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Abstract. The growth of bacterial colonies is described in terms of a simple mathematical model that incorporates

aspects of nutrient acquisition and quorum sensing signal molecule production. Quorum sensing describes cell

communication mechanism that allows bacterial cells to control colony’s behaviour in relation to the population

density. The consecutive relation of cell transition and quorum sensing signal molecule production is explored

using a continuum representation. This paper demonstrates a simple interaction model for non-motile bacteria

based on existing mathematical descriptions. The model considers the population of bacteria as consisting of

down-regulated and up-regulated bacteria in which the signal molecules being produced at much faster rate by

the up-regulated bacteria. The finding highlights the existence of fold bifurcation phenomenon on the fraction

of up-regulated bacteria that behaves as an “on-off” quorum sensing switch in response to the effective diffusion

constant.
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1. INTRODUCTION

In the environment, unicellular bacteria are typically found in communal groups, colonies or

biofilms [1, 2]. In a similar manner to multicellular organisms, bacteria have the ability to build

and manage complex social interactions to exhibit diverse behavioural responses [3, 4, 5].

The bacterial interactions are associated with biological and physical processes, such as

growth, transitions (differentiation and consolidation), wetting agent production processes [6],

and quorum sensing signal molecule production [7]. This paper investigates colony growth with

a mathematical model that is affected by nutrient concentration and signal molecule production.

Bacteria assess population density via quorum sensing (QS; [8]). The process of quorum sens-

ing is regulated by the production and monitoring of chemical signal molecule that increase

in concentration as a function of cell density [9, 10]. Cells produce, detect, and release low-

molecular-mass signal molecules called autoinducers, or recently quormon [1, 11]. However,

Gory et al. [12] suggest that most of the signal molecules are lost to the environment by diffu-

sion.

Kleerebezem et al. [13] explained the different signalling mechanisms of Gram-positive and

Gram-negative bacteria. Particularly, Gram-negative bacteria sense their population density us-

ing accylated homoserine lactones (AHLs), and Gram-positive bacteria use oligo-peptides that

diffuse through the cell membrane. In Gram-negative bacteria, quorum sensing is normally

controlled by a small gene expression network that functions as a switch [14, 15, 16]. QS allow

bacteria to switch over from off-QS to on-QS related with low and high cell density behaviours

[1, 17, 18]. Moreover, Henke and Bassler [19] state that bacteria will respond as a community

to change target gene expression switch if they achieved a certain threshold concentration of

autoinducer. When the condition of cell density is low, that usually corresponds to the “off”

switch state, the bacterial cells continuously produce a small amount of QS signal molecules

that can diffuse in and out of the cells. As the cell density increases, so does the concentration of

autoinducers. After a certain population density of cells is passed, quorum is achieved and the

autoinducer signal causes the switch of the QS network to the “on” state. Besides that, once the

bacterial colony has reached the particular threshold of QS signal molecules, so the correspond-

ing bacterial behaviour will be switched “on” [10]. This paper employs data on the colony
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FIGURE 1. A simple model to illustrate the bacterial interaction involved growth

and transition processes. Solid line represent transfer biomass and transparent

line represent that bacteria produce QS signal molecules

growth and QS signal molecules production of Gram-negative plant pathogen, Erwinia caro-

tovora as an example. Then, construct a simple mathematical model of bacterial interaction.

The purpose is to establish a rational description that can be used to explain the colony-level

quorum switch as the colony expands.

In section 2, this paper describes in greater detail the biological system as well as the math-

ematical approach. In section 3, this paper analyses fixed points and bifurcation phenomenon

that occur in the system. Throughout the paper makes reference to the experimental data of

Byers et al. [20], and set parameter values using data for E. carotovora in section 4. Finally, in

section 5 this paper discusses the results, and improvements to the theory.

2. MATHEMATICAL MODEL

The following non-spatial model gives specialized attention to nutrient acquisition and QS

signal molecule production on non-motile bacterial colonies and involves four dependent vari-

ables: N for the concentration of nutrients, A for biomass of down-regulated bacteria with

quorum sensing circuits switched off (off-QS), B for biomass of up-regulated bacteria with

quorum sensing circuits switched on (on-QS), and Q for the concentration of signal molecules.

Nutrient acquisition influences the growth and activities of the bacterial colony. The model is

summarized in the schematic in Fig. 1.

The biomass of non-motile bacteria with off-QS (A) is formed via the law of mass action

at growth rate β1. It is increased and decreased through the transition process of non-motile
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bacteria with on-QS (B) to off-QS (A) and vice versa, at rate α2 and α1, respectively. Thus the

biomass of bacteria (A) can be modelled as

(1)
dA
dt

=
β1NA
K +N

+α2B−α1(Q)A.

In a similar manner, this paper formulates an equation for the biomass of non-motile bacteria

with on-QS (B) at bacterial growth rate β2 are modelled such that

(2)
dB
dt

=
β2NB
K +N

+α1(Q)A−α2B.

For simplicity down-regulated and up-regulated are assumed to have the same growth rate,

β1 = β2.

It is clear that nutrient in the suspension is consumed by both off-QS and on-QS bacteria.

The rate of change of nutrient, N, can be written as

(3)
dN
dt

= S− β1NA
K +N

− β2NB
K +N

where S is a nutrient source term.

2.1. Ratios of bacterial biomass.

To make analytical progress, this paper defines new variables

(4) x =
A

A+B
and y =

B
A+B

.

Here, x is the ratio between the amount of biomass of off-QS bacteria and the total biomass, and

y is the ratio between the amount of biomass of on-QS bacteria and the total biomass. Hence,

x+ y = 1, and substituting into equations (1) and (2) yields

(5)

dx
dt =

(
β1N

K+N

)
xy+α2y2−α1xy−

(
β2N

K+N

)
xy−α1x2 +α2xy,

dy
dt =

(
β2N

K+N

)
xy+α1x2−α2xy−

(
β1N

K+N

)
xy−α2y2 +α1xy.

From above differential equation system (5), this paper has solution that x in proportion to

the rate of change transition A over total rate of change transition A and B, such that
(

α1
α1+α2

)
.

The amount of x decrease to certain value, then reach remain stable condition in that value.

Conversely, the amount of y increase up to particular level and remain at that level.
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In the mathematical model (Fig. 1), the model assumes both bacteria A and B produce QS

signal molecule with constant rates σ ′ and σ with σ ′ << σ . The signal molecules produced

may be lost from the system due to diffusion. Thus the concentration of QS signal molecules

changes as

(6)
dQ
dt

= σ
′A+σB− γQ,

where γ represents the rate of loss of signal molecules via both degradation and diffusion from

the system.

As with x and y, a more tractable variable is the amount of signal molecules per bacterium,

q, defined as

(7) q =
Q

A+B
.

The amount of signal molecules influences the transition rate α1 between off-QS and on-QS

bacteria. Thus α1 represents a function of the amount of signal molecules, which can be written

in the base mathematical model α1(Q). Associated with the amount of biomass and the con-

centration of signal molecules per bacterium, α1 is described as transition rate, such that α1(q).

Following Langebrake et al. [21], the transition rate from off-QS to on-QS bacteria can be ap-

proximately modelled with a Hill function of the form α1(q) =C0+(C1−C0)
qn

κn+qn , providing

control over the location of the transition [22]. Thus there are three phases in the transition

process. This is consistent with evidence from molecular biology for both Vibrio fischeri and

the related QS system, suggesting that the signal molecule binds as a ligand to the DNA, which

promotes the operon that produces more QS molecules [23].

The four parameters of the Hill equation are C0, C1, κ and n. The Hill function coeffi-

cient n determines the shape; the value of the Hill coefficient n > 1 describes positively co-

operative binding. For this case, the model also consider the tangent hyperbolic function

as a suitable replacement for the Hill function in order to obtain analytic solutions for the

bifurcation points. It can describe the transition process properly, and is defined by α1 =

C0 +(C1−C0) tanh(κ (q−q0)), where κ is a constant that determines the slope transition rate

from off-QS to on-QS bacteria, replacing the Hill function coefficient (n). This function also

allows control over the location of transition. Thus the amount of signal molecules to switch
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between the phases varies with the particular parameter of the transition rate, α1. Meanwhile,

the model assumes that the transition rate from on-QS to off-QS, α2, is a constant.

2.2. Ratios of bacterial biomass.

Let τ be the total amount of biomass of bacteria, such that

(8) τ = A+B.

For the sake of simplicity, here this paper shall assume the shape of the culture is a cylindrical

slab. Thus the total amount of biomass of bacteria (τ) is proportional to the volume of culture
(
πr2h

)
. The model also assumes the increase of bacterial cells leads to the proportional growth

of colony radius and nutrient is accessible to the colony. All new growth of bacterial cells is

immediately transferred to the colony edge, while the death of bacterial cells results in decrease

in the cell density locally. Consequently, the model can justify that the entire area of the culture

is occupied by nutrient source (S). In relation to these assumptions, the nutrient source (S) is

not only proportional to the radius of culture (r), but also to the square root of total amount of

biomass (τ1/2). Therefore, if the radius of bacterial colony is assumed to increase linearly with

time, the increase rate of total biomass is

(9)
dτ

dt
=Cτ

1/2,

where C is a constant, and the production rate of signal molecules per bacterium is

(10)
dq
dt

= σ
′(1− y)+σy−q

(
γ +δτ

− 1
2

)
.

If it is assumed that γ ′ := γ + δτ−
1
2 changes at a slower rate than the other processes, then it

obtains γ ′ as a control parameter. Hence,

(11)
dq
dt

= σ
′(1− y)+σy−qγ

′ or σ
′x+σ(1− x)−qγ

′.

Here γ ′ represents an effective rate of loss of the QS molecules, which decreases slowly over

a long time scale as the colony grows. By applying the assumption that the bacterial colonies to

have the same growth rate for both types (β1 = β2), this paper can construct the relation between
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signal molecules and biomass of bacteria, which can be described by the pair of equations,

(12)

dy
dt = α1(1− y)−α2y,

dq
dt = σ ′(1− y)+σy−qγ ′.

It is reasonable to assume that the production of QS molecule is much faster than cell growth,

thus dq
dt tends to 0 relative quickly. If the value of γ ′ is considered as a constant, it obtains that

the amount of signal molecule q in proportion to y, such that,

(13) q =
σ ′(1− y)+σy

γ ′
.

As σ ′� σ , q≈ σy
γ ′ may substitute into dy

dt , so that it becomes

(14)
dy
dt

=

(
C0 +(C1−C0) tanh

(
κ

(
σy
γ ′
−q0

)))
(1− y)−α2y,

where κ represents the slope of the transition rate.

3. ANALYSIS OF FIXED POINTS AND BIFURCATION

Fixed points (steady states) are points at which time derivatives vanish [24]. For the cur-

rent system, steady states correspond to a constant fraction of up-regulated bacteria within the

system, even though the amount of up-regulated bacteria may continue to increase or decrease.

The steady states are given by the solution of dy
dt = 0. To assist graphical analysis the equation

for the steady state of (14) can be written as

(15) C0 +(C1−C0) tanh
(

κ

(
σy
γ ′
−q0

))
=

α2y
1− y

.

The right-hand term is a curve with asymptote at y = 1, and the left-hand term represents a

hyperbolic function.

The curves have three intersection points that can be seen in Fig. 2. As explained before,

transition processes between off-QS and on-QS bacteria are typically modelled with Hill func-

tions. If the model had used a Hill function instead the model would need n ≥ 3 in order to

get bifurcation phenomenon related with an “on-off” switch. Instead, the model use the tangent

hyperbolic function to allow for a relatively simple analytic solution.
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FIGURE 2. Three solutions are found in figure (a) as the intersections of curve

α2y/(1− y) and curve C0 + (C1−C0) tanh(κ(σy/γ ′ − q0)). The slope of the

curve at the intersection determines the stability of fixed points. (b) The sta-

bility of fixed points of f (y). Here, C0 = 1.02, C1 = 2.02, σ = 7.72× 10−6,

α2 = 0.38, γ ′ = 4.86×10−5, and κ = 40.
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Varying the values of parameters in the model modifies the qualitative structure of the flow

and controls the fold bifurcation appearance [25]. A saddle-node bifurcation occurs when the

gradients of the two sides of (15) match, such that

(16) κ
σ

γ ′

(
1− tanh2

(
κ

(
y

σ

γ ′
−q0

)))
=

1
C1−C0

α2

(1− y)2 .

Substituting (15) into (16) yields

(17)
κσ

α2γ ′

(
(C1−C0)(1− y)2− α2

2 y2

C1−C0
+

2α2C0y(1− y)
C1−C0

−C2
0(1− y)2

C1−C0

)
= 1.

It is clear that κσ

α2γ ′ 6= 0, thus

(18) α2 =
(2C0y−C0)±

√
(C0−2C0y)2 +(y− y2)

(
8C1C0−4C2

1
)

−2y
.

Furthermore, (14) can be written in the form

(19) κ =
γ ′

σy− γ ′q0
arctanh

(
α2y−C0 +C0y
(C1−C0)(1− y)

)
.

Substituting (18) into (19) gives

(20)

κ =
γ ′

σy− γ ′q0
×

arctanh


−C0±

√
(C0−2C0y)2 + y

(
8C1C0−4C2

1
)
− y
(
8C1C0−4C2

1
)2

2(C1−C0)(1− y)


 .

By using the same way the calculation of bifurcation, this paper can get bifurcation diagram

with γ ′ as bifurcation parameter. Substituting α2(y) into (15) yields

(21) γ
′ =

σκy(
κq0 + arctanh

(
−C0±

√
(C0−2C0y)2+y(8C1C0−4C2

1)−y(8C1C0−4C2
1)

2

2(C1−C0)(1−y)

)) .

The multiple steady states due to variation of parameter values affect bifurcation occurrence

[26]. This can be easily seen by analyzing the steady state in the system for some values of

parameter. Two stable steady states coexist and are separated by an unstable region [27].

The parameter κ affects the stability of the system as it determines the shifted slope of the

transition rate from off-QS to on-QS bacteria. If κ has small positive values, there is only one

point of intersection. However, above a certain positive value of κ , there are three intersection
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(a)

(b)

FIGURE 3. Bifurcation diagrams. The arrows indicate the direction of change

from the unstable states to stable states. The stable states are represented by solid

lines on the upper and lower branches, while unstable states are represented by

a dashed line in the middle section. (a) κ as bifurcation parameter and γ ′ =

4.86×10−5. (b) γ ′ as bifurcation parameter and κ = 40. Other parameter values

are C0 = 1.02, C1 = 2.02, σ = 7.72×10−6, and α2 = 0.38.
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points: associated with two stable and one unstable steady state. The bifurcation diagram (Fig.

3a) shows that with κ as bifurcation parameter the system has only one bifurcation point a

fold bifurcation. For certain high positive values of κ , the gradient of the transition curve will

only change slightly as this paper employs a hyperbolic function (tanh) that determines the

slope of transition. There is almost no change in the steady states for large values of κ . As a

consequence, there is no collision of the high and intermediate steady states. They will never

meet for the large κ .

Fig. 3b explains that if γ ′ is very large, then the stable points of the fractional up-regulated

bacteria are very low, corresponding to the “off” state. As γ ′ is decreased, it moves through

the bistable region until γ ′ reaches γ ′1 and y∗ shifts discontinuously to the higher state. Such

shifting induces a higher production of QS signal molecules that corresponds to the “on” state.

Conversely, when γ ′ increases to γ ′2, y∗ shifts discontinuously to the lower state, which results

in a lower production of QS signal molecules that corresponds to the “off” state.

4. ESTIMATION OF PARAMETER

The model parameters represent rates of the bacterial interactions involving cell growth, sig-

nal molecule production and diffusion, and cell transition. Values for several parameters, in-

cluding β1,β2,σ and γ ′, were taken from experimental data, related to previous work [20].

Other parameter values, α1 and α2 can be inferred from the model to investigate bifurcation

phenomena.

The value of bacterial growth rate (based on assumption that β1 and β2 have similar values) is

obtained from the rate of change cell density in exponential phase. The value of γ is calculated

based on the decay phase of signal molecules concentration, where the model assumes that there

is no signal molecule production during the decay phase. From the mathematical model in the

previous section, this paper have assumed that the rate-of-change of bacteria cells is determined

by growth rate (β1) and amount of bacteria (B), such that B = B0eβ1t where B0 represents initial

amount of bacteria. Thus, the differential equation for signal molecules Q becomes

(22)
dQ
dt

= σB0eβ1t− γQ,
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(a)

(b)

FIGURE 4. (a) bacterial growth and (b) signal molecule (OHHL) concentration,

as obtained from experiment on E. carotovora. Replotted from data in Byers et

al. 2001, pp 1165.

and there is an equation for Q that can be used to obtain the value of the signal molecule

production rate (σ), which is

(23) Q =
σ

β1 + γ
B0eβ1t +Ce−γt .

Table 1 lists some parameter values from above calculation taken from Byers et al. [20], either

obtained from the graph (β1,β2, and γ) or the equation (σ), whereas the parameter value of α2

(transition rate “off ”to “on”) remains difficult to determine a specific number. The reason for
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TABLE 1. Parameter estimates for simple model of non-motile bacterial interactions.

Name Value Unit Description Ref

β1 2.78×10−4 s−1 growth rate of bacteria off-QS [20]

β2 2.78×10−4 s−1 growth rate of bacteria on-QS [20]

σ 7.72×10−6 µms−1 signal molecules production rate [20]

γ 4.86×10−5 µms−1 signal molecules diffusion rate [20]

α2 0.38 s−1 transition rate on-QS to off-QS estimated

this corresponds to the fact that determining the exact value is quite complicated. Many papers

have focused on explaining temporal transition between “off ” to “on ” state, and conversely

[e.g. Ward et al. [10] states that a corresponding bacterial colony will “switch on” their trait

depending on their density once a specific concentration of Q is reached. Goryachev et al.

[28] and Langebrake et al. [21] investigate interim transitions between “off and on ” state]. In

this case, the parameter value for the transition rate is an arbitrary constant chosen to obtain

bistability behaviour. This is a familiar behaviour that represents the dynamical system of the

QS signal molecule. The bacteria have a low steady state (off) from which it is possible to jump

past an unstable state to a stable high steady state (on) [29, 10].

The results in Fig. 4, provide the value of bacterial growth rate, β1 = 2.78× 10−4 /s (β2 as

well). They also give the value of loss rate of signal molecules is γ = 4.86×10−5 µm/s. Then,

from the equation of Q, it obtains σ = 7.72×10−6µm/s.

5. RESULTS AND DISCUSSION

This paper have presented a simple model of bacterial interaction that gives particular atten-

tion to nutrient acquisition and QS signal molecule production as an important aspect of the

transition rate of bacterial types. This develops the model through specifying the dynamics of

off-QS and on-QS non-motile bacteria.

In the simulations, several different parameter values are tested and the outputs consistently

showed the same behaviour. The parameter values used were adopted from Byers et al. [20];

This paper employs data on E. carotovora to proceed the model. From the simulation this paper
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shows the relation between cell transition rate and the amount of QS signal molecule. The

increase of QS signal molecule concentration raises the transition rate (from off-QS to on-QS

of bacteria). In order to explore the dynamical behaviour of the proposed model, a bifurcation

analysis has been carried out by considering the slope transition rate from off-QS to on-QS

bacteria (κ) and loss effective rate of signal molecules (γ ′) as bifurcation parameters. The

system has a fixed point solution which exhibits a fold bifurcation. The numerical result shows

that an effective rate of diffusion of the QS signal molecule decreases on a slow time scale as the

colony grows. In a related study, Ward et al. [10] found switching behaviour for Vibrio fischeri

in which there was a cell transition as the colony increased in size. Ward et al. [10] presented

a mathematical model which describes bacterial population growth and quorum sensing. The

population of bacteria consist of down-regulated and up-regulated sub-populations, with signal

molecules being produced at a much faster rate by the up-regulated cells.

The hysteresis phenomenon is predicted by the model, yet it has not been verified experimen-

tally. In addition, the model sets the bacterial colonies to have the same growth rate for both

types. In contrast, bacterial colonies have different growth rate that depends on temperature

and light [30], availability of nutrient [28]. In that regard, it would be more interesting to use

assumptions that can resemble real conditions by considering factors that influence the growth

rate of bacteria through experiment.

Bees et al. [31] state that there will be translocation and expansion through surfaces of

medium by swarming bacterial colonies to get access to a wider source of nutrient, which is a

main factor in establishing the success of a specified colony. In addition, sufficient nutrient ac-

quisition promotes formation of the flagellar that enables bacteria to be more active and expand

to the larger area. This expectation is in accordance with Kim et al. [32], who show the supply

of higher nutrient concentration produces more active cells.

Furthermore considering the theoretical research regarding QS systems, the results need to be

developed into regulation system of QS model in order to look deeply of bistability phenomena

on QS signal molecule behaviour per se. James et al. [23] demonstrated QS model of V. fis-

cheri, which has two stable metabolic states corresponding to the expression of the luminescent

and non-luminescent phenotypes. The system has three steady states that has a “switch-like”



COLONY-LEVEL QUORUM SENSING 15

behaviour. In simultaneous work, Dockery and Keener [29] showed the biochemical switch

between two stable steady states on QS model of P. aeruginosa, one with low level and another

one with high level of signal molecules, is the key to how QS works in relation to the population

density. Like James et al. [23], Dockery and Keener [29] developed a model of a QS system

of P. aeruginosa and presented that the system has two steady states which are regulated by

signal molecules. Therefore, these works will motivate researchers to look in more detail at the

biochemical behaviour of QS systems.
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