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Abstract. The aim of this work is to study the dynamics of a class of viral infection models with diffusion and

loss of viral particles due to the absorption into uninfected cells. We prove the global stability of equilibria by

constructing suitable Lyapunov functionals for two cases: continuous and discrete. Also, some examples are given

to illustrate the theoretical results.
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1. INTRODUCTION

Reaction-diffusion equations modeling several phenomena in different fields such as physics,

biology, economics, etc. These equations describe the variations in concentration or density

distributed in space under the influence of two processes: the local interactions between species

and the diffusion that causes the propagation of species in space. In population dynamics, the
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terms of diffusion correspond to a random movement of individuals and the terms of reaction

describe their reproduction [1].

Recently, reaction-diffusion equations are used to describe the dynamics of viral infections

and to obtain information on the mechanisms of these viral infections in vivo. In [2], the au-

thors introduced a mathematical model formulated by partial differential equations (PDEs) to

describe the hepatitis B virus (HBV) infection that represents a major global health problem.

They assumed that infection rate is bilinear and they ignored the absorption of the virus by

the uninfected cells. The importance of our work is to consider both nonlinear incidence rate

and absorption of the virus by the uninfected cells. Therefore, we propose a generalized viral

infection model governed by the following nonlinear system of PDEs:


∂T
∂ t

= λ −dT (x, t)− f (T (x, t), I(x, t),V (x, t))V (x, t),
∂ I
∂ t

= f (T (x, t), I(x, t),V (x, t))V (x, t)−aI(x, t),
∂V
∂ t

= dv∆V + kI(x, t)− i f (T, I,V )V −µV,

(1)

where T (x, t), I(x, t) and V (x, t) are the densities of susceptible cells, infected cells and free virus

at position x and time t, respectively. Susceptible cells are produced at rate λ , die at rate dT

and become infected at rate f (T, I,V )V . Infected cells die at rate aI. Free viruses are produced

from infected cells at rate kI and are removed at rate µV . dv is the diffusion coefficient, ∆ is the

Laplacien operator, and i ∈ {0,1} denotes the absorption effect.

As in [3, 4], we suppose that the function f (T, I,V ) is continuously differentiable in IR3
+ and

satisfies the following hypotheses:

(H1): f (0, I,V ) = 0, for all I ≥ 0 and V ≥ 0;

(H2): f (T, I,V ) is a strictly monotone increasing function with respect to T , for any fixed

I ≥ 0 and V ≥ 0;

(H3): ∂ f (T,I,V )
∂ I ≤ 0 and ∂ f (T,I,V )

∂V ≤ 0, which means that f (T, I,V ) is a monotone decreasing

function with respect to I and V .

It is very important to note that our model represented by system (1), extends and improves

many cases exiting in the literature. For instance, if f (T, I,V ) = βT and i = 0, we get the basic
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PDE model proposed in [2]. Further, the more recent model presented by Yang and Zhou in [5]

is a special case of system (1).

In this work, we are interested in system (1) according to two purposes. The first is to

investigate the dynamics of system (1) with initial values and Neumann boundary conditions

(2)

 T (x,0) = φ 1(x)≥ 0, I(x,0) = φ 2(x)≥ 0, V (x,0) = φ 3(x)≥ 0, x ∈Ω,

∂V
∂n

= 0, t > 0, x ∈ ∂Ω,

where Ω is a bounded domain in IRn with smooth boundary ∂Ω,
∂

∂n
is an outward normal

vector of ∂Ω. The second purpose is to propose some applications and an numerical method

that preserves the qualitative properties of the continuous model (1).

The rest of this paper is organized as follows. In section 2, we analysis the continuous version

by showing well-posedness, equilibria and global stability. The discrete version is treated in

section 3. In section 4, we give some applications of our analytical results. Finally, we conclude

our work in section 5.

2. ANALYSIS OF CONTINUOUS VERSION

We first show the well-posedness of the model by proving the global existence, uniqueness,

non-negativity and boundedness of solution of model (1) under (2). After, we determine the

basic reproduction number, study steady states of the model (1) and discuss the global stability

of the infection-free equilibrium and the chronic infection equilibrium.

Theorem 2.1. For any given initial φ = (φ 1,φ 2,φ 3) ∈C = [C(Ω)]3 satisfying the condition (2),

there exists a unique solution of problem (1)-(2) defined on [0,+∞) and this solution remains

non-negative and bounded for all t ≥ 0.

Proof. For any ϕ = (ϕ1,ϕ2,ϕ3)
T ∈C and x ∈Ω, we define F = (F1,F2,F3) : C −→ IR3 by

F1(ϕ)(x) = λ −dϕ1(x)− f (ϕ1(x),ϕ2(x),ϕ3(x))ϕ3(x),

F2(ϕ)(x) = f (ϕ1(x),ϕ2(x),ϕ3(x))ϕ3(x)−aϕ2(x),

F3(ϕ)(x) = kϕ2(x)− i f (ϕ1(x),ϕ2(x),ϕ3(x))ϕ3(x)−µϕ3(x).
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Then system (1) can be rewritten as the following abstract functional differential equation w′(t) = Aw(t)+F(w(t)),

w(0) = φ ∈C,

where w = (T, I,V )T and Aw = (0,0,dv∆V )T . It is clear that F is locally Lipschitz in C. Thus,

we conclude that problem (1)-(2) has a unique local solution on [0, tmax), where [0, tmax) is

the maximal time interval on which the solutions are guaranteed to exist [6]. In addition, all

solutions are non-negative since 0 is a lower solution of each equation of model (1).

Now, we show the boundedness of the solutions. For this reason, we put

U(x, t) = T (x, t)+ I(x, t).

So, we can get

∂U(x, t)
∂ t

= λ −dT (x, t)−aI(x, t),

≤ λ −δU(x, t),

where δ = min{a,d}. Hence,

U(x, t)≤max
{

λ

δ
,max

x∈Ω

{φ 1 (x)+φ 2 (x)}
}
.

This implies that T and I are bounded. From the boundedness of I and system (1), we deduce

that V satisfies the following system

(3)


∂V
∂ t
−dv∆V ≤ kρ−µV,

∂V
∂n

= 0,

V (x,0) = φ 3 (x)≥ 0,

where ρ = max
{

λ

δ
,max

x∈Ω

{φ 1 (x)+φ 2 (x)}
}

. Let Ṽ (t) be a solution to the ordinary differential

equation 
dṼ
dt

= kρ−µṼ ,

Ṽ (0) = max
x∈Ω

φ 3 (x) .
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Then Ṽ (t)≤max
{

kρ

µ
,max

x∈Ω

{φ 3 (x)}
}

, for all t ∈ [0, tmax).

By the comparison principale [7], we get V (x, t)≤ Ṽ (t). Hence,

V (x, t)≤max
{

kρ

µ
,max

x∈Ω

{φ 3 (x)}
}
,∀(x, t) ∈Ω× [0, tmax) .

From the above, we have proved that T (x, t), I(x, t) and V (x, t) are bounded on Ω× [0, tmax).

Therefore, it follows from the standard theory for semi-linear parabolic systems [8] that tmax =

+∞. This completes the proof.

Next, we study the existence of steady states of model (1). Obviously, model (1) has an

infection-free equilibrium E0 (T0,0,0), where T0 =
λ

d
. Then the basic reproduction number of

(1) is given by

(4) R0 =
(k− ia) f (

λ

d
,0,0)

µa
.

To find the other equilibrium of system (1), we resolve

(5)

λ −dT − f (T, I,V )V = 0,

f (T, I,V )V −aI = 0,

kI− i f (T, I,V )V −µV = 0.

Adding the first two equations of (5), we get

T =
λ −aI

d
≥ 0. So, I ∈

[
0,

λ

a

]
.

Using the third equation of (5), we have

V =
(k− ia) I

µ
.

Replacing T,V into the second equation of (5), we obtain

(k− ia) f (
λ −aI

d
, I,

(k− ia) I
µ

)−µa = 0.

We define a function h on
[

0,
λ

a

]
as follows

h(I) = (k− ia) f (
λ −aI

d
, I,

(k− ia) I
µ

)−µa.
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It is easy to see that h(
λ

a
) =−µa < 0 and

h(0) = (k− ia) f (
λ

d
,0,0)−µa = aµ (R0−1) .

Clearly, we have a positive equilibrium E∗(T ∗, I∗,V ∗) when R0 > 1.

For any I ∈
[

0,
λ

a

]
, we have

h′(I) = (k− ia)
(
−a
d

∂ f
∂T

+
∂ f
∂ I

+
(k− ia)

µ

∂ f
∂V

)
.

Using hypotheses (H2) and (H3), we prove the uniqueness of the chronic infection equilibrium

E∗(T ∗, I∗,V ∗). By this computation, we get the following result.

Theorem 2.2. For system (1),

(1)

(i) if R0 ≤ 1, then there exists a unique infection-free equilibrium E0,

(ii) if R0 > 1, then there exists a unique chronic infection equilibrium E∗ besides E0.

Now, we establish the global stability of the infection-free equilibrium and chronic infection

equilibrium for system (1).

Theorem 2.3. If R0 ≤ 1, then the infection-free equilibrium E0 is globally asymptotically stable

and it is unstable if R0 > 1.

Proof. Construct a Lyapunov functional for system (1) at E0 as follows

L0 =
∫

Ω

{
T (x, t)−T0−

∫ T

T0

f (T0,0,0)
f (X ,0,0)

dX +
k

k− ia
I (x, t)+

a
k− ia

V (x, t)
}

dx.

The time derivative of L0 along the solution of system (1) satisfies

dL0

dt
=

∫
Ω

{(
1− f (T0,0,0)

f (T,0,0)

)
∂T
∂ t

+
k

k− ia
∂ I
∂ t

+
a

k− ia
∂V
∂ t

}
dx,

=
∫

Ω

{
dT0

(
1− T

T0

)(
1− f (T0,0,0)

f (T,0,0)

)
+

µa
k− ia

V (R0
f (T, I,V )

f (T,0,0)
−1)

}
dx.

Using the hypothesis (H3), we get

dL0

dt
≤
∫

Ω

{
dT0

(
1− T

T0

)(
1− f (T0,0,0)

f (T,0,0)

)
+

µa
k− ia

V (R0−1)
}

dx.
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Since f (T, I,V ) is strictly monotonically increasing with respect to T , we have(
1− T

T0

)(
1− f (T0,0,0)

f (T,0,0)

)
≤ 0.

Therefore,
dL0

dt
≤ 0 when R0 ≤ 1. In addition,

dL0

dt
= 0 if and only if T = T0, V = 0 and I = 0.

From LaSalle’s invariance principle [9], we deduce that E0 is globally asymptotically stable if

R0 ≤ 1. Similarly to [3], we can easily prove the instability of E0 when R0 > 1.

For the global stability of the chronic infection equilibrium E∗, we assume that R0 > 1 and f

satisfies the following hypothesis

(H4)

(
1− f (T, I,V )

f (T, I∗,V ∗)

)(
f (T, I∗,V ∗)
f (T, I,V )

− V
V ∗

)
≤ 0, ∀T, I,V > 0.

Theorem 2.4. If R0 > 1 and the hypthesis (H4) holds, then the chronic infection equilibrium E∗

is globally asymptotically stable when i = 0.

Proof. Let us define the following Lyapunov functional:

L1 =
∫

Ω

{
T −T ∗−

∫ T

T ∗

f (T ∗, I∗,V ∗)
f (X , I∗,V ∗)

dX +
k

k− ia
I∗g(

I
I∗
)+

a
k− ia

V ∗g(
V
V ∗

)

}
dx,

with g(z) = z−1− lnz. The function g(z) has its minimum 0 at z = 1. So, g(z)≥ 0 for all z > 0.

The time derivative of L1 along the solution of system (1) satisfies

dL1

dt
=

∫
Ω

{(
1− f (T ∗, I∗,V ∗)

f (T, I∗,V ∗)

)
(λ −dT − f (T, I,V )V )

+
k

k− ia

(
1− I∗

I

)
∂ I
∂ t

+
a

k− ia

(
1− V ∗

V

)
∂V
∂ t

}
dx

=
∫

Ω

{(
1− f (T ∗, I∗,V ∗)

f (T, I∗,V ∗)

)
(λ −dT − f (T, I,V )V )

+
k

k− ia

(
1− I∗

I

)
( f (T, I,V )V −aI)

+
a

k− ia

(
1− V ∗

V

)
(dv∆V + kI− i f (T, I,V )V −µV )

}
dx.

Since

λ = dT ∗+ f (T ∗, I∗,V ∗)V ∗,

f (T ∗, I∗,V ∗)V ∗ = aI∗,

(k− ia) I∗ = µV ∗,
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we have

dL1

dt
=

∫
Ω

{
dT ∗

(
1− T

T ∗

)(
1− f (T ∗, I∗,V ∗)

f (T, I∗,V ∗)

)
−aI∗

[
g
(

f (T, I∗,V ∗)
f (T, I,V )

)
+g
(

f (T ∗, I∗,V ∗)
f (T, I∗,V ∗)

)
+g
(

f (T, I,V )V I∗

f (T ∗, I∗,V ∗)V ∗I

)
+g
(

IV ∗

I∗V

)]
+aI∗

[
−1− V

V ∗
+

f (T, I∗,V ∗)
f (T, I,V )

+
f (T, I,V )V

f (T, I∗,V ∗)V ∗

]}
dx

−advV ∗

k

∫
Ω

|∇V |2

V 2 dx.

Since f (T, I,V ) is strictly monotonically increasing with respect to T , we have(
1− T

T ∗

)(
1− f (T ∗, I∗,V ∗)

f (T, I∗,V ∗)

)
≤ 0.

Based on the hypothesis (H4), we have

−1− V
V ∗

+
f (T, I∗,V ∗)
f (T, I,V )

+
V
V ∗

f (T, I,V )

f (T, I∗,V ∗)
=

(
1− f (T, I,V )

f (T, I∗,V ∗)

)(
f (T, I∗,V ∗)
f (T, I,V )

− V
V ∗

)
≤ 0.

Therefore,
dL1

dt
≤ 0 when R0 > 1. Further,

dL1

dt
= 0 if and only if T = T ∗, V =V ∗ and I = I∗.

If follows from LaSalle’s invariance principle that E∗ is globally asymptotically stable when

R0 > 1.

3. ANALYSIS OF DISCRETE VERSION

In this section, we discretize system (1) by using ’mixed’ Euler method that is mixture of both

forward and backward Euler method [10]. The choice of this numerical method is motivated by

the work of Hattaf et al. [11].

Let Ω = [p,q] with p,q ∈ IR. Denote

tm = m4t and xn = p+n4x,

where4t and4x =
q− p

N
are time and space step sizes, respectively. Let

T (xn, tm) = T m
n , I(xn, tm) = Im

n , V (xn, tm) =V m
n .
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So, our discrete model is as follows

(6)



T m+1
n −T m

n
4t

= λ −dT m+1
n − f (T m+1

n , Im
n ,V

m
n )V m

n ,

Im+1
n − Im

n
4t

= f (T m+1
n , Im

n ,V
m
n )V m

n −aIm+1
n ,

V m+1
n −V m

n
4t

= dv
V m+1

n+1 −2V m+1
n +V m+1

n−1

(∆x)2 + kIm+1
n − i f (T m+1

n , Im
n ,V

m
n )V m

n −µV m+1
n ,

where n ∈ {0,1, ...,N} and m ∈ IN. The discrete initial and boundary conditions are

T 0
n = φ 1(xn), I0

n = φ 2(xn), V 0
n = φ 3(xn), for n ∈ {0,1, ...,N} ,

and

V m
−1 =V m

0 , V m
N =V m

N+1 for m ∈ IN.

It is clear that discrete system (6) and continuous (1) has the same equilibrium points. First,

we establish that the solution of system (6) is nonnegative and bounded.

Theorem 3.1. For any4t >
i

k− ia
and 4x > 0, the solution of system (6) is nonnegative and

bounded for all m ∈ IN.

Proof. System (6) can be writen as

(7)


T m+1

n = T m
n +4t

(
λ −dT m+1

n − f (T m+1
n , Im

n ,V
m
n )V m

n
)
,

Im+1
n =

Im
n +4t f (T m+1

n , Im
n ,V

m
n )V m

n
1+a4t

,

BV m+1 =V m + k4tIm+1−4tM,

where M =
(
i f (T m+1

0 , Im
0 ,V

m
0 )V m

0 , i f (T m+1
1 , Im

1 ,V
m
1 )V m

1 , ..., i f (T m+1
N , Im

N ,V
m
N )V m

N
)T

. The square

matrix B of dimension (N +1)× (N +1) is given by



σ1 σ2 0 . . . 0 0 0

σ2 σ3 σ2 . . . 0 0 0

0 σ2 σ3 . . . 0 0 0

. . . . . . .

. . . . . . .

. . . . . . .

0 0 0 . . . σ3 σ2 0

0 0 0 . . . σ2 σ3 σ2

0 0 0 . . . 0 σ2 σ1



,
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where

σ1 = 1+
dv4t

(4x)2 +µ4t,

σ2 = − dv4t

(4x)2 ,

σ3 = 1+
2dv4t

(4x)2 +µ4t.

Thus, for any j ∈ {0,1, ...,N}, we have

V m
j + k4tIm+1

j −4ti f
(

T m+1
j , Im

j ,V
m
j

)
V m

j

=V m
j +

k4tIm
j

1+a4t
+

k (4t)2 f
(

T m+1
j , Im

j ,V
m
j

)
V m

j

1+a4t
−4ti f

(
T m+1

j , Im
j ,V

m
j

)
V m

j

=V m
j +

k4tIm
j

1+a4t
+
4t ((k−ai)4t− i)

1+a4t
f
(

T m+1
j , Im

j ,V
m
j

)
V m

j .

Since4t >
i

k−ai
, we have (k−ai)4t− i > 0. This means that

V m + k4tIm+1−4tM ≥ 0.

Note that B is a M-matrix. Thus, from the third equation of (7), we have

V m+1 = B−1 (V m + k4tIm+1−4tM
)
.

Therefore, by the method of induction, the solution remains nonnegative for all m ∈ IN.

Next, we prove the boundedness of the solution. Define a sequence

Gm = T m
n + Im

n .

Then

Gm+1
n −Gm

n
4t

= λ −dT m+1
n −aIm+1

n

≤ λ −δGm+1
n .

By mathematical induction, we have

Gm+1
n ≤ 1

1+ d̃4t
Gm

n +
λ

1+δ4t

≤
(

1
1+δ4t

)m

G0
n +

λ

δ

[
1−
(

λ

1+δ4t

)m]
.
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So,

limsup
m→∞

Gm
n ≤

λ

δ
.

This implies that {Gm
n } is bounded. Therefore, T m

n and Im
n are also bounded.

Let Ṽ m =
N
∑
j=0

V m
j . By the third equation of (7), we get

Ṽ m+1−Ṽ m

4t
= k

N

∑
j=0

Im+1
j −µ

N

∑
j=0

V m+1
j −

N

∑
j=0

i f
(

T m+1
j , Im

j ,V
m
j

)
V m

j

≤ k (N +1)
λ

δ
−µṼ m+1.

Thus, we have

limsup
m→∞

V m ≤ kλ (N +1)
δ µ

.

This completes the proof.

Next, we will establish the global stability of the infection-free equilibrium and chronic in-

fection equilibrium for system (6). First, we need the following lemma.

Lemma 3.2 ([12]). T , I,V and σ be four nonnegative real numbers and E(T , I,V ) be an arbi-

trary point. The function ψ(E,σ) defined on interval [0,+∞) by

ψ(E,σ)(T ) = T −σ −
∫ T

σ

f (T , I,V )

f (X , I,V )
dX

has the global minimum at T = T and satisfies(
1− f (T , I,V )

f (σ , I,V )

)
(T −σ)≤ ψ(E,σ)(T )≤

(
1− f (T , I,V )

f (T, I,V )

)
(T −σ), for all T > 0.

Theorem 3.3. For any4t > 0 and 4x > 0, if R0 ≤ 1, then the infection-free equilibrium E0 of

system (6) is globally asymptotically stable.

Proof. Consider a Lyapunov functional

Lm =
N

∑
n=0

1
4t

[
T m

n −T0−
∫ T m

n

T0

f (T0,0,0)
f (X ,0,0)

dX +
k

k− ia
Im
n +

a
k− ia

(1+µ4t)V m
n

]
.
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Then, we get

Lm+1−Lm =
N

∑
n=0

1
4t

[
T m+1

n −T m
n +

∫ T m+1
n

T m
n

f (T0,0,0)
f (X ,0,0)

dX +
k

k− ia

(
Im+1
n − Im

n
)

+
a

k− ia
(1+µ4t)

(
V m+1

n −V m
n
)]

.

Consider

Ψ(E0,T m
n )

(
T m+1

n
)
= T m+1

n −T m
n +

∫ T m+1
n

T m
n

f (T0,0,0)
f (X ,0,0)

dX .

Then we have

Lm+1−Lm ≤
N

∑
n=0

1
4t

[
Ψ(E0,T m

n )

(
T m+1

n
)
+
(
Im+1
n − Im

n
)

+
a
k
(1+µ4t)

(
V m+1

n −V m
n
)]

.

Using Lemma 3.2, we obtain

Lm+1−Lm ≤
N

∑
n=0

1
4t

[(
1− f (T0,0,0)

f
(
T m+1

n ,0,0
))(T m+1

n −T m
n
)
+
(
Im+1
n − Im

n
)

+
a
k
(1+µ4t)

(
V m+1

n −V m
n
)]

=
N

∑
n=0

[
dT0

(
1− T m+1

n
T0

)(
1− f (T0,0,0)

f
(
T m+1

n ,0,0
))

+
µa
k

V m
n

{
f
(
T m+1

n , Im
n ,V

m
n
)

f
(
T m+1

n ,0,0
) k f (T0,0,0)

µa
−1

}

+
adv

k
V m+1

n+1 −2V m+1
n +V m+1

n−1

(∆x)2

]
.

We have
k f (T0,0,0)

µa
= R0 and

N

∑
n=0

adv

k
V m+1

n+1 −2V m+1
n +V m+1

n−1

(∆x)2 =
adv

k (∆x)2

[
N

∑
n=0

(
V m+1

n+1 −V m+1
n

)
+

N

∑
n=0

(
V m+1

n−1 −V m
n
)]

=
adv

k (∆x)2

[
V m+1

N+1 −V m+1
0 +V m+1

−1 −V m+1
N

]
= 0.
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Hence,

Lm+1−Lm ≤
N

∑
n=0

[
dT0

(
1− T m+1

n

T0

)(
1− f (T0,0,0)

f
(
T m+1

n ,0,0
))+

µa
k

V m
n

(
f
(
T m+1

n , Im
n ,V

m
n
)

f
(
T m+1

n ,0,0
) R0−1

)]

≤
N

∑
n=0

[
dT0

(
1− T m+1

n

T0

)(
1− f (T0,0,0)

f
(
T m+1

n ,0,0
))+

µa
k

(R0−1)V m
n

]
.

If R0≤ 1, then Lm+1−Lm≤ 0, for all m∈ IN and the equality holds if and only if lim
m→∞

T m+1
n = T0.

Therefore, {Lm}m∈IN is a monotone decreasing sequence. Due to Lm ≥ 0, there is lim
m→∞

Lm ≥ 0.

Thus,

lim
m→∞

(
Lm+1−Lm)= 0.

From lim
m→∞

T m+1
n = T0 and lim

m→∞
((R0−1)V m

n ) = 0 for all n ∈ {0,1, ...,N} , we discuss two cases:

• If R0 < 1, then lim
m→∞

V m
n = 0 for all n ∈ {0,1, ...,N} . From the third equation of system

(6), we obtain lim
m→∞

Im
n = 0 for all n ∈ {0,1, ...,N}.

• If R0 = 1. By lim
m→∞

T m+1
n = T0 and the first equation of (6), we get lim

m→∞
V m

n = 0 for all

n ∈ {0,1, ...,N}.

We get

lim
m→∞

T m
n = T0, lim

m→∞
Im
n = 0, lim

m→∞
V m

n = 0, for all n ∈ {0,1, ...,N} .

Thus, E0 is globally asymptotically stable if R0 ≤ 1.

Theorem 3.4. For any 4t > 0 and 4x > 0, if R0 > 1 and (H4) holds, then the infection

equilibrium E∗ of system (6) is globally asymptotically stable.

Proof. Consider the following Lyapunov functional:

Gm =
N

∑
n=0

1
4t

[
T m

n −T ∗−
∫ T m

n

T ∗

f (T ∗, I∗,V ∗)
f (X , I∗,V ∗)

dX + I∗g(
Im
n
I∗
)+

a
k
(1+µ4t)V ∗g(

V m
n

V ∗
)

]
.

According to the Lemma 3.2, we consider

Ψ(E∗,T m
n )

(
T m+1

n
)
= T m+1

n −T m
n +

∫ T m+1
n

T m
n

f (T ∗, I∗,V ∗)
f (X , I∗,V ∗)

dX ≤

(
1− f (T ∗, I∗,V ∗)

f
(
T m+1

n , I∗,V ∗
))(T m+1

n −T m
n
)
,
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Hence,

Gm+1−Gm ≤
N

∑
n=0

{
dT ∗

(
1− T m+1

n

T ∗

)(
1− f (T ∗, I∗,V ∗)

f
(
T m+1

n , I∗,V ∗
))

+
adv

k (∆x)2

(
V m+1

n+1 −2V m+1
n +V m+1

n−1

)(
1− V ∗

V m+1
n

)
−aI∗

[
g
(

f (T ∗, I∗,V ∗)
f (T m+1

n , I∗,V ∗)

)
+g
(

f (T m+1
n , I∗,V ∗)

f (T m+1
n , Im

n ,V m
n )

)
+g
(

f (T m+1
n , Im

n ,V
m
n )V m

n I∗

f (T ∗, I∗,V ∗)V ∗Im
n

)
+g
(

Im+1
n V ∗

I∗V m+1
n

)]
+aI∗

[
−1− V m

n

V ∗
+

f (T m+1
n , I∗,V ∗)

f (T m+1
n , Im

n ,V m
n )

+
f (T m+1

n , Im
n ,V

m
n )V m

n

f (T m+1
n , I∗,V ∗)V ∗

]}
.

We have

N

∑
n=0

adv

k (∆x)2

(
V m+1

n+1 −2V m+1
n +V m+1

n−1

)(
1− V ∗

V m+1
n

)
= − advV ∗

k (∆x)2

(
N−1

∑
n=0

(
V m+1

n+1 −V m+1
n

)2

V m+1
n V m+1

n+1

)
≤ 0.

According to (H2) and (H4), we obtain

(
1− T m+1

n
T ∗

)(
1− f (T ∗, I∗,V ∗)

f
(
T m+1

n , I∗,V ∗
))≤ 0,

and

−1− V m
n

V ∗
+

f (T m+1
n , I∗,V ∗)

f (T m+1
n , Im

n ,V m
n )

+
f (T m+1

n , Im
n ,V

m
n )V m

n

f (T m+1
n , I∗,V ∗)V ∗

≤ 0.

Thus,

Gm+1−Gm ≤ 0, for all m ∈ IN.

This yields that there exists a constant G̃ such that lim
m−→+∞

Gm=G̃. Then

lim
m→∞

(
Gm+1−Gm)= 0.

Hence, lim
m→∞

T m
n = T ∗ and lim

m→∞

Im+1
n

V m+1
n

=
I∗

V ∗
. Combined with system (6), we deduce that

lim
m→∞

Im
n = I∗ and lim

m→∞
V m

n =V ∗, for all n ∈ {0,1, ...,N} .

Consequently, E∗ is globally asymptotically stable when R0 > 1.
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4. APPLICATIONS

Here, we give some examples for which we apply our theoretical results.

Example 1: Consider the following system

(8)



T m+1
n −T m

n
4t

= λ −dT m+1
n −T m+1

n F (V m
n ) ,

Im+1
n − Im

n
4t

= T m+1
n F (V m

n )−aIm+1
n ,

V m+1
n −V m

n
4t

= dv
V m+1

n+1 −2V m+1
n +V m+1

n−1

(∆x)2 + kIm+1
n − iT m+1

n F (V m
n )−µV m+1

n ,

where n ∈ {0,1, ...,N} and m ∈ IN. The function F(x) is a twice differentiable and satisfies

(9)


F(x)≥ 0 with the equality if and only if x = 0,

F ′(x)≥ 0,

F ′′(x)≤ 0.

The discrete initial and boundary conditions are

T 0
n = φ 1(xn), I0

n = φ 2(xn), V 0
n = φ 3(xn), for n ∈ {0,1, ...,N} ,

and

V m
−1 =V m

0 , V m
N =V m

N+1 for m ∈ IN.

This model was studied by Yang and Zhou [5], which is a special case of our model (6), it

suffices to take

f (T, I,V ) =


T F (V )

V
, V 6= 0;

T F ′ (0) , V = 0.

It is easy to show that the function f verified the four assumptions (H1)-(H4). Also, the basic

reproduction number of system (8) is given by

(10) R0 =
λ (k− ia)F ′ (0)

dµa
.

By applying Theorems 3.3 and 3.4, we obtain the following result.

Corollary 4.1. For any4t > 0 and 4x > 0, we have:

(1)

(i) If R0 ≤ 1, then the infection-free equilibrium E0 of system (8) is globally asymptotically

stable.
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(ii) If R0 > 1 and i = 0, then the chronic infection equilibrium E∗ of system (8) is globally

asymptotically stable.

Example 2: Consider the following system

(11)

T m+1
n −T m

n
4t

= λ −dT m+1
n − βT m+1

n V m
n

α0 +α1Im
n +α2V m

n +α3Im
n V m

n
,

Im+1
n − Im

n
4t

=
βT m+1

n V m
n

α0 +α1Im
n +α2V m

n +α3Im
n V m

n
−aIm+1

n ,

V m+1
n −V m

n
4t

= dv
V m+1

n+1 −2V m+1
n +V m+1

n−1

(∆x)2 + kIm+1
n − iβT m+1

n V m
n

α0 +α1Im
n +α2V m

n +α3Im
n V m

n
−µV m+1

n .

The discrete initial and boundary conditions are

T 0
n = φ 1(xn), I0

n = φ 2(xn), V 0
n = φ 3(xn), for n ∈ {0,1, ...,N} ,

and

V m
−1 =V m

0 , V m
N =V m

N+1 for m ∈ IN.

System (11) is a particular case of our model (6), it suffices to take

f (T, I,V ) =
βT

α0 +α1I +α2V +α3IV
,

where β > 0 is the infection rate and α0,α1,α2,α3 are non-negative constants. This functional

response was introduced Hattaf and Yousfi [4] and it covers various types of incidence rate

existing in the literature.

Obviously, the function f satisfied the four assumptions (H1)-(H4). Therefore, we get the

following result.

Corollary 4.2. For any4t > 0 and 4x > 0, we have:

(1)

(i) If R0≤ 1, then the infection-free equilibrium E0 of system (11) is globally asymptotically

stable.

(ii) If R0 > 1 and i = 0, then the chronic infection equilibrium E∗ of system (11) is globally

asymptotically stable.
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5. CONCLUSION

In this paper, we have proposed a class of virus infection model with diffusion and general

incidence function. The continuous and discrete versions are rigorously analyzed by estab-

lished the well-posedness of solutions and the global stability of equilibria. Furthermore, the

discrete model and the corresponding results presented in the recent work [5] are improved and

generalized.
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