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Abstract. Tuberculosis is an ancient contagious disease, and it causes more deaths worldwide than any other

infectious diseases. Based on the fact that it is spread from person to person through the air, the tuberculosis can

emerge in one region and spread to its neighbors in unprecedented durations. we propose here a Susceptible-

Exposed-Infected-Recovered (SEIR) spatiotemporal model that characterizes the dynamics of tuberculosis disease

by taking into consideration the spatial heterogeneity; in order to provide a realistic description of this disease.

Then, controls on treatment, chemoprophylaxis are incorporated to reduce the latently infected (exposed) and

actively infected individual populations to fight against the spread of the disease. Theoretically, we have proved

the existence of optimal controls, and we have given a characterization of controls in terms of states and adjoint

functions based on a discrete version of Pontryagin’s maximum principle. To illustrate the effectiveness of our

theoretical results, we give numerical simulations for several scenarios. Our results indicate that the control effect

is effective if controls on treatment and chemoprophylaxis strategies are used simultaneously.
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1. INTRODUCTION

Tuberculosis probably accompanies us from the beginning of humanity, it is considered to be

responsible for one of the deadliest infectious disease epidemics. Currently, there are more than

10.4 millions new tuberculosis cases and about 1.7 million tuberculosis patients die every year

[1]. The microbe Mycobacterium tuberculosis (mtp) is the main agent of tuberculosis human

(abbreviated TB), which mainly attacks the lungs (for pulmonary tuberculosis). In addition,

tuberculosis could affect the central nervous system, the circulatory system, the genitourinary,

bones, joints and even the skin. It is transmitted during the expectoration of droplets of bronchial

secretions from people with TB disease and can also be spread by coughing, sneezing, kissing,

spitting of people with pulmonary tuberculosis, as well as by using unsterilized utensils (plates,

glasses of water) from an infected person. In rare case, a pregnant woman with active tuber-

culosis can infect the fetus [2]. On the one hand, Tuberculosis can develop quickly after first

contact with the microbe; Symptoms of active tuberculosis depend on the part of the body in-

fected. When tuberculosis lodges in the lungs (pulmonary tuberculosis), the main symptoms

often observed by a cough, sometimes productive or bloody chest pain, fatigue, weight loss and

night sweats. On the other hand, it can also appear several years later and it has no symptoms.

As a matter of fact, mathematical models especially compartmental models, have played an

essential role in fighting against infectious diseases since their birth by Kermack 1927. Sev-

eral infectious diseases have been modeled using compartmental mathematical models, partic-

ularly tuberculosis [3, 4, 5, 6, 7, 8], then it is no longer necessary to justify the importance of

mathematical models in the investing and controlling the spread of human infectious diseases,

enabling governments and public health officials to predict the impact of specific vaccination

and treatment programs or to develop more effective strategies based on different mathemat-

ical methods [9, 10]. Relatively little of this mathematical models focus on the fact that the

population is extremely mobile, and this mobility increases the complexity of the transmission

dynamics of infectious diseases. It exists in the history of epidemics several cases of infection

spatially spread. For instance, the case of SARS epidemic of spring 2003 clearly showed that

human diseases spread in space, over large areas and often jumping continents [11]. These

cases also includes the influenza pandemic (H1N1) 2009 [12], first appeared in Mexico and
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then spread rapidly throughout the world, the Black Death that appeared in the 1300s in Eu-

rope [13], followed by Measles and smallpox in the New World between the 1500s and 1600s

[14, 15] and most recent one Ebola which appeared in the Democratic Republic of the Congo in

1977, in Sudan in 1979 as well as in North America in the late 1990s [16, 17] and HIV / AIDS

appeared in 1981 [18]. In most mathematical models, the existence of a spatial component has

a remarkable probability due to the mobility of thousands of people moving from one region to

another. In this case, an epidemic can spread rapidly around a vast area given regardless of the

border. The geographic scale is therefore at the heart of a multitude of studies of diseases that

are becoming spatially mobile to different regions because of the population’s movement from

one region to another. We believe that there is a need to develop a new generation of models

that include spatial spread of an infectious disease; current tuberculosis models are based on

models developed by Blower and colleagues almost 25 years ago [19, 5]. We predict that mod-

eling spatial spread of the disease will lead to the design of more effective tuberculosis control

strategies. In fact, several types of interventions exist, including short-term treatment strategy

under direct surveillance, that have so far failed in the fight against tuberculosis in areas with a

high prevalence of HIV / AIDS (De Cock and Chaisson, 1999) [20]. The question is whether

the fight against tuberculosis should remain a biomedical strategy only, focusing on the trait

effortless treatment to understand and meet the needs of patients (social and economic needs).

After studying several papers taking into account the spatial aspect of the spread of an epi-

demic [21, 22, 23, 17, 26]. New models should include the movement of people from one region

to another. A multiregional discrete-time SEIR model is designed here for the tuberculosis epi-

demic in which a control variable is introduced represents the effort on chemoprophylaxis. the

second control is used to show the effect of treatment after infection, knowing that the treatment

of tuberculosis has saved 53 million lives between 2000 and 2018 [1].

The rest of the manuscript is organized as follows: Section 2 is devoted to the basic mathemat-

ical model . In Section 3, we announce a theorem of necessary conditions and characterization

of the sought optimal controls functions related to the chemoprophylaxis and treatment strate-

gies, with the introduction of numerical simulations. Finally, we conclude our work in Section

4.
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2. MATHEMATICAL MODEL SEIR

In this section, Based on the (TB) model formulated by C.P. Bhunu and al.[10] and as men-

tioned above in the introduction, statistics showed that in several regions in the world, the spatial

factor plays a major role in the transmission and the propagation of the disease. We consider a

discrete-time tuberculosis model, which describes the spatial-temporal and regional spread of

an epidemic based on SEIR interactions within a global domain of interest Ω, divided to M2 re-

gions that are uniform in size. This domain can be represented by the union Ω =
M⋃

j=1
Ω j, and let

NΩ j
i be the population of Ω j at time i , i.e., the number of individuals in Ω j, with

(
Ω j
)

j=1,...,M a

spatial location or region. We note that
(
Ω j
)

j=1,...,M could represent a country, a city, a town, or

a small domain such as neighborhoods, that belong respectively to the global domain of interest

which could in turn represent a part of continent or even a whole continent a part of country or

a whole country.

The S−E− I−R dynamics associated to a region Ω j are noted by the states SΩ j ,EΩ j , IΩ j and

RΩ j . We noted susceptible individuals by SΩ j , and exposed to (TB) are EΩ j (latently infected),

The infected individuals with Mtb presenting symptoms of (TB) are IΩ j , and those who have

recovered from sickness are RΩ j . We note that the transition between them, is probabilistic, with

probabilities being determined by the observed characteristics of specific diseases. In addition

to the death, there are population movements among those four epidemiological compartments,

from time unit i to time i+ 1. The unit of time i can correspond to days, months or years, it

depends on the frequency of data collection and statistics.

Note that Ω j = Ω(p,q) and Ωk = Ω(r,s), we define the Vicinity set of Ω j; V (Ω j) =

{Ωk ∈Ω,r = p+ l′, s = q+ l′, (l, l′) ∈ {−1,0,1}}. We assume that the susceptible individu-

als are those who are not yet infected with the Tuberculosis, but can be infected only through

contacts with IΩk , coming from V (Ω j) (Vicinity set or Neighborhood of a region Ω j). Thus the

transmission of infection is assumed to occur between individuals that are present in a given

region Ω j, and it is given by ∑
Ωk∈V (Ω j)

β jkc jkSΩ j
i IΩk

i

NΩ j
i

where the disease transmission coefficient

β jk > 0 , is the proportion of contacts in the region Ω j between a susceptible from Ω j and
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an infective from its neighbor Ωk ∈ V (Ω j), and c jk is the per capita contact rate between a

susceptible from a region Ω j and an infective from its neighbor Ωk ∈V (Ω j).

The latently infected progress to active through contacts with IΩk coming from V (Ω j)

(Vicinity set or Neighborhood of a region Ω j). Thus the transmission of infection is as-

sumed to occur between individuals that are present in a given region Ω j, and it is given by

∑
Ωk∈V (Ω j)

δ1
β jkc jkEΩ j

i IΩk
i

NΩ j
i

where the disease transmission coefficient β jk > 0 , is the proportion

of contacts between a latently infected from a region Ω j and an infected from its neighbor

Ωk ∈ V (Ω j), c jk is the per capita contact rate between an exposed from a region Ω j and an

infected from its neighbor Ωk ∈V (Ω j) and δ1 for exogenous re-infection. And we assume the

susceptible individuals can be infected only through contacts with individuals in recovered RΩk

(though they may contain some live bacilli) coming from V (Ω j) are not totally immune to Mtb

infection, and its given by ∑
Ωk∈V (Ω j)

γ jk
β jkSΩ j

i RΩk
i

NΩ j
i

where the disease transmission coefficient

β jk > 0 , here is the proportion of contacts in the region Ω j between a susceptible from Ω j and

a recovered from its neighbor Ωk ∈ V (Ω j), and c jk is the per capita contact rate between an

susceptible from a region Ω j and a recovered from its neighbor Ωk ∈ V (Ω j). The following

system describes the discrete tuberculosis model corresponding to region Ω j, for j = 1, . . . ,M ,

given by

SΩ j
i+1 = SΩ j

i +Λ
Ω j − ∑

Ωk∈V (Ω j)

β jkc jkSΩ j
i IΩk

i

NΩ j
i

−µ
jSΩ j

i(1)

EΩ j
i+1 = ∑

Ωk∈V (Ω j)

θ
β jkc jkSΩ j

i IΩk
i

NΩ j
− ∑

Ωk∈V (Ω j)

δ1
β jkc jkEΩ j

i IΩk
i

NΩ j
i

−
(

k j + r j
1 +µ

j
)

EΩ j
i(2)

+ ∑
Ωk∈V (Ω j)

γ jk
β jkc jkSΩ j

i RΩk
i

NΩ j
i

IΩ j
i+1 = ∑

Ωk∈V (Ω j)

(1−θ)
β jkc jkSΩ j

i IΩk
i

NΩ j
i

+ ∑
Ωk∈V (Ω j)

δ1
β jkc jkEΩ j

i IΩk
i

NΩ j
i

+ k j EΩ j
i(3)

−
(

p j + r j
2 +µ

j +d j
)

IΩ j
i +q jRΩ j

i

RΩ j
i+1 = r j

1EΩ j
i +

(
p j + r j

2

)
IΩ j
i −

(
q j +µ

j)RΩ j
i − ∑

ΩkV (Ω j)

γ jk
β jkc jkSΩ j

i RΩk
i

NΩ j
i

(4)
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where SΩ j
0 , EΩ j

0 , IΩ j
0 and RΩ j

0 are the given initial states in the region Ω j.

where θ is the probability that the infected enters the latent stage. The latently infected

progress to active (TB) at rates k j for endogenous reactivation. Susceptible individuals infected

with Mtb are moved into the infective class at a rate (1−θ) and these form the primary active

TB cases. Once in active stage of the disease, an individual may recover naturally at rate p j

and move into the recovered class RΩ j (though they may contain some live bacilli). Individuals

in RΩ j are not totally immune to Mtb infection and are infected at rate γk j and move into EΩ j

, since primary infection confers some immunity. Some individuals in RΩ j relapse back into

the infective state at rate q j. The natural death rate in each class is assumed to be µ j > 0 and

infectives have an additional TB induced death rate, d j > 0. The treatment rates for the latently

infected and the infectives are assumed to be r j
1 and r j

2, respectively.

NΩ j
i is the population size corresponding to region Ω j at time i. It is clear that the population

size remains constant if µ j =
Λ

Ω j

N
Ω j
i

, in fact

NΩ j
i+1 = SΩ j

i+1 +EΩ j
i+1 + IΩ j

i+1 +RΩ j
i+1

= SΩ j
i +EΩ j

i + IΩ j
i +RΩ j

i +Λ j−µ j

(
SΩ j

i +EΩ j
i + IΩ j

i +RΩ j
i

)
= NΩ j

i +Λ
Ω j −µ

jNΩ j
i = NΩ j

i .

In order to show the effect of the spatial factor, and the contribution of the mobility in the

transmission of the tuberculosis, we give a simulation of our model along a period of 5 years,

for more details about parameters values and numerical method in section 3 entitled (Numer-

ical results). Figure 1 is a graphical representation showing the trend of all the classes where

Fig.1(a), Fig.1(b), Fig.1(c), Fig.1(d) describe the dynamics of susceptible, exposed, infected,

and recovered people in the case where no control strategy is yet suggested (see the differential

system (1) - (4)), and we note that in all these figures represent simulations that give us an idea

of the propagation of the disease in the case where the infection begins in the corner.

As we can see susceptible individuals become exposed and after an incubation period become

infected, thus the disease spreads rapidly to reach the entire population, which indicates the

danger of the disease. This shows the importance of the spatial approach that has been applied.

Concerning the recovered class, there is a few recovered people ( about 5 individuals ). The



A TUBERCULOSIS MODEL WITH SPATIAL DYNAMICS 7

FIGURE 1. States of system (1)–(4) without controls. (a) Susceptibles behavior

in the absence of control. (b) Exposed behavior in the absence of control. (c) In-

fectives behavior in the absence of control. (c) Removed behavior in the absence

of control.

remarks observed in these simulations motivate us to think of defining a suitable control strategy

taking these remarks into consideration. The strategy chosen here is the introduction of two

controls, the first one is chemoprophylaxis to reduce the exposed (latently infected) individual

and the second one is treatment incorporated to reduce the actively infected individual.

3. AN OPTIMAL CONTROL PROBLEM

In this section, we introduce a control strategy which consists in involving two kinds of

treatments. The first one uΩ j , represents the effort on chemoprophylaxis r1, of latently infected

individuals to reduce the number of individuals that may be infectious. While the control vΩ j is

the effort on treatment r2, of actively infected individuals to increase the number of recovered

individuals. These new assumptions, we will get r1uΩ j individuals who will leave the class EΩ j
i
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(latently infected) to the class of recovered RΩ j
i , and r2vΩ j will enter to the class RΩ j

i from the

class of infected IΩ j
i . With the new changes, our controlled system becomes as follows :

SΩ j
i+1 = SΩ j

i +Λ
Ω j − ∑

Ωk∈V (Ω j)

β jkc jkSΩ j
i IΩk

i

NΩ j
i

−µ
jSΩ j

i(5)

EΩ j
i+1 = ∑

Ωk∈V (Ω j)

θ
β jkc jkSΩ j

i IΩk
i

NΩ j
i

− ∑
Ωk∈V (Ω j)

δ1
β jkc jkEΩ j

i IΩk
i

NΩ j
i

−
(

k j + r j
1uΩ j

i +µ
j
)

EΩ j
i(6)

+ ∑
Ωk∈VΩ j

γ jk
β jkc jkSΩ j

i RΩk
i

NΩ j
i

IΩ j
i+1 = ∑

Ωk∈V (Ω j)

(1−θ)
β jkc jkSΩ j

i IΩk
i

NΩ j
i

+ ∑
Ωk∈V (Ω j)

δ1
β jkc jkEΩ j

i IΩk
i

NΩ j
i

+ k j EΩ j
i(7)

−
(

p j + r j
2vΩ j

i +µ
j +d j

)
IΩ j
i +q jRΩ j

i

RΩ j
i+1 = r j

1EΩ j
i +

(
p j + r j

2

)
IΩ j
i −

(
q j +µ

j)RΩ j
i − ∑

Ωk∈V (Ω j)

γ jk
β jkc jkSΩ j

i RΩk
i

NΩ j
i

(8)

We are interested in controlling the population of regions Ω j. Then, the problem is to mini-

mize the objective function given by

J(uΩ j ,vΩ j) = Ψ1EΩ j
N +Ψ2IΩ j

N +

N−1

∑

i = 1

(
Ψ1EΩ j

i +Ψ2IΩ j
i +

A1

2
(uΩ j

i )2 +
A2

2
(vΩ j

i )2
)

(9)

subject to system (5)-(8). Ψ1 and Ψ2 are positive constants to keep a balance in the size of EΩ j
i

and IΩ j
i respectively. In the objective function, A1 and A2 are positive weight parameters which

are associated with the controls uΩ j
i and vΩ j

i .

Our goal is to minimize the infected population and the cost of implementing the control. In

other words, we are seeking optimal controls (uΩ j
i
∗
) and (vΩ j

i
∗
) such that

(10) J
(

uΩ j∗,vΩ j∗
)
= min

{
Jpq
(
uΩ j ,vΩ j

) /
uΩ j∗ ∈U, vΩ j∗ ∈V

}
Where U and V are the sets of admissible controls defined by :

U = {(u) |umin ≤ ui ≤ umax, i ∈ {0. . . . ,N−1} },
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V = {(v) |vmin ≤ vi ≤ vmax, i ∈ {0. . . . ,N−1} },

where (umin,umax) ∈]0,1[2 and (vmin,vmax) ∈]0,1[2.

The sufficient condition for existence of an optimal control for the problem is a result of the

following theorem.

Theorem 3.1. (Sufficient conditions)

For the optimal control problem given by (10) along with the state equations (5)-(8), there

exists optimal controls (uΩ j
i
∗
) and (vΩ j

i
∗
) such that

J
(

uΩ j∗,vΩ j∗
)
= min

{
Jpq
(
uΩ j ,vΩ j

) /
uΩ j∗ ∈U , vΩ j∗ ∈ V

}
Proof. See Dabbs, K [[24], Theorem 1]. �

At the same time by using Pontryagin’s Maximum Principle[25] we derive necessary condi-

tions for our optimal controls. For this purpose we define the Hamiltonian as:

H (Ω) =

(
Ψ1EΩ j

i +Ψ2IΩ j
i +

A1

2

(
uΩ j

i

)2
+

A2

2

(
vΩ j

i

)2
)

+ ζ1,i+1

SΩ j
i +Λ

Ω j − ∑
Ωk∈V (Ω j)

β jkc jkSΩ j
i IΩk

i

NΩ j
i

−µ
jSΩ j

i


+ ζ2,i+1

 ∑
Ωk∈V (Ω j)

θ
β jkc jkSΩ j

i IΩk
i

NΩ j
i

− ∑
Ωk∈V (Ω j)

α jk
β jkc jkEΩ j

i IΩk
i

NΩ j
i

−
(

k j + r j
1uΩ j

i +µ
j
)

EΩ j
i + ∑

Ωk∈V (Ω j)

γ jk
β jkc jkSΩ j

i RΩk
i

NΩ j
i


+ ζ3,i+1

 ∑
Ωk∈V (Ω j)

(1−θ)
β jkc jkSΩ j

i IΩk
i

NΩ j
i

+ ∑
Ωk∈V (Ω j)

α jk
β jkc jkEΩ j

i IΩk
i

NΩ j
i

+ k EΩ j
i −

(
p j + r j

2vΩ j
i +µ

j +d j
)

IΩ j
i +qRΩ j

i

]
+ ξ4,i+1

uΩ j
i r j

1EΩ j
i +

(
p j + vΩ j

i r j
2

)
IΩ j
i −

(
q j +µ

j)RΩ j
i − ∑

Ωk∈V (Ω j)

γ jk
β jkc jkSΩ j

i RΩk
i

NΩ j
i
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Theorem 3.2. (Necessary Conditions)

Given optimal controls (uΩ j
i
∗
), (vΩ j

i
∗
) and solutions SΩ j

i
∗
,EΩ j

i
∗
, IΩ j

i
∗

and RΩ j
i
∗
, there exists

ζk,i, i = 1...N, k = 1,2,3,4, the adjoint variables satisfying the following equations:



∆ξ
Ω j
1,i =

(
1−µ j)ξ

Ω j
1,i+1 +

(
θξ

Ω j
2,i+1 +(1−θ)ξ

Ω j
3,i+1−ξ

Ω j
1,i+1

)(
β jI

Ω j
i + ∑

Ωk∈V (Ω j)
β jkIΩk

i

)
,

∆ξ
Ω j
2,i =

(
1−µ j)ξ

Ω j
2,i+1 +

(
ξ

Ω j
3,i+1−ξ

Ω j
2,i+1

)(
∑

Ωk∈V (Ω j)
α jkIΩk

i + kΩ j

)
+

(
ξ

Ω j
4,i+1−ξ

Ω j
2,i+1

)(
r j

1uΩ j
i

)
+Ψ1

∆ξ
Ω j
3,i =

(
1−µ j−d j)ξ

Ω j
3,i+1 +

(
θξ

Ω j
2,i+1 +(1−θ)ξ

Ω j
3,i+1−ξ

Ω j
1,i+1

)
β jS

Ω j
i

+
(

ξ
Ω j
4,i+1−ξ

Ω j
3,i+1

)(
p+ r2vΩ j

i

)
+Ψ2

∆ξ
Ω j
4,i = ξ

Ω j
4,i+1

(
1−µ j)+(ξ

Ω j
2,i+1−ξ

Ω j
4,i+1

)
∑

Ωk∈V (Ω j)
γ jkIΩk

i +q j
(

ξ
Ω j
3,i+1−ξ

Ω j
4,i+1

)
,

Furthermore, the optimal controls (uΩ j
i
∗
) and (vΩ j

i
∗
) are given by

uΩ j
i
∗
= min{max{umin,

(
ξ

Ω j
2,i+1−ξ

Ω j
1,i+1

)
A1

r1EΩ j
i },u

max}, i = 1, ...,n.

vΩ j
i
∗
= min{max{vmin,

(
ξ

Ω j
3,i+1−ξ

Ω j
4,i+1

)
A2

r2IΩ j
i },v

max}, i = 1, ...,n.

Proof. Using Pontryagin’s Maximum Principle [25], and setting SΩ j
i = SΩ j

i
∗
,EΩ j

i = EΩ j
i
∗

IΩ j
i =

IΩ j
i
∗
, RΩ j

i = RΩ j
i
∗
, uΩ j

i = uΩ j
i
∗

and vΩ j
i = vΩ j

i
∗
. we obtain the following adjoint equations:



∆ξ
Ω j
1,i =

−∂H
∂SΩ j

=
(
1−µ j

)
ξ

Ω j
1,i+1 +

(
θξ

Ω j
2,i+1 +(1−θ)ξ

Ω j
3,i+1−ξ

Ω j
1,i+1

)(
β jI

Ω j
i + ∑

Ωk∈V (Ω j)
β jkIΩk

i

)
,

∆ξ
Ω j
2,i =

−∂H
∂EΩ j

= =
(
1−µ j

)
ξ

Ω j
2,i+1 +

(
ξ

Ω j
3,i+1−ξ

Ω j
2,i+1

)(
∑

Ωk∈V (Ω j)
α jkIΩk

i + kΩ j

)
+

(
ξ

Ω j
4,i+1−ξ

Ω j
2,i+1

)(
r j

1uΩ j
i

)
+Ψ1,

∆ξ
Ω j
3,i =

−∂H
∂ IΩ j

= =
(
1−µ j−d j

)
ξ

Ω j
3,i+1 +

(
θξ

Ω j
2,i+1 +(1−θ)ξ

Ω j
3,i+1−ξ

Ω j
1,i+1

)
β jS

Ω j
i ,

+
(

ξ
Ω j
4,i+1−ξ

Ω j
3,i+1

)(
p+ r2vΩ j

i

)
+Ψ2

∆ξ
Ω j
4,i =

−∂H
∂RΩ j

= = ξ
Ω j
4,i+1

(
1−µ j

)
+
(

ξ
Ω j
2,i+1−ξ

Ω j
4,i+1

)
∑

Ωk∈V (Ω j)
γ jkIΩk

i +q
(

ξ
Ω j
3,i+1−ξ

Ω j
4,i+1

)
,
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then

ξ
Ω j
1,i =

(
2−µ j)ξ

Ω j
1,i+1 +

(
θξ

Ω j
2,i+1 +(1−θ)ξ

Ω j
3,i+1−ξ

Ω j
1,i+1

)(
β jI

Ω j
i + ∑

Ωk∈V (Ω j)
β jkIΩk

i

)
,

ξ
Ω j
2,i =

(
2−µ j)ξ

Ω j
2,i+1 +

(
ξ

Ω j
3,i+1−ξ

Ω j
2,i+1

)(
∑

Ωk∈V (Ω j)
α jkIΩk

i + kΩ j

)
+ +

(
ξ

Ω j
4,i+1−ξ

Ω j
2,i+1

)(
r1uΩ j

i

)
+Ψ1,

ξ
Ω j
3,i =

(
2−µ j−d j)ξ

Ω j
3,i+1 +

(
θξ

Ω j
2,i+1 +(1−θ)ξ

Ω j
3,i+1−ξ

Ω j
1,i+1

)
β jS

Ω j
i

+
(

ξ
Ω j
4,i+1−ξ

Ω j
3,i+1

)(
p j + r j

2vΩ j
i

)
+Ψ2,

ξ
Ω j
4,i = ξ

Ω j
4,i+1

(
2−µ j)+(ξ

Ω j
2,i+1−ξ

Ω j
4,i+1

)
∑

Ωk∈V (Ω j)
γ jkIΩk

i +q j
(

ξ
Ω j
3,i+1−ξ

Ω j
4,i+1

)
,

To obtain the optimality conditions we take the variation with respect to controls uΩ j
i and vΩ j

i

and set it equal to zero

∂H

∂uΩ j
i

= A1uΩ j
i −ξ2,i+1

(
r j

1EΩ j
i

)
+ξ4,i+1

(
r j

1EΩ j
i

)
= 0

∂H

∂vΩ j
i

= A2vΩ j
i −ξ3,i+1

(
r j

2IΩ j
i

)
+ξ4,i+1

(
r j

2IΩ j
i

)
= 0

Then we obtain the optimal controls

uΩ j
i =

(
ξ

Ω j
2,i+1−ξ

Ω j
1,i+1

)
A1

r j
1EΩ j

i

vΩ j
i =

(
ξ

Ω j
3,i+1−ξ

Ω j
4,i+1

)
A2

r j
2IΩ j

i

By the bounds in U and V of the controls, it is easy to obtain uΩ j
i
∗

and vΩ j
i
∗

in the following

form

uΩ j
i
∗
= min{max{umin,

(
ξ

Ω j
2,i+1−ξ

Ω j
1,i+1

)
A1

r j
1EΩ j

i },u
max}, i = 1, ...,n / Ω j∈ Ω

vΩ j
i
∗
= min{max{vmin,

(
ξ

Ω j
3,i+1−ξ

Ω j
4,i+1

)
A2

r j
2IΩ j

i },v
max}, i = 1, ...,n / Ω j∈ Ω

�
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3.1. Numerical simulation. In this section, we present the numerical results that illustrate

and reinforce the effect of our control strategy. This strategy consists in applying two kinds of

treatment respectively to the exposed individuals and to the infected ones in order to fight against

the spread of the tuberculosis disease. We have developed a code in MATLABT M and we have

simulated our results using different data. We solve the optimality system using an iterative

method. Where the state system with an initial guess is solved forward in time and then the

adjoint system is solved backward in time because of the transversality conditions. Afterwards,

we updated the optimal controls values using the values of state and costate variables obtained

in the previous steps. Finally, we execute the previous step still a tolerance criterion is reached.

In order to show the importance of our work, and without lose of generality, we consider

here that a 10×10 grid denoted Ω which Ω =
10⋃
j=1

Ω j. All simulations are performed using the

parameter values in Table (1) taken from [10]. At day t = 1 we assume that the susceptible peo-

ple are homogeneously distributed with 45 in each cell except at the lower right corner cell Ω1

where we introduce 5 infectives, and keep 40 susceptible there. In all of the figures below, the

redder part of the color bars contains larger numbers of individuals while the bluer part contains

the smaller numbers. To illustrate and show the effect of each control and its influence on the

spread of the disease, we choose to adopt three scenarios. In the first scenario, we optimized

simultaneously the controls on chemoprophylaxis (u) and treatment (v). However, in the 2nd

case, the control (v) on treatment is not optimized but held constant while the control on chemo-

prophylaxis (u) is optimized, and finally in the 3rd case, we use constant chemoprophylaxis and

optimal treatment given to the infected people.

• Case 1: Applying two controls : chemoprophylaxis and treatment.

• Case 2: Constant treatment.

3.1.1. Case 1 : Applying two controls : chemoprophylaxis and treatment. In figures 2, 3, 4

and 5 when we use our spatiotemporal control strategy based on two treatments. We admit that

optimal treatments begin on day t = 1 which is the same day that infection is detected in Ω.

The impact of spatiotemporal treatment controls is very remarkable in slowing the spread of

infection.
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TABLE 1. Initial conditions and parameters values

Parameter Value Description

SΩ j
0

50 f or Ω j

45 f or Ω1

Initial susceptible population

EΩ j
0 0 Initial exposed population

IΩ j
0

0 f or Ω j

5 f or Ω1

Initial infected population

RΩ j
0 0 Initial immune population

Λ 3000 Birth rate

µ 0.01 Natural mortality rate

c 21 Contact rate

d 0.3 TB induced death rate

β 0.35 Probability of being infected

k 0.00013 Natural rate of progression to active TB

p 0.2 Natural recovery rate

q 0.005 Relapsing rate

r1 0.7 Treatment rate for the latently infected

r2 0.55 Treatment rate for the infectives

δ1 0.7 Modification parameter

δ2 0.9 Modification parameter

f 0.99 Probability that the infected will enter the latent stage of the disease

In Fig.1 (b), We can observe that the latently infected population, in the absence of chemo-

prophylaxis and treatment of infective, increases as susceptible are infected, and reaches its

maximum, then gradually falls and then reaches a stable state where it remains constant. Upon

the implementation of chemoprophylaxis and treatment as shown in Fig.3, the latent infected

population has decreased to low levels as the infectious are treated, which leads to decrease in

contagiousness.
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In figure 4, after 4 years, the density of the infected population falls from 35 infected in

absence of treatment and chemoprophylaxis, to 2 infected in the presence of optimal controls

as shown in Fig.1(c). In fact, in the absence of treatment and chemoprophylaxis, the infective

population increases from the onset due to some of the latently infected becoming infectious,

and reaches its peak and then falls and reaches a state where it remains constant as shown in

Fig.1(c). In Fig.4, in the presence of chemoprophylaxis and treatment of the infectives, the

population falls off and are reduced to low levels as chemoprophylaxis will reduce the number

of individuals progressing to active (TB). The treatment is also impeding those that develop

active (TB) to infect others.

In figure 5, the maximum number of people eliminated reaches approximately 43 individuals

compared to less than 4 in the absence of controls, which is very beneficial and reflects the

importance of our control strategy. We can observe in figures1 and 5 the disappearance of the

recovered population in the two cases either in absence or in the presence of the control. In

the first case, recovered individuals are transferred to the infected class (see figures2 and 3),

but in the second case recovered individuals are transferred to the recovered class (see figure.5)

through the mechanisms of treatments adopted in this case. This implies that the holistic ap-

proach of the intervention strategies is the most effective way in combating the (TB) epidemic.

3.1.2. Case 2 : Constant treatment. In figures 2-9, we investigate numerical results with only

one chemoprophylaxis of exposed population and a constant treatment for the infected popu-

lation. We observe that in this case, the number of exposed decreases but in a way less than

the first scenario, however the number of infected remains high and the number of removed

increases relatively without reaching the same number as in the use of both treatments.
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FIGURE 2. Susceptible behavior within Ω with control (Optimal chemoprophy-

laxis and treatment).

FIGURE 3. Exposed behavior within Ω with control (Optimal chemoprophy-

laxis and treatment).
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FIGURE 4. Infected behavior within Ω with control (Optimal chemoprophylaxis

and treatment).

FIGURE 5. Recovered behavior within Ω with control (Optimal chemoprophy-

laxis and treatment).
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FIGURE 6. Susceptible behavior within Ω with control (Optimal chemoprophy-

laxis and treatment).

FIGURE 7. Exposed behavior within Ω with control (Optimal chemoprophy-

laxis and treatment).
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FIGURE 8. Infected behavior within Ω with control (Optimal chemoprophylaxis

and treatment).

FIGURE 9. Recovered behavior within Ω with control (Optimal chemoprophy-

laxis and treatment).
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4. CONCLUSION

The main idea of this article is to present an optimal strategy for controlling the spread of

tuberculosis disease in a given region, based on a discrete time spatiotemporal model describing

the evolution of the number of susceptible,exposed, infected and removed in different regions

incorporating the movement of people from one region to another. The regions were assembled

into a meshed cell surface where each cell represents a region, to show the impact of an infection

that comes from a one cell to its vicinity. The optimal control approach is aiming at reducing

the latently infected individuals (exposed) to avoid the transition, from tuberculosis infection

to tuberculosis disease. This approach is suggested by looking at its effect when a treatment is

supposed to be followed in the fight against the disease. According to the simulation results,

it can be confirmed that the control effects will be effective by using controls on treatment and

chemoprophylaxis simultaneously.
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