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Abstract. In this work, we present a study of optimal control strategies of a Novel Corona Virus Disease 2019

(COVID-19) spreading model in the discrete case. The targeted population is divided into six compartments

SEICWCR namely (S) susceptible, (E) exposed, (I) infected, (CW ) infected with complication, (C) infected multi-

morbidity with complication and (R) recovered. We also proposed an optimal strategy to fight against the spread of

COVID-19. We use four controls which represent the sensitization and prevention through the media and educa-

tion for the susceptible individuals, quarantined the infected at home, quarantined the infected with complication at

the hospital, quarantined the infected multimorbidity with complication at the hospital with requirement breathing

assistance. Theoretically, we have proved the existence of optimal controls, and a characterization of the con-

trols in terms of states and adjoint functions principally based on Pontryagin’s maximum principle. To clarify

the efficiency of our theoretical results, we provide numerical simulations for numerous scenarios. Therefore, the

obtained results affirm the performance of the optimization approach.
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1. INTRODUCTION

Infectious illnesses are produced by means of pathogenic microorganisms, such as parasites,

bacteria or viruses. The disease can be transmitted, directly or indirectly, from one individual to

any other. The world has known many epidemics that man could overcome either by isolation,

quarantine, vaccine or treatment to avoid the ordeal that humankind has known since the time of

the famous Spanish flu pandemic which took millions of lives. Thanks to evolution of science

and medicine, all epidemics were taken seriously by researchers in order to limit their rate of

mortality and spread. We can cite for instance the famous epidemics of the 21st century such as

SARS, EBOLA or H1N1.

Nowadays, in late December 2019, China discovered a new respiratory disease called COVID-

19, it was first considered by local authorities and international organizations as being con-

trollable as all epidemics especially when it was discovered that the virus is a mutation of

SARS-COV-1. The city of Wuhan and the Hubei region found out that this was not the case and

the WHO took a lot of time in the face of economic challenges to declare a pandemic after the

virus has spread in all directions. The World Health Organization (WHO) declared the outbreak

a Public Health Emergency of International Concern on 30 January 2020, and a pandemic on

11 March 2020. COVID-19 is a respiratory infectious disease which broke out first in China

and was spread all over the world right after due to the high level of contagion. This virus is

known as the name of SARS-COV-2. As of 9 May 2020, more than 3.95 million cases have

been reported across 187 countries and territories, resulting in more than 275,000 deaths, more

than 1.31 million people have recovered [1, 2]. According to World Health Organization [3],

the most common symptoms of COVID-19 are fever, tiredness and dry cough. Some patients

may have pains and aches, runny nose, sore throat or nasal congestion. Eighty percentages of

patients get better from the disease without using special treatment. Around 1 out of 6 patients

becomes seriously ill and develops difficulty breathing. Elderly persons and those with medical

problems are most probably to develop serious illness.

The COVID-19 is regarded extra lethal and dangerous comparing to different viruses, whereas

the number of humans with an extreme acute respiratory syndrome (SARS) reached about 8098

humans and the death of about 774 people, which additionally commenced from Asia and China
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in 2002 and which researchers recommended transmission from bats to humans, as for the Mid-

dle East Syndrome (MERS) virus, 858 people died out of cases of infection. WHO numbered

about 2494 humans for the reason that its appearance in 2012 [4, 5], which appeared at the start

in the Kingdom of Saudi Arabia.

RELATED WORK

Mathematical models of infectious disease dynamics have a deep history of more than one

hundred years. The most frequent mathematical formulations which characterize the individual

transition in a community between ’compartments’ which attracts the scenario of individual

contamination to quite significant. In 1927 Kermack and McKendrick [6] were the first re-

searchers on mathematical epidemiology to suggest the Susceptible-Infected-Removed (SIR)

model that describes the speedy explosion of an infectious disease for a quick time. Many stud-

ies of mathematical models have been developed to simulate, analyse and understand the corona

virus, in their research study, Yan and Zou [7] considered the optimal and sub-optimal control

strategies associated with quarantined asymptotic individuals for a SARS SEQIJR model. In

[8] Kumar and Srivastava considered the SVIR (susceptible, vaccinated, infected, recovered)

epidemic model. Therefore, vaccination and treatment control strategies are used in order to

contain the disease. Sari et. al. [9], considered the SVEIR epidemic model, they showed

the implementation of combination control strategy in the form of vaccination and treatment

to reduce the number of exposed and infected in order to fight against the spread of SARS

diseases. Zhi-Qiang Xia et. al. [10] modeling the transmission of middle east respirator syn-

drome corona virus in the republic of Korea using a system of ordinary differential equations.

A mathematical model for reproducing the stage-based transmissibility of a SARS-COV-2 is in-

vestigated through Chen et.al in [17]. In [18] the authors recommended a conceptual model for

the COVID-19, which successfully catches the time line of the COVID-19 outbreak. Drosten et

al [19] furnished a description of a deadly case of MERS-CoV contamination and related phylo-

genetic analyses. Guery et al [20] have analyzed the clinical features of the infected cases. The

global problem of the outbreak has attracted the interest of researchers of different areas, giving

rise to a number of proposals to analyze and predict the evolution of the pandemic [11, 12, 13].
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PROBLEM STATEMENT

Control of epidemics is turning into increasingly more necessary for governments and public

health officials. More precisely, it seeks to understand the dynamics of the spread of infectious

diseases in order to improve prevention and intervention techniques aimed at reducing their ef-

fect on public health. Both standard and bilinear incidence rates have been applied widely in

classical epidemic models (see [14]). Following a study on the spread of the epidemic of cholera

in Bari in 1973, Capasso and Serio [15] have included a rate of saturated incidence g(I) = β I
1+ωI ,

with ω > 0 in epidemic models. The principal reason justifying the introduction of this func-

tional form of incidence function is that the number of effective interactions of infective and

susceptible individuals may become saturated at significant levels of infection as a result of

crowding of individuals with infection or because of the preventive measures used in response

to disease severity by susceptible individuals (see [16]). The aim of this work is to introduce a

new approach by taking into account the spread of COVID-19 using an optimal control problem

applicable to any type of populations. We will undertake the discrete time modeling data are

collected at discrete moments (day, week, month, and year). So it is more direct and greater

correct to describe the phenomena by using the discrete time models may avoid some mathe-

matical complexities such as the preference of a function space and regularity of the solution.

Additionally, most of the preceding research has targeted on non-stop modeling. In this work,

we will study the dynamics of discrete mathematical COVID-19 model. In this epidemiological

model, after the initial infection, a hat remains is latently period before becoming infectious.

So the population is divided into six categories: susceptible (S), exposed (E), infected(I), in-

fected with complication (CW ), infected multimorbidity with complication (C), and recovered

(R). We consider a control goal that aims to reduce the spread of the epidemic, we seek to find

the optimal strategies to minimize the number of infected, infected with complication, infected

multimorbidity with implication and maximize the number of recovered by introducing a con-

trol variable into discrete SEICWCR model.

In order to achieve this purpose, we use optimal control strategies associated with four controls:

the first represents the strategy of sensitization and prevention through the media and educa-

tion, and preventing gatherings through security campaigns. It can be applied by launching
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campaigns to raise the citizens awareness of the cruelty of the disease and call for some preven-

tive measures like wearing face masks, washing hands regularly, avoid kissing or giving hugs as

greeting and respecting the spacing between individuals ..., etc. The second can be implemented

by isolating the infected individual at home and health monitoring. The third can be interpreted

as quarantined the infected with complication at the hospital and health monitoring. The last one

can be interpreted as quarantined the infected multimorbidity with complication at the hospital

with requirement breathing assistance. In order to fight against the disease spread, to achieve

these objectives, we use theoretical results. We prove the existence of optimal control, Pontrya-

gin’s Maximum Principle in discrete time is used to characterize the optimal controls in term of

states and adjoint functions. The optimality system is solved by iterative method. Other models

from population dynamics and optimal controls can be found in [21, 22, 23, 24, 25, 26].

The paper is structured as follows. In section 2, we present our SEICWCR discrete mathemat-

ical model that describes the class of COVID-19, the numerical simulation without control are

given. In section 3, we present the optimal control problem for the suggested model was we

provided some results regarding the existence and characterization of the optimal controls using

Pontryagin’s Maximum Principle in discrete time. As an application, the numerical simulations

associated with our control problem are given in section 4. Finally, we conclude the paper in

section 5.

2. MATHEMATICAL MODEL AND SIMULATION WITHOUT CONTROLS

2.1. Description of the Model. In this section we consider a discrete mathematical model

SEICWCR that will describe the dynamics of a population of COVID-19, our model which con-

sists of six compartments representing the subdivision of the population that in the propagation

of the spread of infectious diseases.

S: Susceptible individual.

E: Exposed (Latently Infected).

I: Infected with mild symptoms.

CW : Infected with complication (severe symptoms).

C: Infected multimorbidity with complication (severe symptoms require breathing assistance).

And R: The individuals who have recovered from sickness.
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The following graphical representation of the proposed model is shown in Figure 1. The com-

FIGURE 1. Descriptive diagram of the COVID19 dynamics.

partment S: Susceptible individuals acquire infection following contact with on active infec-

tious individuals at rate βh
Ii

k2+Ii
, βh is the probability that one susceptible becomes infected

by an infectious individual, this population becomes exposed by means of the contact with an

exposed individual at rate αh
Ei

k1+Ei
. This population increases with the charges Λ which rep-

resent that susceptible human are requited into the population and decreases with the rate µSi.

Thus, in this compartment we have an incoming flux equal to Λ and outgoing flux equal to

αhSi
Ei

k1+Ei
+βhSi

Ii
k2+Ii

, k1 and k2 are the half saturated parameter.

The compartment E: Represent the number of humans exposed to the disease. Thus, we have

a coming flux equal to αh
Ei

k1+Ei
which represents the proportion of the individuals come to ex-

posed class. This population is decreasing by the following contact with on active infectious

individual at rate δhEi
Ii

k2+Ii
, δh: is the probability that one exposed becomes infected by an in-

fectious individual, this number decreasing by µ(natural mortality) and also by amount r1Ei,

r1: an individual may recover naturally. This compartments increase at a rate γRi
Ii

k2+Ii
. Thus, in
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this compartment we have an incoming flux equal to αhSi
Ei

k1+Ei
+ γRi

Ii
k2+Ii

and an outgoing flux

equal to δhEi
Ii

k2+Ii
+ r1Ei +µEi.

The compartment I: This compartment represents the number of individuals infected with mild

symptoms. This number increases at a rate (1−θ)βhSi
Ii

k2+Ii
+(1− f )δhEi

Ii
k2+Ii

and also de-

creasing by µ .

The compartment CW : This compartment represents the number of individuals infected with

complication and severe symptoms. Thus, we have an incoming flux equal to (1− τ)θβhSi
Ii

k2+Ii
+

(1−ω) f δhEi
Ii

k2+Ii
and these form the primary active cases with complication) and decreasing

by µ .

The compartment C: This compartment represents the number of individuals infected multi-

morbidity with complication and severs symptoms require breathing assistance. This number

increases at a rate τθβhSi
Ii

k2+Ii
+ω f δhEi

Ii
k2+Ii

which represent the portion the primary active

cases with complication and require breathing assistance) and decreasing by µ .

The compartment R: This compartment represents the number of individuals who have recov-

ered from sickness, Individuals in R are not totally immune to disease infection and are infected

at rate γRi
Ii

k2+Ii
and move into E. This compartment is decreasing by µ (the natural death rate).

Hence, we present the COVID-19 mathematical model by the following nonlinear system of

difference equations.

(1)



Si+1 = Λ+(1−µ)Si−αhSi
Ei

k1+Ei
−βhSi

Ii
k2+Ii

Ei+1 = (1−µ)Ei +αhSi
Ei

k1+Ei
−δhEi

Ii
k2+Ii
− r1Ei + γRi

Ii
k2+Ii

Ii+1 = (1−µ) Ii +(1−θ)βhSi
Ii

k2+Ii
+(1− f )δhEi

Ii
k2+Ii

CW
i+1 = (1−µ)CW

i +(1− τ)θβhSi
Ii

k2+Ii
+(1−ω) f δhEi

Ii
k2+Ii

Ci+1 = (1−µ)Ci + τθβhSi
Ii

k2+Ii
+ω f δhEi

Ii
k2+Ii

Ri+1 = (1−µ)Ri + r1Ei− γRi
Ii

k2+Ii

With initial values S (0) ,E (0) , I (0) ,CW (0) ,C (0) and R(0) are nonnegatives.

In order to show the effectiveness of the proposed model and the contribution of the mobility in

the transmission of the disease, we give a numerical simulation of our model along a period of

50 days with the following figures to ensure that the model adapts to the reality, initial values

are approximate data that we suggested after studying and researching some statistics about the
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population infected with the novel coronavirus 2019, the values are presented in the table.

Figures 2 present the numerical results for the numbers of susceptibles, exposed, infected with

mild symptoms, infected with complication, infected multimorbidity with complication and re-

covered people, respectively. Susceptible individuals become exposed and after an incubation

period become infected, infected with complication and infected multimorbidity with compli-

cation. Thus, the disease spreads to reach the entire population. The number of susceptible

decreases sharply, in contrast there is a significant rise of infected people, infected people mul-

timorbidity with complication. The number of populations infected with mild symptoms in-

creased from 800 to 6500 after 30 days, as well a the increase in the number of populations

with complication with mild symptoms increased as well from 300 to 3900 while the number of

people with complication with mild symptoms require breathing assistance went up from 200

to 2600 as a result, of the transmission of infection from one person to another through several

methods including contact with an infected person or by migrant workers, traveling, or families

and relatives of the infected persons.

The remarks observed in these simulations motivate us to think of defining a suitable control

strategy taking these remarks into consideration. The strategy chosen here is the introduction

of four controls.

3. AN OPTIMAL CONTROL APPROACH: EXISTENCE AND CHARACTERIZATION

3.1. The model with controls. As mentioned in the last paragraph, the number of infected,

infected with complication, infected multimorbidity with complication increases considerably,

we introduce a control strategy into the system(1), as control measures to fight the spread of

infectious, we extend our system by including four kind of controls u1, u2, u3, and u4. The first

control u1 is the proportion to be subjected to sensitization and prevention through the media

and education, and preventing gatherings through security campaigns, so we note this control is

the diagnosed and awareness program to susceptible people and contact prevention to exposed

people. The second control u2 can be interpreted health monitoring and have been quarantined

at home, the third control u3 can be interpreted health monitoring and have been quarantined

in hospital with follow-up, the last one u4 can be interpreted health monitoring and have been

quarantined in hospital with follow-up require breathing assistance.
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FIGURE 2. Dynamics without control strategy.

To better understand the effects of any control measure of these strategies, we introduce three

new variables πi where i = 1,2,3,4. πi = 0 in the absence of control and πi = 1 in the presence

of control.

(2)



Si+1 = Λ+(1−µ)Si−αh (1−π1u1,i)Si
Ei

k1+Ei
−βhSi

Ii
k2+Ii

Ei+1 = (1−µ)Ei +αh (1−π1u1,i)Si
Ei

k1+Ei
−δhEi

Ii
k2+Ii
− r1Ei + γRi

Ii
k3+Ii

Ii+1 = (1−µ) Ii +(1−θ)βhSi
Ii

k2+Ii
+(1− f )δhEi

Ii
k2+Ii
−π2u2,iIi

CW
i+1 = (1−µ)CW

i + τθβhSi
Ii

k2+Ii
+ω f δhEi

Ii
k2+Ii
−π3u3,iCW

i

Ci+1 = (1−µ)Ci +(1− τ)θβhSi
Ii

k2+Ii
+(1−ω) f δhEi

Ii
k2+Ii
−π4u4,iCi

Ri+1 = (1−µ)Ri + r1Ei− γRi
Ii

k3+Ii
+π2u2,iIi +π3u3CW

i +π4u4,iCi

With initial values S (0) ,E (0) , I (0) ,C (0) and R(0) are nonnegatives.

u1 : Represents the proportion to be subjected to sensitization and prevention through the media

and education, and preventing gatherings through security campaigns.

u2 : Represents the rate of the individual who has been quarantined at home and health moni-

toring.
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u3 : Represents the rate of the individual who has been quarantined at the hospital with follow-

up and health monitoring.

u4 : Represents the rate of the individual who has been quarantined in hospital with requirement

breathing assistance with follow-up and health monitoring.

3.2. Existence of an Optimal Control. The problem is to minimize the objective functional

J (u1,u2,u3,u4) = MIN +KCW
N + JCN +NEN−HRN

+
N−1

∑
i=0

MIi +KCW
i + JCi +NEi−HRi +

1
2

Aπ1u2
1,i +

1
2

Bπ2u2
2,i +

1
2

Dπ3u2
3,i +

1
2

Fπ3u2
4,i.(3)

Where the parameters M > 0, K > 0,N > 0, A > 0, B > 0, CW
i > 0, Ci > 0 and Hi > 0 for

i ∈ {0, ...,N} are the cost coefficients. They are selected to weigh the relative importance of

Ii,Ci,CW
i ,Ri,u1,i,u2,i,u3,i and u4,i at time i. N is the final time.

In other words, we seek the optimal controls u1, u2, u3 and u4 such that

J (u∗1,u
∗
2,u
∗
3,u
∗
4) = min

(u1,u2,u3,u4)∈U4
ad

J (u1,u2,u3,u4)

where Uad is the set of admissible controls defined by

Uad =
{

u j =
(

u j,0, u j,1, . . . , u j,N−1

)
: a j ≤ u j,i ≤ b j f or j = 1,2,3,4, i = 0,1,2, . . . ,N−1

}
.

The sufficient condition for the existence of an optimal control (u∗1,u
∗
2,u
∗
3,u
∗
4) for problem (3)

comes from the following theorem.

Theorem 3.1. There exist the optimal controls u∗1,u
∗
2,u
∗
3 and u∗4 such that

J (u∗1,u
∗
2,u
∗
3,u
∗
4) = min

(u1,u2,u3,u4)∈U4
ad

J (u1,u2,u3,u4)

subject to the control system (2) with initial conditions.

Proof. Since the coefficients of the state equations are bounded and there are a finite number of
time steps,
S =

(
S0, S1, . . . , SN

)
, E =

(
E0, E1, . . . , EN

)
, I =

(
I0, I1, . . . , IN

)
,

CW =
(

CW
0 , CW

1 , . . . , CW
N

)
, C =

(
C0, C1, . . . , CN

)
and R =

(
R0, R1, . . . , RN

)
are

uniformly bounded for all (u1,u2,u3,u4) in the control set U4
ad , and thus J (u1,u2,u3,u4) is

bounded for all (u1,u2,u3,u4) ∈U4
ad . Since J (u1,u2,u3,u4) is bounded,

inf
(u1,u2,u3,u4)∈U4

ad

J (u1,u2,u3,u4) is finite, and there exists a sequence
(

u j
1,u

j
2,u

j
3,u

j
4

)
∈U4

ad such

that lim
j−→+∞

J
(

u j
1,u

j
2,u

j
3,u

j
4

)
= inf

(u1,u2,u3,u4)∈U4
ad

J (u1,u2,u3,u4) and corresponding sequences of
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states S j,E j, I j,
(
CW) j

,C j and R j. Since there is a finite number of uniformly bounded se-
quences, there exist

(
u∗1,u

∗
2,u
∗
3,u
∗
4
)

and S∗,E∗, I∗,
(
CW)∗ ,C∗ and R∗ ∈ RN+1 such that on a

subsequence,
(

u j
1,u

j
2,u

j
3,u

j
4

)
−→

(
u∗1,u

∗
2,u
∗
3,u
∗
4
)
, S j −→ S∗, E j −→ E∗, I j −→ I∗,

(
CW) j −→(

CW)∗ , C j −→ C∗and R j −→ R∗. Finally, due to the finite dimensional structure of system
(2) and the objective function J (u1,u2,u3,u4) ,

(
u∗1,u

∗
2,u
∗
3,u
∗
4
)

is an optimal control with corre-
sponding states S∗,E∗, I∗,

(
CW)∗ ,C∗ and R∗.

Therefore inf
(u1,u2,u3,u4)∈U4

ad

J (u1,u2,u3,u4) is achieved. �

3.3. Characterization of the Optimal Controls. In order to derive the necessary condition

for optimal control, the Pontryagin’s maximum principle in discrete time given [27, 28] was

used. The key idea is introducing the adjoint function to attach the system of difference equa-

tions to the objective functional resulting in the formation of a function called the Hamiltonian.

This principle converts into a problem of minimizing a Hamiltonian at time step defined by

Hi = MIi +KCW
i + JCi +NEi−HRi +

1
2

Aπ1u2
1,i +

1
2

Bπ2u2
2,i +

1
2

Dπ3u2
3,i +

1
2

Fπ4u2
4,i +

6

∑
j=1

λ j,i+1 f j,i+1,

where f j,i+1 is the right side of the system of difference equations (3) of the jth state variable

at time step i+1.

Using the Pontryagin’s maximum principle in discrete time [27, 28, 29], we can say the follow-

ing theorem

Theorem 3.2. Given the optimal controls
(

u∗1,i, u∗2,i, u∗3,i, u∗4,i

)
and the solutions

S∗,E∗, I∗,
(
CW)∗ ,C∗ and R∗ of the corresponding state system (3), there exists adjoint variables

λ1,i,λ2,i,λ3,i,λ4,i,λ5,i and λ6,i satisfying:

(4)



∆λ1,i =
λ1,i+1

(
(1−µ)−αh (1−π1u1)

Ei
k1+Ei

−βh
Ii

k2+Ii

)
+λ2,i+1

(
αh (1−π1u1)

Ei
k1+Ei

)
+λ3,i+1

(
(1−θ)βh

Ii
k2+Ii

)
+λ4,i+1

(
(1− τ)θβh

Ii
k2+Ii

)
+λ5,i+1

(
τθβh

Ii
k2+Ii

)

∆λ2,i =

N +λ1,i+1

(
−αh (1−π1u1)Si

k1

(k1+Ei)
2

)
+λ3,i+1

(
f δh

Ii
k2+Ii

)
+λ2,i+1

(
(1−µ)+αh (1−π1u1)Si

k1

(k1+Ei)
2 −δh

Ii
k2+Ii

− r1

)
+λ4,i+1

(
ω f δhEi

Ii
k2+Ii

)
+λ6,i+1 r1 +λ5,i+1

(
(1−ω) f δh

Ii
k2+Ii

)

∆λ3,i =

M−λ1,i+1

(
βhSi

k2

(k2+Ii)
2

)
−λ2,i+1

(
δhEi

k2

(k2+Ii)
2

)
+λ4,i+1

(
τθβhSi

k2

(k2+Ii)
2 +ω f δhEi

k2

(k2+Ii)
2

)
+
(

γRi
k3

(k3+Ii)
2

)(
λ2,i+1−λ6,i+1

)
+λ3,i+1

(
(1−µ)+(1−θ)βhSi

k2

(k2+Ii)
2 +(1− f )δhEi

k2

(k2+Ii)
2

)
−π2u2λ3,i+1 +λ5,i+1

(
(1− τ)θβhSi

k2

(k2+Ii)
2 +(1−ω) f δhEi

k2

(k2+Ii)
2

)
+λ6,i+1 (π2u2)

∆λ4,i = K +λ4,i+1 ((1−µ)−π3u3;i)+λ6,i+1
(
π3u3,i

)
∆λ5,i = J+λ5,i+1 ((1−µ)−π4u4;i)+λ6,i+1

(
π4u4,i

)
∆λ6,i = λ6,i+1 (1−µ)−H +

(
γ

Ii
k2+Ii

)(
λ2,i+1−λ6,i+1

)
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with the transversality conditions at time N

(5) λ1,N = 0, λ2,N = NN , λ3,N = MN , λ4,N = KN , λ5,N = JN , λ6,N =−HN .

Furthermore, for i = 0, 1, 2, . . . , N−1, and for π1 = π2 = π3 = 1 the optimal controls

u∗1,u
∗
2,u
∗
3,and u∗4 are given by

(6)

u∗1 = min
(

0,max
(

1,αhSi
(λ2,i+1−λ1,i+1)

A
Ei

k1+Ei

))
u∗2 = min

(
0,max

(
1,

(
λ3,i+1−λ6,i+1

)
B

Ii

))

u∗3 = min

(
0,max

(
1,

(
λ4,i+1−λ6,i+1

)
D

CW
i

))

u∗4 = min

(
0,max

(
1,

(
λ5,i+1−λ6,i+1

)
F

Ci

))

Proof. The Hamiltonian of the optimal problem is given by

Hi = MIi +KCW
i + JCi +NEi−HRi +

1
2

Aπ1u2
1,i +

1
2

Bπ2u2
2,i +

1
2

Dπ3u2
3,i +

1
2

Fπ4u2
4,i

+λ1,i+1

(
Λ+(1−µ)Si−αh (1−π1u1,i)Si

Ei

k1 +Ei
−βhSi

Ii

k2 + Ii

)
+λ2,i+1

(
(1−µ)Ei +αh (1−π1u1,i)Si

Ei

k1 +Ei
−δhEi

Ii

k2 + Ii
− r1Ei + γRi

Ii

k3 + Ii

)
+λ3,i+1

(
(1−µ) Ii +(1−θ)βhSi

Ii

k2 + Ii
+(1− f )δhEi

Ii

k2 + Ii
−π2u2,iIi

)
+λ4,i+1

(
(1−µ)CW

i + τθβhSi
Ii

k2 + Ii
+ω f δhEi

Ii

k2 + Ii
−π3u3,iCW

i

)
+λ5,i+1

(
(1−µ)Ci +(1− τ)θβhSi

Ii

k2 + Ii
+(1−ω) f δhEi

Ii

k2 + Ii
−π4u4,iCi

)
+λ6,i+1

(
(1−µ)Ri + r1Ei− γRi

Ii

k3 + Ii
+π2u2,iIi +π3u3,iCW

i +π4u4,iCi

)
,

We put Φ(N) = MIN +KCW
N + JCN +NEN−HRN .

For i = 0,1, ...,N− 1, the adjoint equations and transversality conditions can be obtained by
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using Pontryagin’s Maximum Principle, in discrete time, given in [27, 28] such that

λ1,i = ∂Hi
∂Si

,

λ2,i = ∂Hi
∂Ei

,

λ3,i = ∂Hi
∂ Ii

,

λ4,i = ∂Hi
∂CW

i
,

λ5,i = ∂Hi
∂Ci

,

λ6,i = ∂Hi
∂Ri

.

and

λ1,N =
∂Φ(N)

∂SN
= 0,

λ2,N =
∂Φ(N)

∂EN
= NN ,

λ3,N =
∂Φ(N)

∂ IN
= MN ,

λ4,N =
∂Φ(N)

∂CW
N

= KN ,

λ5,N =
∂Φ(N)

∂CN
= JN ,

λ6,N =
∂Φ(N)

∂RN
=−HN .

For, i= 0,1, ...,N−1 the optimal controls u1,i,u2,i,u3,i and u4,i can be solved from the optimality

condition,
∂Hi

∂u1,i
= 0,

∂Hi

∂u2,i
= 0,

∂Hi

∂u3,i
= 0,

∂Hi

∂u4,i
= 0.

That are

∂Hi

∂u1,i
= Aπ1u1,i +λ1,i+1

(
π1αhSi

Ei
k1+Ei

)
−λ2,i+1

(
π1αhSi

Ei
k1+Ei

)
= 0,

∂Hi

∂u2,i
= Bπ2u2,i−λ3,i+1 (π2Ii)+λ5,i+1 (π2Ii) = 0,

∂Hi

∂u3,i
= Dπ3u3,i−λ4,i+1

(
π3CW

i
)
+λ5,i+1

(
π3CW

i
)

= 0,

∂Hi

∂u4,i
= Fπ4u4,i−λ5,i+1 (π4Ci)+λ6,i+1 (π4Ci) = 0.
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So for π1 = π2 = π3 = π4 = 1 we have

u1,i = αhSi
(λ2,i+1−λ1,i+1)

A
Ei

k1+Ei

u2,i =

(
λ3,i+1−λ6,i+1

)
B

Ii

u3,i =

(
λ4,i+1−λ6,i+1

)
D

CW
i

u4,i =

(
λ5,i+1−λ6,i+1

)
F

Ci

By the bounds in Uad of the controls, it is easy to obtain u∗1,iu
∗
2,i,u

∗
3,i and u∗4,i in the form of

system. �

4. NUMERICAL SIMULATION

In this part, we present numerical simulation to highlight the effect of our control strategy

that we have developed in the framework of fight against the spread of the Coronavirus disease

2019. The initial values are the same in the Table 1, with regard to other initial values they are

proposed values after a statistical study. Concerning the numerical method, we give numerical

simulation to our optimality system which is formulated by state equations with initial and

boundary conditions, adjoint equation with transversality conditions (4,5) and optimal control

characterization (6). We apply the forward-backward sweep method (FBSM) [30] to solve our

optimality system in an iterative process. We start with an initial guess for the controls at the first

iteration and then before the next iteration, we update the controls by using the characterization.

We continue until convergence of successive iterates is achieved. The numerical solution of

model (2) with the following parameter values and initial values of the state variable in Table 1

is executed using MATLAB.
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TABLE 1. Rumor model parameters and values

Parameter Description Value

Λ Recruitment rate (0.05/day)

µ Natural death rate (0.02/day)

βh The proportion that one susceptible in-

dividual becomes infected

(0.4/day)

δh The proportion of exposed who be-

comes infected after following contact

with an active infectious individual.

0.025/day

αh The probability that one susceptible in-

dividual becomes exposed

(0.00001/day)

γ The proportion of recovering are not

totally immune to the disease and move

into E.

(0.002/day)

r1 The quarantine rate for the latently in-

fected

(0.8/day)

τ The proportion of individuals going to

compartment CW

(0.8 /day)

(1− τ) The proportion of infected individual

become infected multimorbidity with

complication

0.2 /day

ω The probability that susceptible indi-

viduals infected will enter the compart-

ment CW .

0.4 /day

(1−ω) The proportion of individuals infected

leave to compartment C.

0.6 /day

θ transmission coefficient. 0.7 /day

f transmission coefficient. 0.7 /day
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Additionally, we present in this section numerical results that illustrate and reinforce the ef-

fect of our control strategy, this strategy consists in applying four kind of controls. We apply

our strategy for a period of sixty days that we assume an average duration of the disease spread,

where we assume that the initial susceptible, exposed, infected, infected with complication, in-

fected multimorbidity with complication and recovered populations are given by S0 = 10000,

E0 = 1000, I0 = 800, CW
0 = 300, C0 = 200 and R0 = 1000. Also, the upper limits of the opti-

mality conditions are considered to be umax
i = 0.9, i = 1,2,3,4 and umin

i = 0.2, i = 1,2,3,4.

Figure 3 illustrates the founded results. As it shows in such figure, the effect of the strategy

begins as early as the second day, the number of the susceptible decrease to 10000 in a fatal

way until reaching almost zero. As for the number of exposed, infected, infected with compli-

cation, infected multimorbidity with complication increase in the beginning but then decreases

clearly. This decrease leads to an increase in the number of recovering from the beginning and

approaches a given value of 2.1×104.

The figure 2 represents disappearance of the recovered population in the absence of the control.

In this case, susceptible individuals are transferred to the infected classes (see Figure 2), but in

the second case susceptible individuals are transferred to the recovered class through the apply

of our controls (see Figure 3).

In the next paragraph and in order to obtain more accurate information about the impact of each

control separately, we choose to apply four scenarios. In each of these we apply separately one

control, we will consider four cases of the fight against the disease spread.

Case 1: Applying only control u1.

Case 2: Applying only control u2.

Case 3: Applying only control u3.

Case 4: Applying only control u4.

Apply only control u1. In this scenario, we simulate the case where we will be applied to the

susceptible individual, we will be limited to displaying and comparing the curves of exposed

and recovered in both cases with and without control strategy. The control is applied over a

period of 60 days. The figure 4 shows that the number of exposed decreases clearly after the

implementation of the strategy. On the other hand, the number of removed, will suddenly start
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FIGURE 3. Dynamics with controls u1, u2, u3 and u4.

to rise starting from the first day. This change is probably due to the fact that the control of

sensitization and prevention is aimed to take prevention measures and at telling the susceptible

people through awareness-raising campaigns and mass media the seriousness of the disease.

Note : to the time limit, there is no vaccine or treatment for this disease.

Apply only control u2. In the second scenario, to protect the infected individual by applying

the quarantine at home, follow medical advice remotely and inform them of the seriousness of

the disease. To realize this objective, we apply only control u2 in a period of 60 days. The figure

5 shows us the number infected people decreases from 6100 (without control u2) to 1700 (with

control u2) at the end of the proposed control strategy. Also, we observe that the number of

recovered has reached the value 16000 (with control u2) compared to the situation when there

is no control where this category tends to zero. However, there is a small decrease in number of

infected with complication and infected multimorbidity with complication, we notice that the

number decreases slowly. Hence, our objective has been achieved.
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FIGURE 4. Dynamics with control u1.

FIGURE 5. Dynamics with control u2.

Apply only control u3. In this case, we apply only control u3, the protected of the infected with

complication by applying the quarantine strategy at hospital and health monitoring to prevent

the outbreak of the disease and avoid the spread of the disease within families. From figure 6,

we remark that the effect begins immediately (after about 3 days), for the number of recovered
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without implementation of the control, we note that there is a gradual decline to reach zero

and increases relatively weaker and is stabilised to 3000 in applying the control. However the

number of infected with complication decreases since the 3rd day but after 15 days we observe

that the number of CW tends to zero. These observations clearly illustrate the importance of

such strategy in the fight against the spread of the disease.

FIGURE 6. Dynamics with control u3.

Apply only control u4. In the last case, we apply only the remaining control u4, effect to reduce

the spread of the infection. The main objective of the whole work is to decrease the number

of infected and death toll, and in this case protected the infected multimorbidity individual

with serious complications by applying the quarantine at hospital strategy with the requirement

breathing assistance. We deduce by simulations presented in figure 7 after 60 days that the

density of the infected multimorbidity (C) is decreasing from 2500 when there is no control, to

the absence of this category when applying control. However, the number of recovered increases

relatively weaker and is stabilized to 2200, and that can obviously prove the effectiveness of the

quarantine strategy.
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FIGURE 7. Dynamics with control u4.

Remark 4.1. We can also merge multiple assemblies as (u1,u2), (u2,u3), (u1,u3) and (u1,u2,u3)

thus get a variety of results.

5. CONCLUSION

In this paper, we propose a new model which describes the dynamics of COVID-19 spread,

we suggest also an optimal strategy in order to fight against the spread of the disease. In or-

der to minimize the number of infected, infected with complication, infected multimorbidity

with complication, four control strategies have been introduced. The first control represented

the sensitization and prevention. The second control represented the quarantine at home with

remote monitoring of its status. The third control represented the quarantine at the hospital.

Finally, the fourth control represented the quarantine at the hospital with requirement breathing

assistance, and by introduction of four new variables πi, i = 1,2,3,4 we could study and com-

bine several scenarios, in order to see the effect of each one of these controls on the reduction

of the disease spread. We showed the existence of solutions to the state and an optimal control.
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Pontryagin’s Maximum Principle, in discrete time, is used to characterize the controls and the

optimality system is solved by an iterative method. The numerical resolution of the obtained

results showed the effectiveness of the proposed control strategies, as well as the numerical

simulations enabled us to compare and see the difference between each scenario in a concrete

way. Numerical results prove the effectiveness of our strategy and its importance in fighting the

disease spread.
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