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Abstract. A mathematical model of non-Newtonian blood flow, heat and mass transfer through a stenosed artery

is studied. The non-Newtonian model is chosen to suit the Herschel-Bulkley fluid characteristics, taking into

account the presence of body acceleration, magnetic fields and chemical reaction. The study assumed that, the

flow is unsteady, laminar, two-dimensional and axisymmetric. The governing flow equations of motion were

solved numerically using explicit finite difference schemes. The study found that velocity profile diminishes with

increase in Hartman number and increases with body acceleration. The temperature profile is raised by the increase

of body acceleration and the Eckert number, while it diminishes with the increase of the Peclet number. It was

found also that the concentration profile increases with the increase of the Soret number and decreases with the

increase of the chemical reaction. It was further observed that the shear stress deviates more when n > 1 than when

n < 1. Shear stress for power law fluid when n > 1 exhibited higher magnitude value than Newtonian, Bingham

and Herschel-Bulkley fluids.
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1. INTRODUCTION

The cardiovascular system involves blood, the heart and the blood vessel. Blood is important

because it is a transporting agent in the human body. It is very unfortunate that the human

blood vessels such as arteries and capillaries may contain plaques which disturb the normal

flow of blood and hence leading to cardiovascular diseases such as heart attack and stroke.

The abnormal flow of blood has drawn attention to many researchers due to its implications in

medicine and fluid mechanics.

Blood is categorically classified as a non-Newtonian fluid, thus studies which involve modelling

blood flow should not disregard the non-Newtonian character of blood. In day to day activities,

human body is exposed to situation which disturb the normal flow of blood. This include

(among others), physical exercises, travelling using vehicles and applying magnetic therapy to

a patient.

A number of investigators have carried out theoretical studies on blood flow. Misra et al [15]

modeled blood flow in arteries subject to the vibrating environment. In their study, the fluid

(blood) was treated as a couple stress fluid. However, their study did not take into consideration

the presence of stenoses despite the fact that human arteries are often subjected to fat or solid

deposits that lead to constricted arterial wall.

A recent study of non-Newtonian blood flow in a stenosed artery that was conducted by Liu

and Liu [14] involved the flow of blood in a tapered artery and took into consideration heat

and mass transfer. The study established that as the maximum depth of the stenosis increases,

the blood’s axial velocity increases. Another study on blood flow in a stenosed artery was

done by Jamil et al [12] that took into consideration the effects periodic body acceleration and

nanoparticles. It was proved that velocity decreases as yield stress increases and the velocity

could be controlled by nanoparticles. Numerical solution of blood flow and mass transport in an

elastic tube with multiple stenoses was also investigated by Alsemiry et al [3], where blood was

treated a Newtonian fluid. The result of their study was that the double stenoses and pulsatile

inlet conditions increase the number of recirculation regions and effect higher mass transfer

rate at the throat. Changdar and De [6] conducted a similar study like Alsemiry et al [3] but

considered the presence of body acceleration. As it was expected, the result revealed that the
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presence of body acceleration enhances the axial velocity.

Computational modelling of arterial blood flow for non - Newtonian fluid was investigated (inta

alia ) by Sharma and Yadav [18], Jamalabadi et al [1], Dixit et al [7] and Prasad and Yasa [16].

These studies did not include the aspect of vibration or body acceleration and the heat transfer

in the body which is very important to take into consideration. On the other hand, Bunonyo et al

[5], Eldesoky [8] and Sinha et al [19] studied MHD blood flow along the arterial wall. However,

all these studies, the aspect of body acceleration and mass transfer were not investigated. As

expected, all these studies showed among other things, that magnetic fields affect the blood’s

velocity.

Arteries as living tissues, require supply of metabolites, including oxygen, and removal of waste

products, Akbar et al [2]. Zaman et al [23], pointed out that, it is generally accepted that the

rheological behavior of blood is assumed as Newtonian for values of shear rate greater than

100s−1 and a such situation occurs in larger arteries. But in smaller arteries the blood does not

obey the Newtonian postulate and therefore cannot be modeled as a Newtonian fluid. Several

more scholars conclude that it is very crucial that blood is model as a non – Newtonian fluid.

These include Rodkiewicz et al [17], Tu and Deveille [21], and Gijsen et al [9].

There are several theoretical studies which have attempted to model blood flow in arteries

by considering blood to obey the Herschel-Bulkley fluid characteristics. These include studies

by Srivastava[20] and Kumar and Gupta et al [13]. All these studies assumed unidirectional

blood flow. The Herschel-Bulkley fluid is of general type and can be reduced to Newtonian,

Bingham plastic and Power-law fluid models, by selecting appropriate flow parameters, Biswas

and Laskar [4]. According to Vajravelu et al,[22], the Herschel-Bulkley constitutive equation

contains one more parameter than the Casson equation does, and thus more information about

the blood properties can be obtained when the Herschel-Bulkley equation is used than when the

Casson one is used.

Based on the reviewed literature, the unsteady, MHD flow of blood through a stenosed artery in

the presence of body acceleration, chemical reaction, with mass and heat transfer taking place,

and treating blood as Herschel-Bulkley fluid, has not been considered. Such flows have mani-

fested themselves in several situations like magnetic therapy in sports and in MRI testing. The
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current study therefore intends to fill that gap where, computational analysis of unsteady non –

Newtonian MHD blood flow involving heat and mass transfer in the presence of body acceler-

ation and chemical reaction is investigated.

2. FORMULATION OF THE PROBLEM

In the current study we consider that the flow is unsteady, laminar, two-dimensional, pulsatile,

incompressible, axisymmetric in the sense that there is no variation of the velocity with the angle

θ in the cylindrical polar coordinate system (r,θ ,z), with the z-axis coinciding with the axis of

symmetry of the flow. In that regard therefore, uθ = 0 and ∂u
∂θ

= 0. The blood is considered to be

a non - Newtonian fluid satisfying the Herschel-Bulkley model. Furthermore, body acceleration

(F(t)), and the strength of magnetic field (B0) act in the axial direction of the artery. Every cell

in the body can produce heat which needs to be spread around the body, and this is done by

the blood, which heats some organs and cools others by conduction and other processes. Thus,

the study takes into account for the chemical reaction such as exothermic reaction K for mass

transfer.

We define the geometry of stenosis as shown in equation (2.1)

(2.1) R(z) =


r0 −δ

(
1+ cos πz

2z0

)
−2z0 ≤ z ≤ 2z0

r0 otherwise

Under the mentioned assumptions, the governing blood flow equations, continuity, momen-

tum, energy and concentration equations in the cylindrical polar coordinate system are as written

in equations (2.2) to (2.6).
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FIGURE 1. Schematic flow diagram
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ρcp

(
∂T
∂ t

+u
∂T
∂ r

+w
∂T
∂ z

)
= k
(

∂ 2T
∂ r2 +

1
r

∂T
∂ r

+
∂ 2T
∂ z2

)
+ τrr

∂u
∂ r

+ τrz
∂w
∂ r

+ τrz
∂u
∂ z

+ τzz
∂w
∂ z

(2.5)

(
∂C
∂ t

+u
∂C
∂ r

+w
∂C
∂ z

)
= D f

(
∂ 2C
∂ r2 +

1
r

∂C
∂ r

+
∂ 2C
∂ z2

)
+

D f KT

T0

(
∂ 2T
∂ r2 +

1
r

∂T
∂ r

+
∂ 2T
∂ z2

)
−β (C−C0)(2.6)

In the above equations, u, w, T and C are respectively radial velocity, axial velocity, tem-

perature and concentration of the fluid. cp,k,KT ,D f ,andβ are, respectively the specific heat

capacity, thermal conductivity, the thermal-diffusion ratio, diffusion coefficient, and chemical

reaction parameter. Furthermore, τrr,andτzz represent the normal stress components. τrz is the
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shear stress component. The current study considers that blood obeys the Herschel-Bulkley

constitutive model. The stress tensor components are as given in equation (2.7)

τi j =

(
Kγ̇

n−1 +
τ0

γ̇

)
γ̇i j for τ ≥ τ0

γ̇ = 0 for τ < τ0

(2.7)

where,K is the consistency index, n is the flow behavior index and τ0 is the yield stress at

zero shear rate. From equation (2.7) there are special cases that can arise as we can be able to

see different types of behaviors of fluids. This is as shown in table 1.

Type of fluid model K n τ0

Herschel-Bulkley >0 0<n<∞ >0

Newtonian >0 1 0

Power law for n < 1 (shear-thinning) >0 0<n<1 0

Bingham >0 1 >0

Power law for n > 1 (shear-thickening) >0 1<n<∞ 0

TABLE 1. Different types of behaviors of fluids

In equation (2.7), γ̇ is the second invariant of the rate of strain which is as given in equation

(2.8).

(2.8) γ̇ =

√√√√2

[(
∂u
∂ r

)2

+
(u

r

)2
+

(
∂w
∂ z

)2
]
+

(
∂u
∂ z

+
∂w
∂ r

)2

Again, from equation (2.7) we can write the stresses

τrr = 2
(
Kγ̇

n−1 + τ0γ̇
−1)(∂u

∂ r

)
(2.9)

τzz = 2
(
Kγ̇

n−1 + τ0γ̇
−1)(∂w

∂ z

)
(2.10)

τrz = 2
(
Kγ̇

n−1 + τ0γ̇
−1)(∂u

∂ z
+

∂w
∂ r

)
(2.11)
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The pulsatile pressure gradient which is responsible for driving the blood’s flow in the axial

direction is given as −∂P
∂ z

= A0+A1 cos(ωt), t > 0 where, we define A0 and A1 as the steady

component of pressure gradient and amplitude of its pulsatile component respectively. ω =

2π fp, fp being the pulse frequency. We further define the body acceleration which acts in our

system as F(t) = ρa0 cos(ωbt +ψ) where, ρa0 is the amplitude of body acceleration, ψ is the

phase angle and ωb = 2π fb,with fb the body acceleration frequency.

2.1. Boundary and initial conditions. In this study we assume that initially as shown in

equation (2.12) that;

(2.12) w(r,z,0) = w0, T (r,z,0) = T0, C(r,z,0) =C0,

The boundary conditions for the developed model are as shown in equations (2.13) to (2.16).

(2.13) w(r,z, t) = 0, u(r,z, t) = 0 on r = R(z)

(2.14)
∂w(r,z, t)

∂ r
= 0, u(r,z, t) = 0 on r = 0

(2.15)
∂T (r,z, t)

∂ r
= 0, on r = 0 and T (r,z, t) = Tw on r = R(z)

(2.16)
∂C(r,z, t)

∂ r
= 0, on r = 0 and C(r,z, t) =Cw on r = R(z)

Where, Tw, Cw stands for arterial wall temperature and concentration on the arterial wall,

respectively.

3. NON - DIMENSIONALISATION OF THE MODEL VARIABLES

We now introduce the non-dimensional variables. We use wc as the average fluid’s velocity

which is therefore our characteristic velocity. We define r0 as the radius of normal artery. Our

dimensionless variables are shown in equations (3.1) to (3.3).
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η =
r
r0
,w∗ =

w
wc

,u∗ =
u

wc
, t∗ =

twc

r0
,z∗ =

z
r0
,P∗ =

P
ρw2

c
, τ

∗
i j =

τi j

ρw2
c
,(3.1)

A∗
0 =

A0r0

ρw2
c
,A∗

1 =
A1r0

ρw2
c
,ω∗ =

r0ω

wc
,ω∗

b =
r0ω

wc
, a∗0 =

r0a0

w2
c
, R∗(z∗) =

R(z)
r0

(3.2)

T ∗ =
T −T0

Tw −T0
, C∗ =

C−C0

Cw −C0
, β

∗ =
β r2

0
ν

, e =
δ

r0
.(3.3)

We now substitute equations (3.1)to (3.3) into equations (2.2)to (2.16) so that after dropping

all the asterisks, we to get equations (3.4)to (3.16).

∂u
∂η

+
u
η
+

∂w
∂ z

= 0(3.4)

∂u
∂ t

+u
∂u
∂η

+w
∂u
∂ z

=
∂P
∂η

+

(
∂τrr

∂η
+

1
η

τrr +
∂τrz

∂ z

)
(3.5)

∂w
∂ t

+u
∂w
∂η

+w
∂w
∂ z

= (A0 +A1 cos(ωt))+
(

∂τrz

∂η
+

1
η

τrz +
∂τzz

∂ z

)
+a0 cos(ωbt +ψ)− H2

a
ReG

w(3.6)

∂T
∂ t

+u
∂T
∂η

+w
∂T
∂ z

=
1
Pe

(
∂ 2T
∂η2 +

∂T
η∂η

+
∂ 2T
∂ z2

)
+Ec

[
τrr

∂u
∂η

+ τrz
∂w
∂η

+ τrz
∂u
∂ z

+ τzz
∂w
∂ z

]
(3.7)

∂C
∂ t

+u
∂C
∂η

+w
∂C
∂ z

=
1
Pe

(
∂ 2C
∂η2 +

1
η

∂C
∂η

+
∂ 2C
∂ z2

)
+Sr

(
∂ 2T
∂η2 +

1
η

∂T
∂η

+
∂ 2T
∂ z2

)
− βC

Re
(3.8)

Where, ReG =
rn

0ρ

Kwn−2
c

, Ha = B0

√
σrn+1

0

Kwn−1
c

, Pe =
ρwcr0cp

k
, Ec =

w2
c

cp(Tw −T0)
and

Sr =
D f KT (Tw −T0)

νTm(Cw −C0)
are the, generalized Reynold, Hartman, Peclet, Eckert, and Soret numbers

respectively.

τi j =

(
1

ReG
γ̇

n−1 + τ0γ̇
−1
)

γ̇i j

γ̇ = 0 for τ < τ0

(3.9)
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with second invariant of the rate of strain given in equation (3.10)

γ̇ =

√√√√2

[(
∂u
∂η

)2

+

(
u
η

)2

+

(
∂w
∂ z

)2
]
+

(
∂u
∂ z

+
∂w
∂η

)2

(3.10)

and

τrr = 2
(
ReGγ̇

n−1 + τ0γ̇
−1)( ∂u

∂η

)
(3.11)

τzz = 2
(
ReGγ̇

n−1 + τ0γ̇
−1)(∂w

∂ z

)
(3.12)

τrz = 2
(
ReGγ̇

n−1 + τ0γ̇
−1)(∂u

∂ z
+

∂w
∂η

)
(3.13)

subject to the dimensionless initial and boundary conditions

w(η ,z,0) = w0, T (η ,z,0) = T0, C(η ,z,0) =C0(3.14)

w(η ,z, t) = u(η ,z, t) = 0,T (η ,z, t) = Tw,C(η ,z, t) =Cw on η = R(z)(3.15)

∂w(η ,z, t)
∂η

=
∂T (η ,z, t)

∂η
=

∂C(η ,z, t)
∂η

= u(η ,z, t) = 0, on η = 0(3.16)

4. SOLUTION OF THE PROBLEM

To obtain the numerical solution, we first of all, transform our cylindrical domain into the

rectangular domain by using the following radial transformation. We introduce new variable

ξ such that ξ =
η

R(z)
. Making use of this transformation, equations (3.4) to (3.16) becomes

equations (4.1) to (4.12).

1
R

∂u
∂ξ

+
u

Rξ
+

∂w
∂ z

− ξ

R
dR
dz

∂w
∂ξ

= 0(4.1)

∂u
∂ t

=− ∂P
R∂ξ

− u∂u
R∂ξ

−w
(

∂u
∂ z

− ξ

R
dR
dz

∂u
∂ξ

)
+

1
R

∂τξ ξ

∂ξ
+

τξ ξ

Rξ
+

∂τξ z

∂ z
− ξ

R
dR
dz

∂τξ z

∂ξ
(4.2)

∂w
∂ t

= (A0 +A1 cos(ωt))− u∂w
R∂ξ

−w
(

∂w
∂ z

− ξ

R
dR
dz

∂w
∂ξ

)
+

1
R

∂τξ z

∂ξ
+

τξ z

Rξ
+

∂τzz

∂ z

− ξ

R
dR
dz

∂τzz

∂ξ
+a0 cos(ωbt +ψ)− H2

a
ReG

w(4.3)
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∂T
∂ t

=−u∂T
R∂ξ

−w
(

∂T
∂ z

− ξ

R
dR
dz

∂T
∂ξ

)
+

1
Pe

(
∂ 2T

R2∂ξ 2 +
1

R2ξ

∂T
∂ξ

+
∂ 2T
∂ z2

)
+

1
Pe

[
3ξ

R2

(
dR
dz

)2
∂T
∂ξ

− 2ξ

R
dR
dz

∂ 2T
∂ξ ∂ z

− ξ

R
d2R
dz2

∂T
∂ξ

+2
(

ξ

R
dR
dz

)2
∂ 2T
∂ξ 2

]
(4.4)

+Ec

(
τξ ξ

R
∂u
∂ξ

+
τξ z

R
∂w
∂ξ

)
+Ecτξ z

(
∂u
∂ z

− ξ

R
dR
dz

∂u
∂ξ

)
+Ecτzz

(
∂w
∂ z

− ξ

R
dR
dz

∂w
∂ξ

)
∂C
∂ t

=−u∂C
R∂ξ

−w
(

∂C
∂ z

− ξ

R
dR
dz

∂C
∂ξ

)
+

1
Pe

(
∂ 2C

R2∂ξ 2 +
1

R2ξ

∂C
∂ξ

+
∂ 2C
∂ z2

)
+

1
Pe

[
3ξ

R2

(
dR
dz

)2
∂C
∂ξ

− 2ξ

R
dR
dz

∂ 2C
∂ξ ∂ z

− ξ

R
d2R
dz2

∂C
∂ξ

+2
(

ξ

R
dR
dz

)2
∂ 2C
∂ξ 2

]
− βC

Re

+Sr

[
3ξ

R2

(
dR
dz

)2
∂T
∂ξ

− 2ξ

R
dR
dz

∂ 2T
∂ξ ∂ z

− ξ

R
d2R
dz2

∂T
∂ξ

+2
(

ξ

R
dR
dz

)2
∂ 2T
∂ξ 2

]
(4.5)

With,

γ̇ =

√√√√2

[(
∂u

R∂ξ

)2

+

(
u

Rξ

)2

+

(
∂w
∂ z

− ξ

R
dR
dz

∂w
∂ξ

)2
]
+

(
∂u
∂ z

− ξ

R
dR
dz

∂u
∂ξ

+
∂w

R∂ξ

)2

(4.6)

and

τξ ξ =2
(
ReGγ̇

n−1 + τ0γ̇
−1)( ∂u

R∂ξ

)
(4.7)

τzz =2
(
ReGγ̇

n−1 + τ0γ̇
−1)(∂w

∂ z
− ξ

R
dR
dz

∂w
∂ξ

)
(4.8)

τξ z =2
(
ReGγ̇

n−1 + τ0γ̇
−1)(∂u

∂ z
− ξ

R
dR
dz

∂u
∂ξ

+
∂w
∂η

)
(4.9)

subect to conditions in equations (4.10)to (4.12).

w(ξ ,z,0) = w0, T (ξ ,z,0) = T0, C(ξ ,z,0) =C0(4.10)

w(ξ ,z, t) = u(ξ ,z, t) = 0, T (ξ ,z, t) = Tw,C(ξ ,z, t) =Cw on ξ = 1(4.11)

∂w(ξ ,z, t)
∂ξ

=
∂T (ξ ,z, t)

∂ξ
=

∂C(ξ ,z, t)
∂ξ

= u(ξ ,z, t) = 0, on ξ = 0(4.12)

We use the initial velocity w0, which is obtained as the solution at steady state in the absence

of body acceleration and magnetic fields. Applying the radial transformation, the initial velocity

is as given in equation (4.13).

(4.13) w0 =

(
A0 +A1

4

)
(1− (Hξ )2)
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4.1. The Radial Momentum. We are now going to obtain the radial velocity. We use the

continuity equation (4.1) to get the radial velocity u(ξ ,z, t). We multiply equation (4.1) by ξ R

and then integrate it with respect to ξ to obtain equation (4.14).

(4.14)
∫

ξ
∂u
∂ξ

dξ +
∫

udξ +
∫

ξ R
∂w
∂ z

dξ +
∫

ξ
2 dR

dz
∂w
∂ξ

dξ

Re-arranging equation (4.14) we get equation (4.15).

(4.15)
∫

ξ
∂u
∂ξ

dξ +
∫

udξ =
∫

ξ
2 dR

dz
∂w
∂ξ

dξ −
∫

ξ R
∂w
∂ z

dξ

Applying integration by parts and simplifying the equation (4.15) we have equation (4.16).

(4.16) u =
dR
dz

ξ w− 2
ξ

dR
dz

∫
wξ dξ − R

ξ

∫
ξ

∂w
∂ z

dξ

Making use of the boundary conditions in equations (4.11) and (4.12) and re-arranging we have

(4.17)

(4.17)
2
ξ

dR
dz

∫ 1

0
wξ dξ =−R

ξ

∫ 1

0
ξ

∂w
∂ z

dξ

multiplying by ξ and dividing by R we get (4.18)

(4.18)
2
R

dR
dz

∫ 1

0
wξ dξ =−

∫ 1

0
ξ

∂w
∂ z

dξ

making comparison of the integrals and the integrands of equation (4.18), we easily get equation

(4.19)

(4.19)
∂w
∂ z

=− 2
R

dR
dz

w

We now substitute equation (4.19) into equation (4.16). Such substitution gives equation

(4.20)

(4.20) u =
dR
dz

ξ w− 2
ξ

dR
dz

∫
wξ dξ − R

ξ

∫
ξ

(
− 2

R
dR
dz

w
)

dξ
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which simplifies to equation (4.21)

(4.21) u =

(
ξ

dR
dz

w
)

Equation (4.21) above, is the radial velocity component which needs to be calculated as well.

However, we substitute this radial velocity into our axial momentum, energy and concentration

equations. Also, using the product rule we find the derivatives,
∂u
∂ξ

=
dR
dz

(
ξ

∂w
∂ξ

+w
)

and

∂u
∂ z

= ξ

(
dR
dz

∂w
∂ z

+w
d2R
dz2

)
. This process therefore eliminates u,as we write radial velocity u in

terms of axial velocity w. We now have equations (4.22)to (4.28);

∂w
∂ t

= (A0 +A1 cos(ωt))−
(

ξ
dR
dz

w
)

∂w
R∂ξ

−w
(

∂w
∂ z

− ξ

R
dR
dz

∂w
∂ξ

)
+

1
R

∂τξ z

∂ξ
+

τξ z

Rξ
+

∂τzz

∂ z

− ξ

R
dR
dz

∂τzz

∂ξ
+a0 cos(ωbt +ψ)− H2

a
ReG

w

(4.22)

∂T
∂ t

=−
(

ξ

R
dR
dz

w
)

∂T
∂ξ

−w
(

∂T
∂ z

− ξ

R
dR
dz

∂T
∂ξ

)
+

1
Pe

(
∂ 2T

R2∂ξ 2 +
1

R2ξ

∂T
∂ξ

+
∂ 2T
∂ z2

)
+

1
Pe

[
3ξ

R2

(
dR
dz

)2
∂T
∂ξ

− 2ξ

R
dR
dz

∂ 2T
∂ξ ∂ z

− ξ

R
d2R
dz2

∂T
∂ξ

+2
(

ξ

R
dR
dz

)2
∂ 2T
∂ξ 2

]

+Ec

[
τξ ξ

R
dR
dz

(
ξ

∂w
∂ξ

+w
)
+

τξ z

R
∂w
∂ξ

]
+Ecτξ z

[
ξ

(
dR
dz

∂w
∂ z

+w
d2R
dz2

)]
(4.23)

−Ecτξ z

[
ξ

R

(
dR
dz

)2(
ξ

∂w
∂ξ

+w
)]

+Ecτξ z

(
∂w
∂ z

− ξ

R
dR
dz

∂w
∂ξ

)
∂C
∂ t

=−
(

ξ

R
dR
dz

w
)

∂C
∂ξ

−w
(

∂C
∂ z

− ξ

R
dR
dz

∂C
∂ξ

)
+

1
Pe

(
∂ 2C

R2∂ξ 2 +
1

R2ξ

∂C
∂ξ

+
∂ 2C
∂ z2

)
+

1
Pe

[
3ξ

R2

(
dR
dz

)2
∂C
∂ξ

− 2ξ

R
dR
dz

∂ 2C
∂ξ ∂ z

− ξ

R
d2R
dz2

∂C
∂ξ

+2
(

ξ

R
dR
dz

)2
∂ 2C
∂ξ 2

]

+Sr

[
3ξ

R2

(
dR
dz

)2
∂T
∂ξ

− 2ξ

R
dR
dz

∂ 2T
∂ξ ∂ z

− ξ

R
d2R
dz2

∂T
∂ξ

+2
(

ξ

R
dR
dz

)2
∂ 2T
∂ξ 2

]

+Sr

(
∂ 2T

R2∂ξ 2 +
1

R2ξ

∂T
∂ξ

+
∂ 2T
∂ z2

)
− βC

Re
(4.24)
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With,

γ̇ =

√√√√√√√√√
2

[(
dR
Rdz

(
ξ

∂w
∂ξ

+w
))2

+

(
dR
Rdz

w
)2

+

(
∂w
dz

− ξ

R
dR
dz

∂w
∂ξ

)2
]

+

(
ξ

(
dR
dz

∂w
∂ z

+w
d2R
dz2

)
− ξ

R
dR
dz

dR
dz

(
ξ

∂w
∂ξ

+w
)
+

∂w
R∂ξ

)2(4.25)

and

τξ ξ =2
(
ReGγ̇

n−1 + τ0γ̇
−1)(dR

dz

(
ξ

∂w
∂ξ

+w
))

(4.26)

τzz =2
(
ReGγ̇

n−1 + τ0γ̇
−1)(∂w

∂ z
− ξ

R
dR
dz

∂w
∂ξ

)
(4.27)

τξ z =2
(
ReGγ̇

n−1 + τ0γ̇
−1)[

ξ

(
dR
dz

∂w
∂ z

+w
d2R
dz2

)
− ξ

R

(
dR
dz

)2(
ξ

∂w
∂ξ

+w
)
+

∂w
R∂ξ

]
(4.28)

4.2. Numerical Procedure. In this sub-section, we move from continuous model equations to

discrete model equations through discretization. The finite difference schemes for discretization

of our model equations are based on the forward difference approximations for time derivatives

and central for all spatial derivatives, using the explicit finite difference method. This method

was also used by [10] and [11]. The approximate derivatives are as given in equations (4.29)

and (4.30).

∂w
∂ξ

=
wk

i, j+1 −wk
i, j−1

2∆ξ
,
∂ 2w
∂ξ 2 =

wk
i, j+1 −2wk

i, j +wk
i, j−1

(∆ξ )2 ,
∂w
∂ t

=
wk+1

i, j −wk
i, j

∆t
(4.29)

The approximate derivatives for temperature and concentration are obtained in a similar way as

in equation (4.29)

Similarly, the approximations of derivatives of τξ z,andτzz are as given in equation (4.30)

∂τξ z

∂ξ
=

(
τξ z
)k

i, j+1 −
(
τξ z
)k

i, j−1

2∆ξ
,
∂τzz

∂ξ
=

(τzz)
k
i, j+1 − (τzz)

k
i, j−1

2∆ξ
,
∂τzz

∂ z
=

(τzz)
k
i+1, j − (τzz)

k
i−1, j

2∆z

(4.30)

We here now define ξ j = ( j−1)∆ξ ; j = 1,2,3...N +1 where, ξN+1 = 1,zi = ( j−1)∆z; i =

1,2,3...M+1 andtk = (k−1)∆t;k = 1,2,3...

We now substitute finite difference schemes into equations (4.22)− (4.28) and we make

subject w,T, and C. We also include the discretization of radial velocity from equation
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(4.21). We therefore have equations (4.31)-(4.40).

uk+1
i, j = ξ j

(
dR
dz

)
i
wk

i, j(4.31)

wk+1
i, j = wk

i, j +∆t
(

A0 +A1 cos(ωtk)+a0 cos(ωbtk +ψ)− H2
a

ReG
wk

i, j

)

−∆t
(

ξ j

Ri

(
dR
dz

)
i
wk

i, j

)(wk
i, j+1 −wk

i, j−1

2∆ξ

)
−∆twk

i, j

(
wk

i+1, j −wk
i−1, j

2∆z

)

+∆twk
i, j

ξ j

Ri

(
dR
dz

)
i

(
wk

i, j+1 −wk
i, j−1

2∆ξ

)
−

ξ j

Ri

(
dR
dz

)
i

(
(τzz)

k
i, j+1 − (τzz)

k
i, j−1

2∆ξ

)

+∆t

 1
Ri

(τξ z
)k

i, j+1 −
(
τξ z
)k

i, j−1

2∆ξ

+

(
τξ z
)k

i, j

Riξ j
+

(
(τzz)

k
i+1, j − (τzz)

k
i−1, j

2∆z

)(4.32)

T k+1
i, j = T k

i, j −∆t

[
ξ j

Ri

(
dR
dz

)
i
(wk

i, j)

(
T k

i, j+1 −T k
i, j−1

2∆ξ

)]
−∆twk

i, j

(
T k

i+1, j −T k
i−1, j

2∆z

)

+∆t

[
wk

i, j
ξ j

Ri

(
dR
dz

)
i

(
T k

i, j+1 −T k
i, j−1

2∆ξ

)]
+

∆t
Pe

(
T k

i, j+1 −2T k
i, j +T k

i, j−1

R2
i (∆ξ )2

)

+
∆t
Pe

[
T k

i, j+1 −T k
i, j−1

2ξ jR2
i ∆ξ

+
T k

i+1, j −2T k
i, j +T k

i−1, j

(∆z)2

]
+

∆t
Pe

[
3ξ j

R2
i

(
dR
dz

)2

i

(
T k

i, j+1 −T k
i, j−1

2∆ξ

)]

−
2ξ j(∆t)

PeRi

(
dR
dz

)
i

(
T k

i+1, j+1 −T k
i−1, j+1 −T k

i+1, j−1 +T k
i−1, j−1

4∆ξ ∆z

)

− ∆t
Pe

[
ξ j

Ri

(
d2R
dz2

)
i

(
T k

i, j+1 −T k
i, j−1

2∆ξ

)]
+

2∆t
Pe

(
ξ j

Ri

dR
dz

)2

i

(
T k

i, j+1 −2T k
i, j +T k

i, j−1

(∆ξ )2

)

+∆tEc

[
(τξ ξ )

k
i, j

Ri

(
dR
dz

)
i

(
ξ j

(
wk

i, j+1 −wk
i, j−1

2∆ξ

)
+wk

i, j

)
+

(τξ z)
k
i, j

Ri

(
wk

i, j+1 −wk
i, j−1

2∆ξ

)]

+∆tEc(τξ z)
k
i, j

[
ξ j

((
dR
dz

)
i

(
wk

i+1, j −wk
i−1, j

2∆z

)
+wk

i, j

(
d2R
dz2

)
i

)]

−∆tEc(τξ z)
k
i, j

[
ξ j

Ri

(
dR
dz

)2

i

(
ξ j

(
wk

i, j+1 −wk
i, j−1

2∆ξ

)
+wk

i, j

)]
+∆tEc(τξ z)

k
i, j

(
wk

i+1, j −wk
i−1, j

2∆z

)

−∆tEc(τξ z)
k
i, j

ξ j

Ri

(
dR
dz

)
i

(
wk

i, j+1 −wk
i, j−1

2∆ξ

)
(4.33)
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Ck+1
i, j =Ck

i, j −∆t

[
ξ j

Ri

(
dR
dz

)
i

(
wk

i, j

)(Ck
i, j+1 −Ck

i, j−1

2∆ξ

)]

−∆t

[
wk

i, j

(
Ck

i+1, j −Ck
i−1, j

2∆z
−

ξ j

Ri

(
dR
dz

)
i

(
Ck

i, j+1 −Ck
i, j−1

2∆ξ

))]

+
∆t
Pe

[
Ck

i, j+1 −2Ck
i, j +Ck

i, j−1

R2
i (∆ξ )2 +

Ck
i, j+1 −Ck

i, j−1

2ξ jR2
i ∆ξ

+
Ck

i+1, j −2Ck
i, j +Ck

i−1, j

(∆z)2

]

+
∆t

ScRe

[
3ξ j

R2
i

(
dR
dz

)2

i

(
Ck

i, j+1 −Ck
i, j−1

2∆ξ

)](4.34)

−
2ξ j(∆t)

PeRi

(
dR
dz

)
i

(
Ck

i+1, j+1 −Ck
i−1, j+1 −Ck

i+1, j−1 +Ck
i−1, j−1

4∆ξ ∆z

)

− ∆t
Pe

[
ξ j

Ri

(
d2R
dz2

)
i

(
Ck

i, j+1 −Ck
i, j−1

2∆ξ

)]
+

2∆t
Pe

(
ξ j

Ri

dR
dz

)2

i

(
Ck

i, j+1 −2Ck
i, j +Ck

i, j−1

(∆ξ )2

)

+Sr∆t
3ξ j

R2
i

(
dR
dz

)2

i

(
T k

i, j+1 −T k
i, j−1

2∆ξ

)
−

2ξ j∆t
Ri

(
dR
dz

)
i

(
T k

i+1, j+1 −T k
i−1, j+1 −T k

i+1, j−1 +T k
i−1, j−1

4∆ξ ∆z

)

−Sr∆t

[
ξ j

Ri

(
d2R
dz2

)
i

(
T k

i, j+1 −T k
i, j−1

2∆ξ

)]
+2∆tSr

(
ξ j

Ri

)2(dR
dz

)2

i

(
T k

i, j+1 −2T k
i, j +T k

i, j−1

(∆ξ )2

)

With,

γ̇2 = 2

((dR
dz

)
i

(
ξ j

(
wk

i, j+1 −wk
i, j−1

2∆ξ
+wk

i, j

)))2

+

((
1
Ri

)(
dR
dz

)
i
wk

i, j

)2
(4.35)

+2

(
wk

i+1, j −wk
i−1, j

2∆z
−

ξ j

Ri

(
dR
dz

)
i

(
wk

i, j+1 −wk
i, j−1

2∆ξ

))2

(4.36)

+



[
ξ j

(
dR
dz

)
i

(
wk

i+1, j −wk
i−1, j

2∆z

)
+wk

i, j

(
d2R
dz2

)
i

]

−

[
ξ j

R

(
dR
dz

)2

i

(
ξ j

wk
i, j+1 −wk

i, j−1

2∆ξ
+wk

i, j

)
+

1
Ri

wk
i, j+1 −wk

i, j−1

2∆ξ

]


2

(4.37)

and

(
τξ ξ

)k
i, j =2

(
ReGγ̇

n−1 + τ0γ̇
−1)((dR

dz

)
i

(
ξ j

wk
i, j+1 −wk

i, j−1

2∆ξ
+wk

i, j

))
(4.38)
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(
τξ z
)k

i, j =2
(
ReGγ̇

n−1 + τ0γ̇
−1)


ξ j

((
dR
dz

)
i

(
wk

i+1, j −wk
i−1, j

2∆z

))
+wk

i, j

(
d2R
dz2

)
i
−

ξ j

Ri

(
dR
dz

)2

i

(
ξ j

wk
i, j+1 −wk

i, j−1

2∆ξ
+wk

i, j

)
+

wk
i, j+1 −wk

i, j−1

2Ri∆ξ



(4.39)

(τzz)
k
i, j =2

(
ReGγ̇

n−1 + τ0γ̇
−1)[wk

i+1, j −wk
i−1, j

2∆z
−

ξ j

Ri

(
dR
dz

)
i

(
wk

i, j+1 −wk
i, j−1

2∆ξ

)](4.40)

The conditions in equations (4.10) to (4.12) are discretized as shown in equations (4.41) and

(4.42)

w1
i, j = w0, T 1

i, j = T0, C1
i, j =C0; wk

i,2 = wk
i,1, T k

i,2 = T k
i,1, Ck

i,2 =Ck
i,1(4.41)

wk
i,N+1 = 0, uk

i,N+1 = 0, T k
i,N+1 = Tw, Ck

i,N+1 =Cw,
(
τξ z
)k

i,1 = 0.(4.42)

5. SIMULATION AND DISCUSSION

In this section, we display and discuss the numerical simulation of the discretized equa-

tions (4.31) to (4.40). The simulation was done using MATLAB software using the following

parameter values. A1 = 0.8, A0 = 0.5, ωp = 10, ωb = 10, a0 = 1, Ha = 1, ψ =

0.3, ReG = 1, e= 0.1, z0 = 1, ∆t = 0.0002, ∆z= 0.08, ∆ξ = 0.05, τ0 = 0.2, Ec =

1, Pe = 1, β = 0.1, Sr = 0.002 and n = 0.95. The parameters were varied to deter-

mine their effect.
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Figures 2-7 give the results for shear stresses. From the graphs, it is seen that, the magnitude

of shear stress increases as the power law index increases. This is shown in figure 2. Opposite

behavior is shown in figure 3, where the magnitude of shear stress declines towards positive

values as generalized Reynold’s number increases. This implies that as the inertial forces in-

creases, the magnitude of shear stress decreases. Figure 4 illustrates the effect of yield stress on

shear stress. It is observed that as the yield stress increases, the shear stress increases in mag-

nitude. This therefore implies that increasing certain the amount of stress required for blood

to flow, increases the shear stress. Comparison of shear stress for different fluid behaviors for

Herschel-Bulkley, Newtonian, power law and Bingham is illustrated in figure 5. From figure 5

we observe that the power law fluid when n > 1 has higher magnitude of shear stress compared

to power law fluid for n < 1. The same has been observed for Herschel-Bulkley fluid where

the higher the power law index the higher the magnitude of shear stress. It is interesting to

note further that when power law index n > 1 the shear stress exhibits more difference than

when n < 1 where the difference is small. This tells us that, it deviates more when n > 1 than

when n < 1. Figure 6 shows the effect of body acceleration on shear stress. It is seen that as

body acceleration increases, the shear stress increases in magnitude. The opposite trend is ob-

served in figure 7 where, the increase in Hartman number diminishes the magnitude of the shear

stress. Hartman number is a ratio of electromagnetic forces to viscous forces. Increasing the

Hartman number implies that the viscous forces become lower than the electromagnetic forces.

Physically, the Hartman number enhances the Lorentz force which opposes the blood’s motion.
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The results of radial velocity are presented in figures 8-11. From these figures, it is noted that

the radial velocities are negative in sign. The radial velocity is shown to be zero on the axis of

symmetry as it was assumed that no radial flow takes place along the axis of the symmetry. The

velocity is also zero on the arterial wall (ξ = 1) to satisfy the no slip condition. In figure 8 we

observe that when the power law index n is greater than 1, the radial velocity exhibits smaller

magnitude values than when n < 1. From the same figure 8, we observe that radial velocity for

Herschel-Bulkley fluid when n < 1 has higher values in magnitude as compared to power law,

Bingham, Newtonian and Herschel-Bulkley for n > 1. It is also observed that radial velocity

diminishes in magnitude as Hartman number and power law index increase as shown in figures

9 and 10 respectively. This finding is in good agreement with [10]. On the other hand, it is

further shown that increase in body acceleration increases the magnitude of radial velocity.

Like in radial velocity, it is also illustrated in axial velocity that body acceleration enhances axial

velocity while the Hartman number diminishes the axial velocity due to the Lorentz force which

tend to oppose fluid’s motion. Furthermore, the axial velocity is shown to increase with increase

in steady state part of pressure gradient and the amplitude of pressure oscillation responsible

for enhancing the systolic and diastolic pressures. This is as illustrated in figures 12-15 below.



NON-NEWTONIAN HEAT AND MASS TRANSFER ON MHD BLOOD FLOW 21

 

FIGURE 12

 

FIGURE 13

 

FIGURE 14

 

FIGURE 15
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Temperature profiles against radial distance are displayed in figures 16-19 below. Figure 16

shows the effect of Peclet number on temperature profile. Peclet number is the ratio of the heat

transferred by convection to the heat transferred by conduction. It is observed that, increase

in Peclet number diminishes temperature profile. This means that heat transfer by motion of

blood increases than heat transfer by conduction. In figure 17 we observe as expected that,

increase in body acceleration raises temperature profile. This implies that body exercise give

rise to the core body temperature. Eckert number is defined as the ratio of the advective mass

transfer to the heat dissipation potential. It offers a measure of the kinetic energy of the flow

relative to the enthalpy difference across the thermal boundary layer. It is observed in figure

18 that the increase in Eckert number increases the temperature profile, physically implying

that as Eckert number increases, the advective mass transfer dominates the heat dissipation

potential and therefore the temperature increases. Figure 19 reveals that as the Hartman number

increases, the temperature profile decreases.
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The effect of chemical reaction on concentration is observed in figure 20. From the figure,

we observe that, the concentration profile decreases with increasing chemical reaction param-

eter, which implies that the chemical reaction parameter acts as a destructive agent. On the

other hand, figure 21 shows the effect of increasing the Soret number on concentration pro-

file. Soret number is the ratio of temperature difference to the concentration. As expected, the

concentration profile increases with increasing the Soret number.

 

FIGURE 20

 

FIGURE 21

6. CONCLUSION

The current study presents numerical results of an unsteady heat and mass transfer blood flow

through a stenosed artery in the presence of magnetic field, body acceleration and chemical re-

action. Blood is considered to be non-Newtonian of Herschel-Bulkley type. It is established that

the presence of magnetic field diminishes the blood’s velocity; the body acceleration and Eckert

numbers enhance temperature profile; while the concentration profile is reduced by increased

chemical reaction. The study strongly suggests that for people with stenosed arteries, physical

exercises in hot environment should be done with care. Further, the study has found out that the

Herschel-Bulkley fluid experience higher velocity than the power law (for both when n < 1 and

when n > 1), Bingham and Newtonian fluids. For non-Newtonian models, Herschel-Bulkley

when n < 1 is also observed to be suitable to blood flow than the Bingham and the power law.

Further more, shear stress is observed to deviate more when n> 1 than when n< 1. Considering

the difference in shear stress and velocity profiles between the Newtonian and Herschel-Bulkley

fluids, it is suggested that it is better to model blood flow using Herschel-Bulkley constitutive

model than Newtonian.
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