector and Poisson diffusion coefficients respectively. The infinitesimal gen-

erator

(3) G = η(t,x)
∂

∂ t
+ξi(t,x)

∂

∂xi

admits a one-parameter Lie group of transformations

(4) t̃ = t + εξi(t,x), x̃ = x+ εη(t,x)

with

(5)
dt̃
dε

= ξi(t̃, x̃),
dx̃
dε

= η(t̃, x̃)

satisfying the initial conditions

(6) t̃ |ε=0= t, x̃ |ε=0= x.

Furthermore, equation (3) admits the given determining equations

(7)
(

fiΓ(η)+
λσi

2
Γ(η)+G( fi)−Γξi

)
(t,W (t)) = 0

(8)
(

σi

2
Γ(η)+G(σi)−Γ

∗
ξi

)
(t,W (t)) = 0

satisfying the conditions

(9) Γ
∗
η(t,W (t)) = 0, Γη(t,W (t)) = constant

where

(10) Γ(X j) =
∂X j

∂ t
+ fi

∂X j

∂xi

(11) Γ
∗
(X j)

= X j(t,xi(t)+σ j(t,x(t)))−X j(t,x(t))
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The Itô Poisson process of an arbitrary function X(t,x) defined above is given by

(12) dX j(t,x(t)) =
(

∂X j

∂ t
+ fi

∂X j

∂xi

)
dt +

(
X j(t,xi)+σ j(t,xi)−X j(t,xi)

)
dW (t).

The substitution of (10) and (11) into (12) gives

(13) dX j(t,x(t)) = Γ(X j)dt +Γ
∗
(X j)

dW (t).

2.2. Prolongation of an infinitesimal generator. A second order ordinary differential equa-

tion

(14) ut−F(t,u,u(1)) = 0

admits a one-parameter Lie group of transformations

t̄ ≈ t +aξ
0(t,u)

ū ≈ u+aη(t,u)(15)

with infinitesimal generator

(16) G = ξ
0(t,u)

∂

∂ t
+η(t,u)

∂

∂u

if

(17) ūt̄−F(t̄, ū, ū(1)) = 0

The group transformations t̄ and ū are obtained by solving the following Lie equations [5, 12]

dt̄
da

= ξ
0(t̄, ū)

dū
da

= η(t̄, ū)(18)

with initial conditions

(19) t̄ |a=0= t, ū |a=0= u.

The infinitesimal form of ūt̄ , ū(1) are found by the given formulas [5, 9]:

ūt̄ ≈ ut +aζ0(t,u,ut ,u(1))

ūx̄i ≈ uxi +aζi(t,u,ut ,u(1))(20)
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The functions ζ0 and ζi are found by using the prolongation formulas below [10]

ζ0 = Dt(η)−utDt(ξ
0)

ζi = Di(η)−utDi(ξ
0)(21)

In [11], Matadi claimed that the equation (14) possesses the symmetry (group generator)

(22) G = ξ
0(t,x,u)

∂

∂ t
+ξ

i(t,x,u)
∂

∂xi +η(t,x,u)
∂

∂u

iff

(23) G[N]N|N=0 = 0

with G[N] the n-th extension of G. Hence, the determining equation (8) is used to obtain the

following in case of stochastic differential equations

(24) G[N](ẋi− fi)|(ẋi− fi)−
σi

2

(
∂X j

∂ t
+ fi

∂X j

∂xi

)
= 0.

3. SYMMETRY FOR THREE DIMENSIONAL STOCHASTIC SIRS MODEL

We will refer the reader to the proven Theorem 3 in [4] stated below

Theorem 1. Suppose the system (1) admits an r-parameter solvable algebra g of simple deter-

ministic symmetries, with generators

(25) Gk =
n

∑
i=1

φ
i
k(x, t)

∂

∂i
, k = 1, ...,r

acting regularly with r-dimensional orbits.

Then it can be reduced to a system of m=(n-r) equations,

(26) dyi = gi(y1, ...,ym; t)dt +σ
i
k(y

1, ...,ym; t)dwk, (i,k = 1, ...,m)

and r ”reconstruction equations”, the solutions of which can be obtained by quadratures from

the solution of the reduced (n-r) order system. In particular, if n=n, the general solution of the

system can be found by quadratures.
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In [8], it has been shown that nonlinear system of the form of equation (1) admits symmetries

(27) G = φ1(t)
∂

∂S(t)
+φ2(t)

∂

∂ I(t)
+φ3(t)

∂

∂R(t)

with φ1, φ2and φ3 arbitrary smooth functions. The corresponding change of variables is given

by

y1 =
x1(B2C3−C2B3)+ x2(A3C2−C3A2)+ x3(A2B3−A3B2)

∆
,

y2 =
x1(B1C3−C1B3)+ x2(A3C1−C3A1)+ x3(A1B3−A3B1)

∆
,

y3 =
x1(B1C2−C1B2)+ x2(A2C1−C2A1)+ x3(A1B2−A2B1)

∆
.

with ∆ = A1(B2C3−C2B3)−B1(A2C3−C2A3)+C1(A2B3−B2A3) 6= 0 and the three dimen-

sional vector fields given by

(28) Gi = Ai(t)
∂

∂S(t)
+Bi(t)

∂

∂ I(t)
+Ci(t)

∂

∂R(t)
.

Hence, the stochastic SIRS model (1) is mapped into

dy1 =
µN
∆

dt +
σ1(B2C3−C2B3)

∆
dW1(t)(29)

dy2 =
σ2(A2C3−C2A3)

∆
dW2(t)(30)

dy3 =
σ3(A2B3−B2A3)

∆
dW3(t)

4. LIE SYMMETRY OF THE REDUCED STOCHASTIC SIRS MODEL

In this Section a three dimensional stochastic SIRS model is reduced into one dimensional

equation and performed the Lie point symmetry. In this regard, the reduced form of system (1)

is given by

(31) dN(t) = N(t)[(µ−ν)dt−σdW (t)]

with initial condition N(t0) = n0 > 0. Hence, the determining equations described in (7) and (8)

are given by

(32)
[
(µ−ν)nΓ(η)+

λσ(µ−ν)n
2

Γ(η)+(µ−ν)ξ −Γξi

]
(t,N(t)) = 0
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substituting equation (10) into (32) we obtain

(33) (µ−ν)n
∂ (η)

∂ t
+

λσ(µ−ν)n
2

∂ (η)

∂ t
+(µ−ν)ξ (t,n)− ξ (t,n)

∂ t
− (µ−ν)n

ξ (t,n)
∂n

= 0

and

(34)
(

σ(µ−ν)n
2

Γ(η)+(µ−ν)ξ (t,n)−Γ
∗
ξi

)
(t,N(t)) = 0

The substitution of (11) into (34) gives

(35)
σ(µ−ν)n

2
∂ (η)

∂ t
+(µ−ν)ξ (t,n)− (µ−ν)ξ (t,n+n)+(µ−ν)ξ (t,n) = 0

From equation (9), we obtain the temporal infinitesimal below

(36) η = At +B

The substitution of (36) into (33) and (35) gives

(37)
n(µ−ν)(2A+λσ)

2
+(µ−ν)ξ (t,n)− ∂ξ (t,n)

∂ t
− (µ−ν)n

∂ξ (t,n)
∂n

= 0

and

(38)
σA(µ−ν)n

2
+2(µ−ν)ξ (t,n)− (µ−ν)ξ (t,2n) = 0.

Differentiating equations (37) and (38) with respect to n, we obtain respectively

(39)
(µ−ν)(2A+λσ)

2
− ∂ 2ξ (t,n)

∂n∂ t
− (µ−ν)n

∂ 2ξ (t,n)
∂n2 = 0

and

(40)
σA(µ−ν)

2
+2(µ−ν)

∂ξ (t,n)
∂n

−2(µ−ν)
∂ξ (t,2n)

∂n
= 0.

Differentiating equation (40) with respect to t we obtain

(41)
∂ 2ξ (t,n)

∂n∂ t
=

∂ 2ξ (t,2n)
∂n∂ t

.

Equation (41) can be written as

(42)
∂ 2ξ (t,n)

∂n∂ t
=

dg(t)
dt

.

with

(43) g(t) =
∂ξ (t,2n)

∂n
.
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Integrating twice equation (42) we obtain

(44) ξ (t,n) = g(t)n+h(n).

The substitution of equation (44) into (39) gives

(45)
(µ−ν)(2A+λσ)

2
=

dg(t)
dt

+(µ−ν)n
d2h(n)

dn2 .

Differentiating equation (45) with respect to t, we obtain

(46) g(t) =Ct +D.

The spatial infinitesimal below is obtained by substituting equation (46) into (44)

(47) ξ (t,n) = (Ct +D)n+h(n).

The substitution of equation (47) into (45) gives

(48)
(µ−ν)(2A+λσ)

2
=C+(µ−ν)n

d2h(n)
dn2 .

Therefore,

(49)
d2h(n)

dn2 =
(µ−ν)(2A+λσ)−2C

2n(µ−ν)
.

The solution of equation (49) is given by

(50) h(n) =
(µ−ν)(2A+λσ)−2C

2(µ−ν)

[
n lnn−n

]
+En+F.

The spatial infinitesimal describes in equation (47) becomes

(51) ξ (t,n) = (Ct +D)n+
(µ−ν)(2A+λσ)−2C

2(µ−ν)

[
n ln | n | −n

]
+En+F.

Substituting equation (51) into (38) and after simplification, we obtain

(52)
σA(µ−ν)n

2
+F =

(µ−ν)(2A+λσ)−2C
2(µ−ν)

[
n ln | 4 |

]
By comparing the coefficients of powers of n in equation (52) we obtain

• n : C = A
[
(µ−ν)− σ(µ−ν)2

2ln4

]
• n0 : F = 0
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Finally, equation (51) can be written as

(53) ξ (t,n) = A
[(

(µ−ν)− σ(µ−ν)2

2ln4
+

λσ(µ−ν)

2

)
nt +

λσ(µ−ν)

2ln4

]
+(D+E)n

where A, D and E are arbitrary constants. Thus the Lie algebra of equation (31) is spanned by

the following three infinitesimal generator:

G1 = t
∂

∂ t
+
[(

(µ−ν)− σ(µ−ν)2

2ln4
+

λσ(µ−ν)

2

)
nt +

λσ(µ−ν)

2ln4

]
∂

∂n

G2 =
∂

∂ t

G3 = 2n
∂

∂n

Computing the Lie bracket we obtain the given commutator table:

G1 G2 G3

G1 0 −
(

G2 +δG3

)
λσ(µ−ν)

ln4 G3

G2 G2 +δG3 0 0

G3 −λσ(µ−ν)
ln4 G3 0 0

TABLE 1. The commutator table of the infinitesimal generator

with δ =
(
(µ−ν)− σ(µ−ν)2

2ln4 + λσ(µ−ν)
2

)
.

5. W - SYMMETRY OF THE REDUCED STOCHASTIC SIRS MODEL

The Lie symmetry analysis performed in Section 4 involved only the total number of popula-

tion and time, (t,n). However, in this Section, the Wiener process term W (t) is also considered.

The stochastic differential equation (2) driven by Wiener processes with infinitesimal operator

(54) G = η(t,n,W )
∂

∂ t
+ξi(t,n,W )

∂

∂ni
+φi(t,n,W )

∂

∂W

admits a one-parameter Lie group of transformations

(55) t̃ = t + εη(t,n,W ), ñ = n+ εξi(t,n,W ), W̃ =W + εφi(t,n,W )

with

(56)
dt̃
dε

= η(t̃, ñ,W̃ ),
dñ
dε

= ξi(t̃, ñ,W̃ ),
dW̃
dε

= φi(t̃, ñ,W̃ )
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satisfying the initial conditions

(57) t̃ |ε=0= t, ñ |ε=0= n,W̃ |ε=0=W.

The Lie group transformation (55) can be written in terms of Lie operator (54) as follows

(58) t̃ = exp[εG](t), ñ = exp[εn](n), W̃ = exp[εW ](W ).

Furthermore, equation (54) admits the given determining equations

(59)
(

fiΓ(η)+λσi[Γ(η)−Γ
∗(φi)]+G( fi)−Γξi

)
(t,W (t)) = 0

(60)
(

σiΓ
∗(φi)+G(σi)−Γ

∗(ξi)
)
(t,W (t)) = 0

and

(61) Γ(φi)+λΓ
∗(φi) = λΓ(η)

with

(62) Γ
∗(φi) =

Γ(η)

2

(63) Γ(φi) = λ
Γ(η)

2

satisfying the conditions

(64) Γ
∗
η(t,n,W (t)) = 0, Γη(t,n,W (t)) = constant

where

(65) Γ(X j) =
∂X j

∂ t
+ fi

∂X j

∂xi

(66) Γ
∗
(X j)

= X j(t,xi(t)+σ j(t,x(t)))−X j(t,x(t))

The Itô Poisson process of an arbitrary function X(t,x) defined above is given by

(67) dX j(t,x(t)) =
(

∂X j

∂ t
+ fi

∂X j

∂xi

)
dt +

(
X j(t,xi)+σ j(t,xi)−X j(t,xi)

)
dW (t).

The substitution of (65) and (66) into (67) gives

(68) dX j(t,x(t)) = Γ(X j)dt +Γ
∗
(X j)

dW (t).
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Now, considering equation (31), the determining equations (59) and (60) become

(69)

(µ−ν)n
(

∂η

∂ t
+(µ−ν)n

∂η

∂n

)
+

λσn
2

(
∂η

∂ t
+(µ−ν)n

∂η

∂n

)
+(µ−ν)η =

∂ξ

∂ t
+(µ−ν)n

∂ξ

∂n
.

(70) σn
(

φ(t,n+σn,W )−φ(t,n,W )
)
= ξ (t,n+σ +n)−ξ (t,n)

and

(71) φ(t,n+σn,W )−φ(t,n,W ) =
1
2

(
∂η

∂ t
+(µ−ν)n

∂η

∂n

)

(72)
(

∂φ

∂ t
+(µ−ν)n

∂φ

∂n

)
=

λ

2

(
∂η

∂ t
+(µ−ν)n

∂η

∂n

)
From equation (64) we obtain

(73)
∂η(t,n,W )

∂n
= 0,

∂η(t,n,W )

∂W
= 0.

Hence, the temporal infinitesimal is obtain by integrating equation (73) with respect to x

(74) η(t,W ) = At +B.

The substitution of (74) into (69), (71) and (72) gives

(75) A
[

λσn
2

+(µ−ν)n+(µ−ν)t
]
+(µ−ν)B =

∂ξ

∂ t
+(µ−ν)n

∂ξ

∂n
,

(76) φ(t,n+σn,W )−φ(t,n,W ) =
A
2

and

(77)
∂φ

∂ t
+(µ−ν)n

∂φ

∂n
=

λA
2

Differentiating equations (75) and (77) with respect to n with obtain

(78)
Aλσ

2
+µ−ν =

∂ 2ξ

∂ t∂n
+(µ−ν)

∂ξ

∂n
+(µ−ν)n

∂ 2ξ

∂n2

(79)
∂ 2φ

∂ t∂n
+(µ−ν)

∂φ

∂n
+(µ−ν)n

∂ 2φ

∂n2 = 0

Differentiating equations (70) and (76) with respect to n we have

(80)
∂ξ (t,2n+σ)

∂n
=

∂ξ (t,n)
∂n

= k(t)
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(81)
∂φ(t,n+σn,W )

∂n
=

∂φ(t,n,W )

∂n
= h(t,W ).

Integrating equation (80) with respect to n we obtain

(82) ξ (t,n) = k(t)n+h(t)

The substitution of (82) into (78) gives

(83)
dk(t)

dt
+(µ−ν)k(t) =

Aλσ +µ−ν

2

Solving equation (83) we obtain

(84) k(t) =
Aλσ +µ−ν

2(µ−ν)
+C exp[−(µ−ν)t]

The substitution of equation (84) into (70) by using equation (76) gives the following relation

(85) A =−2C
σ

exp[−(µ−ν)t]

Hence,

(86) k(t) =
(µ−ν−λ )C

µ−ν
exp[−(µ−ν)t]+

1
2

Substituting equation (86) into (82) and using equation (75) we obtain

(87) h(t) = A
(µ−ν)

2
t2 +A

[
λσ +2(µ−ν)

2

]
nt +(µ−ν)t +D

Therefore,

(88)

ξ (t,n) = A
[(λσ +2(µ−ν))nt

2
+

(µ−ν)t2

2
− σ(µ−ν−λ )n

2(µ−ν)

]
+B(µ−ν)t +

(µ−ν)n
2

+D

From (81) we obtain

(89) φ(t,n,W ) = h(W )n+h1(t,W )

The substitution of (89) into (77) gives

(90) h1(t,W ) =
λA
2

t− (µ−ν)h(W )nt +h2(W ).

Therefore,

(91) φ(t,n,W ) = h(W )n+
λA
2

t− (µ−ν)h(W )nt +h2(W ).
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The substitution of (91) into (76) produces

(92) h(W ) =
A

2σn

Finally, the infinitesimal of the Wiener processes is obtained by substituting equation (92) into

(91)

(93) φ(t,n,W ) = A
[ 1

2σ
+

(λσ −µ +ν)t
2σ

]
+h2(W ).

The infinitesimal Lie symmetry operators are obtained from equations (74), (88) and (93)

G1 = t
∂

∂ t
+
[(λσ +2(µ−ν))nt

2
+

(µ−ν)t2

2
− σ(µ−ν−λ )n

2(µ−ν)

]
∂

∂n

+
[ 1

2σ
+

(λσ −µ +ν)t
2σ

]
∂

∂W

G2 =
∂

∂ t
+(µ−ν)t

∂

∂n
(94)

G3 =
∂

∂n

G4 = h2(W )
∂

∂W
.

The corresponding Lie bracket is shown in the commutator table below where G5 =
(

G2 +

G1 G2 G3 G4

G1 0 −G5 −G6 0

G2 G5 0 0 0

G3 G6 0 0 0

G4 0 0 0 0
TABLE 2. The commutator table of the infinitesimal generator

λσ

2 (σG3 +G4)
)

and G6 = G3− G4
λσ

.

6. INTEGRABILITY OF THE REDUCED STOCHASTIC SIRS MODEL

According to Kozlov [8] the reduced equation (31) can be transformed into a deterministic

map below

(95) dy = n(t)dt +σ(t)dw.
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Kozlov claimed that the transformation described in (95) is integrable if and only if it admits

the following Lie operator

(96) Y = φ(n, t)∂y.

Furthermore, equation (31) is transform into (95) by mean of the given change of variables

(97) x = F(n, t)

where equation (97) is an inverse to the map y = Φ(n, t) as indicated below

(98) Φ(n, t) =
∫ 1

φ(n, t)
dn.

7. CONCLUSION

Lie symmetry analysis for the stochastic SIRS model driven by the Wiener processes was

achieved, infinitesimals generator of the Wiener processes dW (t) were obtained by the mean

of the moments invariance properties of the process. Determining equations of the stochastic

model were described to have the similar property as for the deterministic model. Ultimately,

the Lie bracket relations obtained shown that every infinitesimal Lie operators found are closed

under the Lie bracket and therefore the Lie generators have formed a Lie algebra.
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