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Abstract: Hepatitis E disease is caused by hepatitis E virus (HEV). The transmission ofib&pfitim feces to the
mouth ismainly through contaminated water and fodtis paperproposes the dynamics &fEV transmission
through amathematical modelWe analyze stability ofequilibria point of the model In addition, we analyze
parameter sensitity to determine the important role of every single parameter value on the.rradblermore, we
imposetreatment and virus extermination ¢me modelas strategy control to reduce HEV transmissidhe
simulation resul indicate that the performance t@fo controls is effective to minimizéhe numbe of infected
human andeducethe number of viruses in the environment
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1. INTRODUCTION

Hepatitis is derived from two words, namely hepa (liver) and itis (inflammation)
Hepatitis is an inflammation that occurs in lij&f. There are some kinds of viruses that cause
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hepatitisand each viruses bring up similar clinical symptoms and some specific symptoms to
detect the variety of hepatit[g]. Generally,there are 5 types of viruses that cause hepatitis,
namely: Hepatitis A \fus (HAV), Hepatitis B Virus (HBV), Hepatitis C Virus (HCV), Hepatitis
D Virus (HDV), and Hepatitis E Virus (HEV]3]. Hepatitis A and E aresually caused by
consumption of contaminated food or watétepatitis B, C, and D usually occur due to
parenteralcontact ghared use of the patient's personal tools and syjing#s infected body
fluids. Hepatitis B, C, and E can be transmitted vertically, that is transmission from pregnant
mother to her fetus. This transmission is most common in hepatils7B Khuroo et al[8]
demonstratedfetal outcomes of HEV infection in pregnamtother and found in utero
transmission with fetal outcomes ranging from intrauterine fetal death to symptomatic and
asymptomatic neonatal liver infection.

Hepatitis E is a heart iattious disease caused by Hepatitis E Virus (HEV). This virus is
small size and belong to single strand ribonucleic acid (RNA) y8lsHepatitis E Virus is
classified to 4 types of genotype that are genotype 1, 2, 3, and 4. Genotype 1 and 2 have been
found only in human body, genotype 3 and 4 are belong to animal ( pig, boar, and deer) and can
infect human The virus is shed in the stool of an infected person, and enters the human body
through the intestined he infection in a human body usually occfiea2-10 weeks[2, 10].
Hepatitis Edisease is also known as hepatitis fulminant (acute liver failure) which can suffer to
death[3]. Thereare 23 billion hepatitis E infections, over 3 million acutases of hepatitis E,
and 70,000 hepatiti€-related deathsn the world. The prevalence is highest in Eastern and
Southern Asiall, 13.

There is no vaccine for Hepatitis E VirlRecombinant subunit vaccine for preventing
Hepatitis E Virus infection had been found in China named Hecolin vadoutethis is not
approved in other coumés so thatit cannot be published commerciall$3]. Keepng the
environment clean, especialbpnsuminghygiene foods and drinks is an effective prevention
action. Moreover, in current situatiomterferon haslao been successfully used as a treatment

for this disease. For the treatment of acute Hepatitis E can be a special treatment using antiviral
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drugs such as ribavirif®9].

Mathematical models have played an essential role in understanding the dynamics of
HEV transmission. Several mathematical models and strategies conttdE¥bitransmission
havebeen established in a number of literature to capture the dynamics of theedis@ more
effective method (see, for examplel4, 15, 16, 17] and references therein)Mercer and
Siddiqui[14] construct the mathemasitmodel of hepatitis E transmission using Holling Il and
notice four populations that are SusceptiloiiectedRecoveredViral. Nannyonga et a[15]
formulate the SMEIR (SusceptibMalariaExposedinfectedRecovered) model to explain
co-infection between hepatitis E and malaria. Backer §t@lreviewed transmission model of
hepatitis E in pigs with partition ofhé population of pigs into 3 populations thate
SusceptibldnfectedRecovered. Alzahrani and Khdh7] construct the mathematics model of
hepatitis E dissemination by noticing parental infection. The populatidmsomodel is parted
into 2 types of ppulation thatare human (SusceptiblExposedinfectedRecovered) and
Hepatitis E VirusSeveral researchers have presented the optionélol strategies to explore the
eff ectivenessof the intervention 17, 18, 19].In the study[17], they extended the rdel by
applying optimal control in the form of prevention and treatment for pregnant women, clean
water supply, and sprayin@f the virus.Khan et al [19]proposedthree controlstrategies:
isolation of infected and nemfected individuals, treatment and vaccination to minimize the
number of acute infected, chronically infected with hepatitis B individuals and maximize the
number of susceptible and recovered individuals.

The present papewill discussthe analysis and optimal controf the spread of Hepatitis
E. The mathematical model used refers toatele written by Alzahrani and Kharj17]. We
modify the model by ignoring the vertical transmission because the likelfaotmtis smdl. We
investigate the dynamics of the model. Furthermore, we demonstrate the effect of optimal control
strategy, teatments used to reduce the rate of growth of the human population infected with
hepatitis E,and the virus extermination to reduce the auf Hepatitis E virus in the

environment
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The paper is organized as followthe formulation of HEV model is presented in section
2. The stability analysis are given in section 3 and 4. The parameter sensitivity analysis is
highlighted in section 5, which determines key parameters in HEV model equilibmigection
6, We employhuman treatment andrus extermination in the environmeas control variables.
We thenconduct anumerical exploration oflEV modelwith control in section 7We conclude

by discussing ouiinding andsuggesnhg future work insection 8

2. FORMULATION OF HEV MODEL
In this section, the model will be formulated for the spread of hepatitis E. The assumptions
for the construction of the model are as follows:
a. The spread of Hepatitis E occurs due to direct and indirect contact.
b. Individuals who recover amonsidered immune to hepatitis E.
c. The population of exposed individuals can not spread the disease.
d. Deattsdue to hepatitis E disease are ignored
The population of humans is divided into four compartmastthe following; susceptible
population (Y, exmpsed population@ thatis the human populatiothathas been exposed to the
virus but ha not been able to transmit the virusfected populatiorf®) and recover population
(Y). The virus populations ithe environmentsaredenotedas (0). The definition of parameters

can be seen in Table 2.1 as follows.

Table 2.1Definition of Model Parameters.

Notation Definition
¥ Human birth rate
T Contact rate with infected individuals

| Transmission parameter BfandS

Natural death rate dfumans

Rate of infectious of exposed individuals

t Natural recovery rate

— Shedding of virus by the infected individuals to the environment
Natural death rate of viruses
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Based on the assumptions and descriptions of parameters and vaddtdesmission

diagram of hepatitis E transmission model is presented in Figure 2.1 as follows.

(BI + aP)S

Figure 2.1 Transmission Diagram ¢iEV Model.

— : Reduce the origingdopulation number and increase the intended population number.

---» : Increase the intended population numiert do not reduce the original population
number.

---» : There is interaction between the two populations, but neither increasdsaneases

both number.

The transmission diagram in Figure 2.1 is formulated as follows:

— ¥ Y (2.1a)
— — "0 (2.1b)
— "0 ' t0 (2.1¢)
— ft0°Y (2.1d)
— —0' 0 (2.1e).

with "YioR@yr) mA T ¥ i i [ Ath-H T
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Total population stated witlh Y ‘O "O Y. Then rate of change of total population is

by using equation (2.1a)(2.1b),we obtained

— s 0.

From thecalculation results we obtained
=

and then 0 variable willbe 6 -

Therefore, foranalysis ofthe model inequation ¢®w ¢®Q, the following modelcan be

used:

N IV (2.1f)
- ——— ¢ "0 (2.19)
_ "0 ' 1O (2.1h)
— tT0"Y (2.1i)
— —0'0 (2.1))

3. MODEL ANALYIS

Mathematical model for the spread of hepatitis E has two eqailitte non endemic

equilibrium point O and endemic equilibrium poin© . The non endemic equilibrium point

of the model isO "YAOH@ Y — hridrdm .

Next, we will determine the basic reproduction numbéj (vhich has the important role
in thedisease modelling2P, 21]. The basic reproduction numb&f can be computed usinge
next generation matrix on tt¢£V model

Consider the infected compartmentdHBY model (1) ares; I; andP. Using the approach in

[22], the matricesM and ¥ at DFE are given dsllows
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_’_[ T | 1] ” .’.[ T[
\ T 11 11 andy " tf ° m 8
m m m T —

The basic reproduction number of the model (1) is obtained through the spectral radius of the
matrix M¥4  which is given by

Y
From the calculation we obtained the endemic equilibrium point of the model is as faows.

"YHO ROnY o’

Y S— (3.1a)
oi S (3.1b)
0 (3.1c)
Y -0 (3.1d)
0° =0 (3.1e)

Based on the description above, the endemic equilibrium p@nt will exist if it

fulfills the condition 'Y p Tor’Y p.

4. LOCAL STABILITY OF EQUILIBRIUM POINT

In this section, stability analysis will be applied on both equilibrium points, hon endemic
equilibrium point O  and endemic equilibrium pointO .
4.1 LOCAL STABILITY OF NON -ENDEMIC EQUILIBRIUM POINT

Local stability analysis of non endemic equilibrium point begins by substituting the non

~ o~

endemic equilibrium poinfl0  "YOH@YH) § i into the Jacobian atrix, thus

obtained

c
22
3 A4
—|-—)(
-4 434
2 n

=
|
—
-4 4

Qv
=
p|
|
P
Q
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Based on tha) Jacobian matrix, a characteristic equation is made as follows:

AAD _'O m8

R T f Tt |
y I T I Ut | &
QQ® T ” t ° _ L1 m & T,
T L1 T C_ L1
g T LIS — LIS ‘ _O
Co_ Y __ o_ G_ & m (4.1a)
with
w Cl ” -l- ‘ Fl
w ‘ ” ‘ -l- ‘ -I- ” cl ‘ ‘ ” ‘ -I- ” TFI
® C " T T* T | —
Based on the equation (4.1a), we obtained eigen values_ ‘, and roots of
equation as follows
_ O_ w_ o . (4.1b)

The non endemic equilibrium point will be asymptotically stable if and only if the characteristic
equation (4.1a) has the roots part of negative real number. It is clear thatl_ arenegative
because all parameters as described are positive. Then equation (4.1b) will have the roots part of
negative real number with Routfurwitz criteria. Based on RoutHurwitz criteria, the non

endemic equilibrium point will be asymptotically statfland only if Y  phwith 'Q Tiplt8

This shows that if all conditions are ful&tl,then there is no further transmission of the disease.
4.2 LOCAL STABILITY OF ENDEMIC EQUILIBRIUM POINT

Substitute endemic equilibrium poii®@  "YAORORY'M)* to the Jacobian matrix as
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follow,
O T O T ®
MO O 0T 0
) ATl O" W T Tg,
T T W W T
T M W T WO
with
S S
(’;) ” 1] (’b ZS -
S S
o f ® o
S S
(’;) 4 (’b n
@ ‘ o
@ — o —
S S
o s o) $ $
$ S
Next is a characteristic equatibg using A A © O 1
® _ T &) T &)
b @ w - W Tt W&
AAFD T w W _ L1 m 5 T8
1 L1 W W _ 1
& T Tt ) T o _O
Thus,we obtainthe characteristgequation
® _ _ oO_ O_ w_ ® T (4.2a)

" AAABROEHRA ADH contain many parameter valuéisat are difficultto be simplified
analytically, o it will be analyzed through numericgimulation using the phase field.

The Simulation is by giving parameters value and three initial value for
"Y1t HO it RO AY m A) 1t , which are different. The parameters value are presented in Table

4.1
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Table 4.1Parameters Value of Model

Parameter Value Unit Source
S 100 €1 e Q Assume
Wi Q
f 0003 p Alzahrani and Khan (2018)
0.8 p Assume
‘ 0004 p Alzahrani and Khan (2018)
" 0:02 p Alzahrani and Khan (2018)
T 0:02 P Alzahraniand Khan (2018)
— 0:06 p Assume
‘ 0:02 p Alzahrani and Khan (2018)

The three initial values are presented in Table 4.2.

Table 4.2Initial Value

Initial value ] F L { IF Colour

Initial Value 1 500 200 150 90 2000 Blue
Initial Value 2 750 400 100 80 3000 Green

Initial value 3 1000 750 500 150 2500 Red

The results of the phase field simulation at the endemic equilibrium pointsprised of Hepatitis

E are shown in Figure 4.1
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Initial Value 1
Initial Value 2 | -
Initial Value 3
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Figure 4.1Phase Field Simulation oty 'O Population for Endemic Equilibrium Model

Figure 4.1 shows phase fiekimulation for susceptible human pojptibn “YO with
exposed human pomtion ‘O 0 . Based on three different irati valueshave been given, it
shows that all graphs of population tend to convergeatgont ™AO ¢ whwch
T p X which is an endemic equilibrium point O
¢ wwdY p fxedp t dprgp x pla dp mchpE8 In addition, based on the given
parameter values wabtained valu& Y & o x L T TEBI

Based on the explanation above, the endemic equilibrium j@int "YRO' HORY h)*
on the mathematical modef the spread of hepatitis E will tend be asymptotically stable if

and only if 'Y  p. This shows transmission bépatitis Edisease.

5. ANALYSIS OF PARAMETERS SENSITIVITY

The analysis sensitivity aims to determine the parameters that have anfargece in
terms of stability of the equilibrium pointon endemic and endemithe parameters considered
areonly the parameter containat Y because tbse parameter indicate the conditievhether
the spread ofthe diseasds occured or not. This can be known through sensitivity indeX2 )

of each parametelUsing the approach in [23]hé parameter sensitivity index is formulated as
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follows,
Q A h
T a'y

—a

with:
a : Parameters to be analyzed
‘Q : Sensitivity index parameter.

The 'Y value is influenced by 7 parameteiBheseare "ff i h RRhAT ‘A The
following is the exampleof the sensitivity index calculatiofor | parameterBy substituting
the parametergaluein Table 4.1we obtained

Ty | = (R I | —

Q — — T80 @
Y Tt ey ] — Ty —

The results of the calculation of the sensitivity index paramegarde seen in Table 5.1 below:

Table 5.1Parameter Sensitivity Index Calculation Results

Parameter Sensitivity Index
| 0.99
— 0.99
-0.99
t -0.83
‘ -0.33
0.17
f 0.0012

Based on Table 5.1 it can beenthat the sensitivity of the index and —is 0.99 This
can be interpreted that if theubhsmission parameter BfandS | andshedding of virus by the
infected individuals to thenvironment — increased by 10%, then th€ value will increase
by 9.9% and as well as vice versa. The analysis alsdeapplthe parameter§ A Afl. This
shows that for positive sensitivity index, if the parameter value increasey, thalue will also
increase.On the other handpr the negative sensitivity index, if the value of the parameter
increass, the Y valuewill be reduced. For example, if ti¢atural deathrate of viruses °
increase by 10%hen the'Y value will be reducedby 9.9%. The analysis also applies to the

parametert A Aq.
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Figure 5.1Sensitivity—against'Y valuesin three different values
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Figure 5.2Sensitivity| againstY valuesin three different—values
Furthermore, sensitivity parameteo§ | and —are simulatecagainst’Y . In the first
simulation,we selected ~ mimt mtAp tdw yA T |A 1y, while the —value is in the interval

~

ip — Ttw. The second simulationve selected— it 1t g 7 A T A 1 @

while the| value is in the intervath | i The results of the simulation can be seen in
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Figure 5.1 and Figure 5.2

Figure 5.1 and 5.describethatif parameter§ and —increase, then th&y value will
also increase, meaning that the spread of hepatitis E disease will become more prvialent.
because the sensitivity index of parameterand —are positive, so that when the value is

increase, the Y value will abo increase.

6. FORMULATION OF OPTIMAL CONTROL

We examine the application of optimal controlHiEV model to reduce the spread of
HEV. Thereare tvo control variables applied to the model, nami&batment ¢ ) and virus
extermination in theenvironment @ ). The followingis the mathematical model for the spread

of hepatitis E with control variables

-y —- 7Y (6.1a)
- — "0 (6.1b)
— 70 " t0-060 (6.1c)
— 1TO0"Y-070 (6.1d)
— —0*0 -00 (6.1e)

The variable and parameter have been described in detail in section 4. From the model, it
can be seen there are additional variable in the form of control varialled 6 . The cost
function or objective function which might be formed based on the explanation above are as

follows:

L Qb Ouv —O —0 Qo0
C C

with ¢ Fo  are weighting constanis the form of costs for the controls. The optimal control is
atmm 6 0 phx E@Epltchm 6 0 ando is the final timeWe take a quadratic form

to quantify the contratosts [2, 25, 26].
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6.1 SOLVING OF OPTIMAL CONTROL

Based onPontryagi nds M#&X] teufiret step takercis lfam the
Hamiltonian function in the model as follows:
= 00 —6 —&6 [ 6 Qwomom (6.1f)
with "Qo o 0 hd is at the right hand sidef the mathematical modaif the spread of
hepatitis Ewhile [ 0 expresses the Lagrange multiplier orstate variable.

Next, in order to obtain the optimal condition, tHamiltonian function must in the
stationary condition of

T O T 0O O

—l nyYy — T[FAAT Tt

—a
o

—n
—)

duetomm 0 0 phx E @E plt the following possible value ab are:
T EI6C

6° —— EIm o’ p
o 163  ph

Tt EI6C
6* — Ao 6° p
0 AloCG p8

Based othe probability above, the optimal of control value is obtained as follows

6% & Qtpl & corfr— (6.19)
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67 @& 'Qiphtr & corh— (6.1h).

Next, due to the controlled > A1 &° there are state variables, "YORGY |

therefore the state equation andstate equation need to be resolved to obtain these variables.

Thusit will be determined the completion of the state equation to obtain the vadiable-.

Furthermore, cetate equation on controllér * AT & will be determined, from the

following formula

L3
T
which resulted in
r — h
[ — rY " 1 "h
r — p r t -6 1t -0 | —h
r — rh
r — p r 0 8

7. NUMERICAL RESULTS

We address the numericgdlution of the control model (4) with and without control. We
utilize the fourth order RungeKutta (RK4) algorithm to obtain the numerical solution of the
control model. The forward RK4 algorithm is employed to solve the state systems. Thus, the
backwardRK4 algorithm is used to solve the-state systerf2g].

Simulation is conducted for the followingg OB p T days with the initial value
for each condition i&Ym v nmhOn ¢ nhtOn pufivm whd m ¢ T BThe
parameter value used is the saméhasparameter value when simulating the phase field for the

endemic equilibrium pointWeighting constants for the controlsds p 1 ®mnd @ X B
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Simulation is in four condition. The first simulation is without any control. The second
simulation is only e treatmentd . The third simulation is only virus exterminati¢ih . The

last simulation ighe treatmentd andvirus exterminatiorfo

2500

without control
u

1
2000

)

up Uy

1500

Infected

1000

500

0

0 10 20 30 40 50 60 70 80 90 100
Days

Figure 7.1 Comparison Simulation of Infected Human Population for 100 Days.

Table 7.1 Comparison of Total Individuals Infected for 100 days.

Scenario Total population of infected individuals at day 100
Without control 2200
Control 0 85
Control 0 1039
Control6 AT & 16

Figure 7.1 shows that there is fagnificant difference between the number of infected
individuals population when without and with the control variables. The number of infected
individuals with the controld population decreased significantly. When given a conirgl
the number of infected individuals decreased by about 50% of the total popwationo
control. When given the contra@l AT &, it decrease@vendramatically. This isas presented
in Table 7.1 shows that at the end of the observation the number of infected individuals

population has the least amount compared to aitemarios.
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Figure 7.2 Comparison Simulation of Virus itme Environment for 100 Days

Table 7.2 Comparison of virus in the environment for 100 days.

Scenario Total population of virus in the environment at day 100
Without control 3684
Control 0 430
Control 0 69
Control6 AT & 4

Figure 7.2 shows that there issiginificantdifference between the number of virus when
without and with the control variables. The number of viruses with controlecreased until
the last day. When given contrdl , the number of viruses decreased quite dramatically until
day 5, and then remad constant until the last day of observation. When given the control
6 AT &\, it also decreased the amounttué virus that is similar to the second scenaliat, the
amount ofthe virus in this scenarigs a little more at the last day. Thisas presented imable
7.2 shows that at the end of the observation, the number of viruses in the environment has the
least amount compared to other scenarios.
Furthermore, the simulation of the control profile for AT @& arepresented in Figure

7.3, Figure7.4 and Figure.5 below:
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min J 0=104887.06657322 [FMINCON: 1e-005; CVODEs: 1e-007; N=20; MATLAB]

1 J T o T I—V

0.98 -

0.96 -

0.94 -

0.92 -

0.9

Control Variables

0.88 -

0.86 -

0.84 -

0.82 : : : :
0 20 40 60 80 100
Time

Figure 7.3 Control Profile of Treatment(

Figure7.3 shows that the control variables of the treatmént, onthe day 1 to day,5
the effort is done maximally. When the observai®on the day 5 to day 10the effort fel to
0.88 or 88%. Thenwhen the observatiois on theday 10 to day 9Qhe effort increased up to
0.98 or 98% untithe maximum effort. Furthermore, ahe day 90 until the last dayhe effort

decreased gradually until around 0.82 or 82%.

min J 0=50956.71649600 [FMINCON: 1e-005; CVODEs: 1e-007; N=20; MATLAB]
1

0.95 A

Control Variables

0.9 -

0. 85 r r r r
0 20 40 60 80 100

Figure 7.4 Control Profile of Virus Exterminatiort(
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Figure 7.4 shows that theontrol variables of virus exterminatiqd , onday 1 to day
95, the effort is done maximally. When the observat®ion the day 95 until the last dayhe

effort decreased to 0.85 or 85%.

min J 025072.14706532 [FMINCON: 1e-005; CVODEs: 1e-007; N=20; MATLAB]
1

0.9

0.8

0.7

0.6

0.5

Control Variables

0.4

0.3

0.2

0.1 : : : :
0 20 40 60 80 100
Time

Figure 7.5 Control Profie of Treatmentd  and Virus Exterminationd

Figure7.5 shows that the control variablés and 6 are given simultaneousl®n the
day 1 to day 5the effort is given around 0.74 or 74%, while for contéol is given a maximum
When the observatiois ontheday 5 to day 10the effort of 6 and 6 decreased respectively
t0 0.47 and 0.45 or 47% or 45%. Then, wiieaobservationss ontheday 10 to day 15 control
0 increased up to 0.49 or 49%, while for conttol decreaed to 0.33 or 33%. Next, control
0 ontheday 15 to day 95 with a difference of once every 5 day decreased by about 0.01 or 1%,
but onthe day 95 to the last dayhe effort exerted fell up again to 0.24 or 24#bhereasfor
control 6 EDA A O A dradlAll once every 5 daypto dayof 45 for 0.01 or 1%. Next, dhe
day of 45 to day 90 the effort giveis decline gradually into a 0.2 or 20% aatthe last day of
the observationcontrol 6 givenwas just0.1 or 10%.The cost function value afach control

can be seen in Tabke3 below:
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Table 7.3 The cost function of each control on a given

Scenario Cost Function Value
Control 0 104,887.07
Control 0 50956.72
Controlo AT & 5072.15

Based on Tabl&.3 it can be concluded than the 100 daysto minimize the number of

infected individuals and populations of viruses in the environment as wall ragimize the

cost of controlling the application of the most effective contsoto performthe treatment ¢

and virus exterminatioro( thatare given simultaneously.

8. CONCLUSION

Based on the results and observations described, the following conclusides\zed

1.

Themathematical model for the spreadhepatitis Eas control variables has two equilibria,
non endemic equilibrium poin® and endemic equilibrium poif® . Non endemic
equilibrium point will be asymptotically stable if and only¥ p and fulfill several
conditions. Endemi@quilibrium point will tendto be locally asymptotically stable if and

onlyif 'Y  phwith

The form of optinal control on a mathematical model for the spreadheyatitis Ewith

control treatment® and virus exterminatio is

6° & "Qipha wwnh%

o] aQspmwwrth(b—

Basedon numerical simulation results on the mathematical model for the spreagatitis

E before and after being given controthe form of treatmentd  and virus
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exterminationd arethe most effectivavay to minimizethe infected individuals anthe
population of virus in the environment.
Further reserch can modify the mathematical model for the spread of hepatitis E by
adding control ariable in the formof prevention given in susceptible individualurthermore,

it alsocan investigatehe most effective effotb reduce the spread of hepatitis E.
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