
Available online at http://scik.org

Commun. Math. Biol. Neurosci. 2020, 2020:81

https://doi.org/10.28919/cmbn/5038

ISSN: 2052-2541

ON ENTROPY OF PAIRWISE CONTINUOUS MAP IN BITOPOLOGICAL
DYNAMICAL SYSTEMS

SANTANU ACHARJEE∗, KABINDRA GOSWAMI, HEMANTA KUMAR SARMAH

Department of Mathematics, Gauhati University, Guwahati-781014, Assam, India

Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Topological entropy is an important and widely used measure of complexity in topological dynam-

ical system where only one topology is involved in the entire mathematical process. Bitopological dynamical

system is a new area of dynamical system to investigate dynamical properties in terms of a bitopological space

which involves two topologies. In this paper we introduce entropy in bitopological dynamical system as a measure

of complexity and produce some results related to entropy. Also, we introduce weighted bitopological Shannon

entropy as an extension of Shannon entropy in information theory. Recently, Acharjee et al. (S. Acharjee, K.

Goswami, HK. Sarmah, on forward iterated Hausdorffness and development of embryo from zygote in bitopolog-

ical dynamical systems (communicated)) proved that the postgastrulation part of human embryo development is

a bitopological dynamical system. As an application of our theory, we find bitopological entropy of the mitosis

map in the bitopological space of postgastrulation part of human embryo development. Also, we find the weighted

bitopological Shannon entropy in this space.
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1. INTRODUCTION

Bitopological dynamical system is a new area of dynamical system to investigate dynamical

properties in terms of a bitopological space. It overcomes the difficulties faced by topological

dynamical system during the study of a system having two parallel states. Recently, Acharjee

et al. [1] studied the notion of transitivity in bitopological dynamical systems and produced

interesting results related to human embryo development. This motivates us for this paper.

Kelly [2] introduced the concept of bitopological space. Later, bitopological space was ex-

tensively studied by many researchers of various branches and the study is still going on. Pervin

[3] introduced the concept of pairwise continuity in a bitopological space. For recent theoretical

works in bitopological space, one may refer to Acharjee and Tripathy [4], Acharjee et al. [5],

Acharjee et al. [6] and many others. Recently, bitopological space has been applied in many

areas of science and social science, viz. medical sciences [7], economics ([8], [9]), computer

science [10], etc.

The term ‘entropy’ was formed from two Greek words: ‘en’ which means ‘in’ and ‘trope’

which means ‘transformation’ [11]. This term was widely used in many different fields with

different meanings before it was used in dynamical systems. Clausius [12] used the term entropy

in thermodynamics. In 1948, Shannon [13] introduced the concept of entropy in information

theory as a measure of the average information content associated with a random outcome.

Kolmogorov ([14], [15]) introduced the concept of entropy in dynamical systems as a measure-

preserving transformation. Later, Sinai [16] (a student of Kolmogorov) introduced a general

version of entropy which is known as Kolmogorov-Sinai entropy.

In 1965, Adler et al. [17] introduced the concept of topological entropy in a compact topolog-

ical space as an invariant for continuous mappings. Later, Bowen [18] introduced topological

entropy for a uniformly continuous mapping on a metric space. Recently, Liu et al. [19] defined

topological entropy for continuous mappings on arbitrary topological spaces. In general, topo-

logical entropy is used to determine the complexity of a dynamical system [11]. According to

([20], [21]), if the topological entropy of a system is positive, then the system is topologically

chaotic.
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Bitopological dynamical system is a recently explored area of dynamical systems. Till now

no work has been done to measure the complexity of a bitopological dynamical system. In this

paper we introduce the notion of entropy in bitopological dynamical system and produce some

results related to entropy. Moreover, we introduce weighted bitopological Shannon entropy

as an extension of Shannon entropy [13] in bitopological space. Finally, we produce some

applications of our theory in biology.

2. PRELIMINARY DEFINITIONS

To make the paper self-sufficient to read, we recall some existing definitions of bitopological

space and bitopological dynamical system.

Definition 2.1.[2] A quasi-pseudo-metric on a set X is a non-negative real-valued function p(,)

on the product X×X such that

(i) p(x,x) = 0, where x ∈ X

(ii) p(x,z)≤ p(x,y)+ p(y,z), where x,y,z ∈ X

Definition 2.2.[2] Let p(,) be a quasi-pseudo-metric on X, and let q(,) be defined by q(x,y) =

p(y,x), where x,y∈ X . Then, q(,) is also a quasi-pseudo-metric on X. We say that p(,) and q(,)

are conjugate, and denote the set X with the structure by (X , p,q).

If p(,) is a quasi-pseudo-metric on a set X, then the open p-sphere with centre x and radius

ε > 0 is the set Sp(x,ε) = {y : p(x,y) < ε}. The collection of all open p-spheres forms a base

for a topology. Similarly, q(,) determines a topology for X . We shall denote the topology de-

termined by p(,) by τ1 and the topology that of q(,) by τ2.

Definition 2.3.[2] A space X on which are defined two (arbitrary) topologies τ1 and τ2 is called

a bitopological space and denoted by (X ,τ1,τ2).

Definition 2.4.[22] A function f from a bitopological space (X ,τ1,τ2) into a bitopological space

(Y,ψ1,ψ2) is said to be pairwise continuous ( respectively, a pairwise homeomorphism ) iff the

induced functions f : (X ,τ1)→ (Y,ψ1) and f : (X ,τ2)→ (Y,ψ2) are continuous ( respectively,

homeomorphisms).

Pervin [3] called this a continuous map. However, we call this as pairwise continuous map, due

to Reilly [22].

Definition 2.5.[23] A cover U of a bitopological space (X ,τ1,τ2) is pairwise open if U ⊂
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τ1∪ τ2, U ∩ τ1 contains a non-empty set, and U ∩ τ2 contains a non-empty set.

Definition 2.6.[23] A bitopological space (X ,τ1,τ2) is pairwise compact provided every pair-

wise open cover of X has a finite subcover.

Definition 2.7.[24] A set A ⊂ X is +invariant when f (A) ⊂ A and A is −invariant when

A⊂ f (A). A is called invariant when f (A) = A.

Definition 2.8.[25] A map f : X → X is called +invariant if for all A ⊂ X , f (A) ⊂ A and

−invariant when A⊂ f (A). The map f is invariant when f (A) = A, for all A⊂ X .

Definition 2.9.[26] Let X be a topological space. A continuous map f : X → X is said to be

a topological dynamical system with discrete time or simply a topological dynamical system.

When f is a homeomorphism (that is, a bijective continuous map with continuous inverse), we

also say that it is an invertible topological dynamical system.

In [1], we considered N, Z and R as the set of non-negative integers, the set of integers and the

set of real numbers, respectively.

Definition 2.10.[1] Let (X ,τ1,τ2) be a bitopological space. A bitopological dynamical system

is a pair (X , f ), where (X ,τ1,τ2) is a bitopological space and f : X→ X is a pairwise continuous

map. The dynamics is obtained by iterating the map.

The forward orbit of a point x ∈ X under f is defined as O+(x) = { f n(x) : n ∈ N}, where f n

denotes the nth iteration of the map f . If f is a homeomorphism, then the backward orbit of

x is the set O−(x) = { f−n(x) : n ∈ N} and the full orbit of x (or simply orbit of x) is the set

O(x) = { f n(x) : n ∈ Z}.

For compact topological space, Adler et al. [17] introduced the concept of topological en-

tropy and studied its various properties. Their definition is as follows:

Definition 2.11.[17] Let X be a compact topological space and f : X → X a continuous map-

ping. For any open cover U of X , let N(U ) denotes the number of sets in a subcover of minimal

cardinality. Let H(U ) = logN(U ). For any two open covers U ,V ; U ∨V ≡ {A∩B : A ∈

U ,B ∈ V } defines their join. Then, the entropy ent( f ,U ) of a mapping f with respect to

a cover U is defined as lim
n→∞

H(U ∨ f−1U ∨...∨ f−n+1U )
n and the entropy ent( f ) of a mapping f is

defined as the supent( f ,U ), where the supremum is taken over all open covers U .
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Recently, Liu et al. [19] proposed a new definition of topological entropy for continuous

mappings on arbitrary topological spaces where compactness, metrizability, separation axioms

etc. are not necessarily required. Their definition is as follows:

Definition 2.12.[19] Let (X , f ) be an arbitrary topological dynamical system, i.e., X is an arbi-

trary topological space and f is a continuous mapping from X to itself. Let U be an open cover

of X and F be a non-empty compact subset of X invariant under f , i.e. f (F)⊆ F . Let MF(U )

be the smallest cardinality of all subcovers (for F) of U and LF(U ) = logMF(U ). For any

two open covers U ,V ; U ∨V = {A∩B : A ∈ U ,B ∈ V } defines their join. Also, K (X , f )

denotes the set of all f -invariant non-empty compact subsets of X .

Definition 2.13.[19] Let (X , f ) be a topological dynamical system. For F ∈K (X , f ) and any

open cover U of X , ent∗( f ,U ,F) = lim
n→∞

1
nLF(

∨n−1
j=0 f− j(U )) is called the topological entropy

of f on F relative to U . Further, ent∗( f ,F) = sup
U
{ent∗( f ,U ,F)}, where the supremum is

taken over all open covers U of X , is called the topological entropy of f on F .

Definition 2.14.[19] Let (X , f ) be a topological dynamical system. When K (X , f ) 6= /0, define

ent∗( f ) = sup
F∈K (X , f )

{ent∗( f ,F)}. When K (X , f ) = /0, define ent∗( f ) = 0. Further, ent∗( f ) is

said to be the entropy of f .

Lemma 2.1.[20] Let {an} be a sequence of real numbers which is subadditive, i.e. am+n ≤

am +an for all m,n. Then lim
n→∞

an
n exists and has the value c = inf an

n .

3. ON ENTROPY OF A PAIRWISE CONTINUOUS MAP

In this section, our main aim is to introduce entropy in bitopological dynamical systems. For

this purpose, we introduce weakly pairwise compactness in a bitopological space.

Definition 3.1. A cover U of a bitopological space (X ,τ1,τ2) is weakly pairwise open if U ⊂

τ1∪τ2∪{U ∩V : U(6= /0,X)∈ τ1,V (6= /0,X)∈ τ2}, U ∩τ1 contains a non-empty set and U ∩τ2

contains a non-empty set.

Definition 3.2. A bitopological space (X ,τ1,τ2) is weakly pairwise compact provided every

weakly pairwise open cover of X has a finite subcover.

It is to be noted that if a bitopological space (X ,τ1,τ2) is pairwise compact, then it is weakly

pairwise compact but the converse may not be true in general. In some particular bitopological
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spaces where any pair of τ1-open set (6= φ ,X) and τ2-open set (6= φ ,X) has empty intersection,

pairwise compactness and weakly pairwise compactness are same. We give an example of such

type of space in section 6.

Example 3.1. Let us consider the bitopological space (R,τ1,τ2), where τ1 is the left hand topol-

ogy and τ2 is the right hand topology. Then, (R,τ1,τ2) is weakly pairwise compact since it is

pairwise compact according to Cooke and Reilly [27].

Example 3.2. Let X be the unit interval [0,1], τ1 = { /0,X ,{0}, [0,a) : a ∈ X}, and τ2 =

{ /0,X ,{1},(b,1] : b ∈ X}. Then, (X ,τ1,τ2) is not weakly pairwise compact since the weakly

pairwise open cover {{0},{1},(b,a) : b(6= 0),a(6= 1) ∈ X ,b < a} has no finite subcover.

Also according to Cooke and Reilly [27], (X ,τ1,τ2) is not pairwise compact since the pair-

wise open cover {{0},(b,1] : b ∈ X ,b 6= 0} of X has no finite subcover.

Now, we define entropy in bitopological dynamical systems which is an extension of the

definition of topological entropy [17].

Let N, Z and R denote the set of non-negative integers, the set of integers and the set of real

numbers, respectively.

Definition 3.3. Let (X , f ) be a bitopological dynamical system, where (X ,τ1,τ2) is a bitopo-

logical space and f : X → X is a pairwise continuous map. Let (X ,τ1,τ2) be weakly pairwise

compact. For any weakly pairwise open cover U of X , let N(U ) denotes the number of sets in

a subcover of U with minimal cardinality. Let L(U ) = logN(U ).

For any two weakly pairwise open covers U , V of X , we define their join by U ∨V =

{U ∩V : U ∈U ,V ∈ V }. Then, U ∨V is also a weakly pairwise open cover of X . A weakly

pairwise open cover U is said to be a refinement of a weakly pairwise open cover V , denoted

by V ≺U , if every member of U is a subset of atleast one member of V .

We have the following properties in a weakly pairwise compact space X . Also, from here

we always assume that the bitopological space X is weakly pairwise compact unless otherwise

specified.

Property 3.1. Let U be a weakly pairwise open cover of X . Then, N(U ) ≥ 1 and therefore

L(U )≥ 0.

Property 3.2. Let U be a weakly pairwise open cover of X . Then for a pairwise continuous
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map f , L( f−1(U ))≤ L(U ).

Proof. Let {U1, ...,Up,V1, ...,Vq,M1∩N1, ...,Mr∩Ns :Ui,M j ∈ τ1;Vk,Nl ∈ τ2 where i= 1,2, ..., p;

j = 1,2, ...r;k = 1,2, ...,q and l = 1,2, ...,s} be a subcover of U with minimal cardinality. Then,

{ f−1(U1), ..., f−1(Up), f−1(V1), ..., f−1(Vq), f−1(M1∩N1), ..., f−1(Mr∩Ns)} is a weakly pair-

wise open subcover and it covers X . But, this subcover may not be the minimal subcover which

covers X and so, N( f−1(U ))≤ N(U ). This gives L( f−1(U ))≤ L(U ).

Property 3.3. Let U and V be two weakly pairwise open covers of X . Then, L(U ∨V ) ≤

L(U )+L(V ).

Proof. Let {M1, ...,Mr} be a subcover of U with minimal cardinality and {N1, ...,Ns} be a

subcover of V with minimal cardinality where Mi’s and N j’s are either τ1-open sets or τ2-open

sets or sets of the form U ∩V , U ∈ τ1,V ∈ τ2. Then, {Mi∩N j : i = 1, ...,r and j = 1, ...,s} is a

subcover of U ∨V and it is not always minimal. Thus, N(U ∨V )≤ N(U ).N(V ). This gives

L(U ∨V )≤ L(U )+L(V ).

Property 3.4. Let U and V be two weakly pairwise open covers of X . If f is a pairwise open

map, then f−1(U ∨V ) = f−1(U )∨ f−1(V ).

Proof. It is easy to prove the result by using properties of inverse of a function.

Property 3.5. Let U and V be two weakly pairwise open covers of X such that V ≺U . Then

N(V )≤ N(U ) and so L(V )≤ L(U ).

Proof. Let {M1, ...,Mr} be a subcover of U with minimal cardinality where Mi’s are either

τ1-open sets or τ2-open sets or sets of the form U ∩V , U ∈ τ1,V ∈ τ2. Since V ≺U , so there

exists a subcover {N1, ...,Nr} of V consists of the supersets of the sets Mi’s where N j’s are either

τ1-open sets or τ2-open sets or sets of the form U ∩V , U ∈ τ1,V ∈ τ2. Clearly, this subcover

may not be the minimal subcover of V . Hence, N(V )≤ N(U ) and so L(V )≤ L(U ).

Property 3.6. Let U be a weakly pairwise open cover of X . Then, the limit lim
n→∞

1
nL(

∨n−1
i=0 f−i(U ))

exists and it is finite.

Proof. Let an = L(
∨n−1

i=0 f−i(U )). Using the lemma 2.1., it is sufficient to show that am+n ≤

am +an for all m,n.
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Now using property 3.2. and property 3.3., we get

am+n = L(
m+n−1∨

i=0

f−i(U ))

= L((
m−1∨
i=0

f−i(U ))∨ (
m+n−1∨

i=m

f−i(U )))

= L((
m−1∨
i=0

f−i(U ))∨ ( f−m
n−1∨
i=0

f−i(U )))

≤ L((
m−1∨
i=0

f−i(U )))+L(
n−1∨
i=0

f−i(U )))

= am +an.

Thus, am+n ≤ am +an for all m,n. This completes the proof.

Now, we define entropy of a pairwise continuous map in a bitopological space.

Definition 3.4. Let (X , f ) be a bitopological dynamical system, where the bitopological space

X is weakly pairwise compact. We define the entropy of the mapping f relative to the weakly

pairwise open cover U as E( f ,U ) = lim
n→∞

1
nL(

∨n−1
i=0 f−i(U )).

Property 3.7. Let (X , f ) be a bitopological dynamical system, where the bitopological space X

is weakly pairwise compact. For any weakly pairwise open cover U of X , E( f ,U )≤ L(U ).

Proof. Using property 3.3. and property 3.2., we get

E( f ,U ) = lim
n→∞

1
n

L(
n−1∨
i=0

f−i(U ))

≤ lim
n→∞

1
n
(L(U )+ ...+L( f−(n−1)(U )))

≤ lim
n→∞

1
n
(L(U )+ ...+L(U ))

≤ L(U ).

Definition 3.5. Let (X , f ) be a bitopological dynamical system, where the bitopological space

X is weakly pairwise compact. The entropy of f is defined as E( f ) = sup
U
{E( f ,U )}, where

the supremum is taken over all weakly pairwise open covers U of X . We call this entropy as

bitopological entropy.
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We have the following properties of bitopological entropy.

Property 3.8. The bitopological entropy of the identity mapping is zero.

Proof. Let I : X → X be the identity mapping from a weakly pairwise compact bitopological

space X to itself. For any weakly pairwise open cover U of X , we have
∨n−1

i=0 I−i(U ) ≺ U .

By property 3.6., L(
∨n−1

i=0 I−i(U )) ≤ L(U ). This gives E(I,U ) = lim
n→∞

1
nL(

∨n−1
i=0 I−i(U )) = 0.

Since U is arbitrary, hence the entropy of I is E(I) = sup
U
{E(I,U )}= 0.

Property 3.9. The bitopological entropy of a +invariant mapping is zero.

Proof. Let f : X → X be a +invariant mapping from a weakly pairwise compact bitopological

space X to itself. Then for all A ⊂ X , f (A) ⊂ A and so for any weakly pairwise open cover U

of X , we have N(
∨n−1

i=0 f−i(U ))≤ N(U ). This implies that L(
∨n−1

i=0 f−i(U ))≤ L(U ). Hence,

E( f ,U ) = lim
n→∞

1
nL(

∨n−1
i=0 f−i(U )) ≤ lim

n→∞

1
nL(U ) = 0. Since U is arbitrary, hence the entropy

of f is E( f ) = sup
U
{E( f ,U )}= 0.

4. ON BITOPOLOGICAL ENTROPY OF BITOPOLOGICALLY EXPANSIVE MAP AND

BITOPOLOGICALLY TRANSITIVE MAP

In this section, we introduce bitopologically expansive map and find the entropy of a map

which is not a bitopologically expansive map along with some other results.

Expansive map has been studied by many researchers ([28], [29]) for a long time. Reddy [30]

introduced positively expansive map on compact metric spaces as follows:

Definition 4.1.[30] A map f from a compact metrizable space X onto itself is said to be pos-

itively expansive if there is a metric d for X and a number c > 0 such that x 6= y implies the

existence of a positive integer n such that d( f n(x), f n(y))> c.

Recently, Richeson and Wiseman [31] generalized the notion of positively expansive map

into topological spaces.

Now, we introduce expansive map in bitopological dynamical systems.

Definition 4.2. Let (X , f ) be a bitopological dynamical system. The map f is called bitopo-

logically expansive with respect to the τ1-open set U(6= /0) and τ2-open set V (6= /0) if for all

x,y ∈ X , x 6= y, x ∈ U , y ∈ V there exist m,n ∈ N (depending on x and y) such that (x,y) /∈

f−m(U)× f−n(V ).
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The map f (or the system (X , f )) is called bitopologically expansive if for every pair of

non-empty open sets U ∈ τ1 and V ∈ τ2, f is bitopologically expansive.

Acharjee et al.[1] introduced the concept of bitopologically transitive map as follows.

Definition 4.3.[1] Let (X , f ) be a bitopological dynamical system. For U ∈ τ1 and V ∈ τ2, we

define the following:

N(U,V ) = {(m,n) : m,n ∈ N, f m(U)∩V 6= /0 and U ∩ f n(V ) 6= /0}.

The map f is called bitopologically transitive (or (m,n) transitive) if for any pair of non-empty

open sets U ∈ τ1 and V ∈ τ2, the set N(U,V ) is non-empty.

The following lemma establishes the relation of −invariant map with bitopologically expan-

sive map.

Lemma 4.1. Let (X , f ) be a bitopological dynamical system. If the map f is −invariant, then

f is bitopologically expansive and bitopologically transitive.

Proof. Let f be −invariant. Then for all A ⊂ X , A ⊂ f (A). This implies that f (A) ⊂ f 2(A),

f 2(A) ⊂ f 3(A) and so on. Also, A ⊂ f n(A),∀n ∈ N, i.e. f−1(A) ⊂ A, f−2(A) ⊂ f−1(A) and

so on. Let U(6= /0) ∈ τ1 and V (6= /0) ∈ τ2 be arbitrary. Let x,y ∈ X , x 6= y, x ∈U , y ∈ V . Now,

U ×V ⊃ f−1(U)× f−1(V ) ⊃ f−2(U)× f−2(V ) ⊃ and so on. Then, there exist m,n ∈ N (de-

pending on x and y) such that (x,y) /∈ f−m(U)× f−n(V ). Thus, f is bitopologically expansive

map.

In the next theorem we find the bitopological entropy of a map which is not bitopologically

expansive.

Theorem 4.1. Let (X , f ) be a bitopological dynamical system. If the map f is not bitopologi-

cally expansive, then the bitopological entropy of the map f is zero.

Proof. By lemma 4.1., if f is not bitopologically expansive then it cannot be −invariant. That

is for all A⊂ X , f (A)⊆ A. This implies f is a +invariant map or an invariant map.

If f is a +invariant map, then by using property 3.9., the bitopological entropy of f is zero.

Also, if f is an invariant map then for any weakly pairwise open cover U of X , we have∨n−1
i=0 f−i(U )≺U . By property 3.6., L(

∨n−1
i=0 f−i(U ))≤ L(U ). This gives E( f ,U )

= lim
n→∞

1
nL(

∨n−1
i=0 f−i(U )) = 0. Since U is arbitrary, the entropy of f , E( f ) = sup

U
{E( f ,U )}=

0.
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The following lemma establishes the relation between bitopologically transitive map and

−invariant map.

Lemma 4.2. Let (X , f ) be a bitopological dynamical system. Then, the map f is bitopologically

transitive if and only if it is −invariant.

Proof. Assume that f is not a −invariant map. Let f be bitopologically transitive. Then, for

any pair of non-empty open sets U ∈ τ1 and V ∈ τ2, we have f m(U)∩V 6= /0 and U ∩ f n(V ) 6= /0

for m,n ∈ N. In particular, let U ∈ τ1 and V ∈ τ2 be such that U ∩V = /0. Now, since f

is not a −invariant map so f (U) ⊆ U . This gives f m(U) ⊆ U,∀m ∈ N. This implies that

f m(U)∩V ⊆U ∩V = /0,∀m ∈ N - a contradiction. Thus, f is not a bitopologically transitive

map.

Next, let f be −invariant. Then for all A ⊂ X , A ⊂ f (A). This implies that f (A) ⊂ f 2(A),

f 2(A) ⊂ f 3(A) and so on. Let U(6= /0) ∈ τ1 and V (6= /0) ∈ τ2 be arbitrary. Then, U ⊂ f (U) ⊂

f 2(U) ⊂ f 3(U) ⊂.... After some iterations, say m, we must have f m(U) = X . Thus, f m(U)∩

V 6= /0,∀ V ∈ τ2. Similarly, there exists n ∈ N such that U ∩ f n(V ) 6= /0,∀U ∈ τ1. Thus, f is

bitopologically transitive.

Theorem 4.2. Let (X , f ) be a bitopological dynamical system. If the mapping f is not bitopo-

logically transitive, then the bitopological entropy of the map f is zero.

We omit the proof of theorem 4.2. as it can be proved similarly as of the proof of theorem

4.1.

5. WEIGHTED BITOPOLOGICAL SHANNON ENTROPY

In 1948, Shannon [13] introduced the concept of entropy in information theory. We procure

it from Addabbo and Blackmore [32].

Definition 5.1. [32] Let S := {s1, ...,sm} be a nonempty finite set of symbols or messages

(sometimes referred to as the alphabet) with a discrete probability p assigned to each, such

that p(si) ≥ 0 for all 1 ≤ i ≤ m and p(s1)+ ...+ p(sm) = 1. Then, the Shannon entropy of the

message ensemble H(S) := −∑
m
i=1 p(si) log p(si) is just the average or expected value of the

information content of the message.
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In this section, we introduce weighted bitopological Shannon entropy and discuss some re-

sults related to it. First we discuss an interesting observation in a pairwise compact bitopological

space.

Let us consider the bitopological space (R,τ1,τ2), where τ1 is the left hand topology and τ2

is the right hand topology. According to Cook and Reilly [27], (R,τ1,τ2) is pairwise compact

since any pairwise open cover U of R has at least one τ1-open set and one τ2-open set which

are not disjoint. These two sets cover R and so form the required finite subcover. Let Vmin be

a subcover of U with minimal cardinality. Then Vmin = {U,V}, where U is a τ1-open set and

V is a τ2-open set which are not disjoint. Now, a natural question arises- how important is the

set U (or V ) in the sense of covering R ? The answer is they are equaly important. We cannot

omit any one of them. So, if we are asked to give some weights according to the importance of

U and V in Vmin in the scale of [0,1], then we can say that the weight of U is 1
2 and also weight

of V is 1
2 .

This simple observation from the example of Cook and Reilly[27] motivates us for the fol-

lowing definition.

Definition 5.2. Let (X ,τ1,τ2) be a pairwise compact bitopological space. Let U = {Ui,Vj :

Ui ∈ τ1,Vj ∈ τ2} be a pairwise open cover of X . Let Vmin be a subcover of U with minimal

cardinality. Since X is pairwise compact, Vmin always has finite number of elements. Then

to each Ui ∈ Vmin and to each Vj ∈ Vmin, we can assign a value w(Ui) and w(Vj) such that

0 ≤ w(Ui) ≤ 1,0 ≤ w(Vj) ≤ 1 and ∑
i
w(Ui)+∑

j
w(Vj) = 1. We call w(Ui) the weight of set Ui.

The value of the weight is to be given practically based on different characteristics of an open

set such as its cardinality, its importance in covering the space X and so on.

Now, based on weight of an open set in a subcover of minimal cardinality in a pairwise

compact bitopological space, we define weighted bitopological Shannon entropy which is an

extension of Shannon entropy in information theory.

Definition 5.3. Let (X ,τ1,τ2) be a pairwise compact bitopological space. Let U = {Ui,Vj :

Ui ∈ τ1,Vj ∈ τ2} be a pairwise open cover of X . Let Vmin = {Ui,Vj : i = 1, ...,m and j = 1, ...,n}

be a subcover of U with minimal cardinality. We define the weighted bitopological Shannon
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entropy of the bitopological space (X ,τ1,τ2) with respect to the pairwise open cover U as

S(X ,U ) =−(
m

∑
i=0

w(Ui) logw(Ui)+
n

∑
j=0

w(Vj) logw(Vj)).

Definition 5.4. Let (X ,τ1,τ2) be a pairwise compact bitopological space. We define the

weighted bitopological Shannon entropy of the bitopological space (X ,τ1,τ2) as S(X) =

sup
U
{S(X ,U )}, where the supremum is taken over all pairwise open covers U of X .

It is to be noted that the weighted bitopological Shannon entropy depends on the definition

of weight. So, while calculating weighted bitopological Shannon entropy one must consider a

fixed definition of weight. Also, the value of weighted bitopological Shannon entropy differs if

one considers different definition of weight. So, all the characteristics are to be measured for

weights.

Example 5.1. Let us consider the bitopological space (R,τ1,τ2), where τ1 is the left hand

topology and τ2 is the right hand topology. According to Cook and Reilly [27], (R,τ1,τ2) is

pairwise compact since any pairwise open cover of R has at least one τ1-open set and one τ2-

open set which are not disjoint. Let U be a pairwise open cover of R. Then, a subcover of U

with minimal cardinality contains exactly two elements- one is a τ1-open set and the other is a

τ2-open set. So, Vmin = {U,V : U ∈ τ1,V ∈ τ2}. Now, if we consider the importance of U and V

from the perspective of covering the space (R,τ1,τ2), then they are equally important. So, we

can assign weights to U and V as w(U) = w(V ) = 1
2 . Then, the weighted bitopological Shannon

entropy of the bitopological space (R,τ1,τ2) with respect to the pairwise open cover U as

S(X ,U ) =−(w(U) logw(U)+w(V ) logw(V ))

=−(1
2

log
1
2
+

1
2

log
1
2
)

= log2.

This is true for any pairwise open cover U of R. Thus, the weighted bitopological Shannon

entropy of the bitopological space (R,τ1,τ2) is
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S(X) = sup
U
{S(X ,U )}

= log2.

We produce another example in next section.

6. AN EXAMPLE FROM BIOLOGY

Recently, Acharjee et al. [1] constructed a bitopological space (R,τ1,τ2) of human embryo

development; where:

τ1 = {(φ ,τ1(t0)),(U1,τ1(t1)),(U2,τ1(t2)), ...,(Um,τ1(tm)),(R,τ1(T ))} and

τ2 = {(φ ,τ2(t0)),(V1,τ2(t1)),(V2,τ2(t2)), ...,(Vn,τ2(tn)),(R,τ2(T ))}.

Here; φ = Z =U0 =V0 is the zygote, Um = X is the brain together with central nervous system

of the whole organism and Vn = Y is the other body parts of the whole organism except the

brain and the central nervous system. Also, U1, U2,... represent different development stages of

the brain and the central nervous system; and V1, V2,... represent different development stages

of the other body parts except the brain and the central nervous system. Here, t0 is the time of

fertilization and T is the time of birth. It is important to note that before gastrulation, we have

Ui = Vi. At the end; X and Y together form the whole organism, the baby R, i.e. X ∪Y = R.

Moreover, Z =U0 ⊂U1 ⊂U2 ⊂ ...⊂Um ⊂ R and Z =V0 ⊂V1 ⊂V2 ⊂ ...⊂Vn ⊂ R.

In another paper [25], Acharjee et al. proved that (R,h) is a bitopological dynamical system,

where the map h : R→ R (it is the map that represents mitosis process) is defined by

h(x j
i ) = {x

j1
i ,x j2

i },

where x j
i is the mother cell, x j1

i and x j2
i are the daughter cells.

Let, R∗ be the postgastrulation part of the whole organism R; τ∗1 and τ∗2 are relative topologies

on R∗. We also consider that h∗ is the restriction of the map h on R∗, i.e. h∗ = h|R∗ . Then

according to [25], (R∗,τ∗1 ,τ
∗
2 ) is a subspace of (R,τ1,τ2).

In this section, we mainly focus on the bitopological dynamical system (R∗,h∗).

Now, we estimate the bitopological entropy of the map h∗.
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For any pair of open sets U∗,V ∗ ⊂ R∗, where U∗ ∈ τ∗1 and V ∗ ∈ τ∗2 , we have

U∗∩V ∗ = (R∗∩U)∩ (R∗∩V )

= R∗∩ (U ∩V )

= /0,

as R∗ is the postgastrulation part of the whole organism and U ∩V is the developing stage of the

embryo before gastrulation.

Thus, the bitopological space (R∗,τ∗1 ,τ
∗
2 ) is a special kind of bitopological space where pair-

wise compactness and weakly pairwise compactness coincides.

Lemma 6.1. The bitopological space (R∗,τ∗1 ,τ
∗
2 ) is weakly pairwise compact.

Proof. Let U ∗ = {U∗i ,V ∗j : i, j ∈ ∆ and ∆ is an index set} be any weakly pairwise open cover of

(R∗,τ∗1 ,τ
∗
2 ).

Case I: U ∗ contains R∗. Then, clearly U ∗ has the finite subcover {R∗}.

Case II: U ∗ does not contain R∗. Then U ∗ has the finite subcover {U∗,V ∗}, where U∗ =

largest τ∗1 -open set among the sets {U∗i : i ∈ ∆} and V ∗ = largest τ∗2 -open set among the sets

{V ∗j : j ∈ ∆}. We can choose such sets because of the increasing nature of open sets of both

the topologies. Thus, every weakly pairwise open cover of (R∗,τ∗1 ,τ
∗
2 ) has a finite subcover and

therefore (R∗,τ∗1 ,τ
∗
2 ) is weakly pairwise compact.

Theorem 6.1. The maximum value of the bitopological entropy of the map h∗ is log2.

Proof. By Lemma 7.1., for any weakly pairwise open cover U ∗ of (R∗,τ∗1 ,τ
∗
2 ) we have

N(U ∗)≤ 2 and so L(U ∗)≤ log2. By property 3.7., E( f ,U ∗)≤L(U ∗). This gives E( f ,U ∗)≤

log2. Thus, E( f ) = sup
U ∗
{E( f ,U ∗)} ≤ log2.

Theorem 6.2. The weighted bitopological Shannon entropy of the bitopological space (R∗,τ∗1 ,τ
∗
2 )

is log2.

Proof. Let U ∗ = {U∗i ,V ∗j : i, j ∈ ∆ and ∆ is an index set} be any pairwise open cover of

(R∗,τ∗1 ,τ
∗
2 ). Then, a subcover of U ∗ with minimal cardinality contains exactly two elements-

one is a τ∗1 -open set and the other is a τ∗2 -open set. So, V ∗min = {U∗,V ∗ : U∗ ∈ τ∗1 ,V
∗ ∈ τ∗2} (we

omit the trivial case U ∗ contains R∗ due to realistic nature of embryo development). Now, if we

consider the importance of U∗ and V ∗ from the perspective of covering the space (R∗,τ∗1 ,τ
∗
2 ),
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then they are equally important. Moreover, this is medically verified [33]. So, we assign weights

to U∗ and V ∗ as w(U∗) = w(V ∗) = 1
2 . Then, the weighted bitopological Shannon entropy of the

bitopological space (R∗,τ∗1 ,τ
∗
2 ) with respect to the pairwise open cover U ∗ is

S(R∗,U ∗) =−(w(U∗) logw(U∗)+w(V ∗) logw(V ∗))

=−(1
2

log
1
2
+

1
2

log
1
2
)

= log2.

This is true for any pairwise open cover U ∗ of R∗. Thus, the weighted bitopological Shannon

entropy of the bitopological space (R∗,τ∗1 ,τ
∗
2 ) is

S(R∗) = sup
U ∗
{S(R∗,U ∗)}

= log2.

7. CONCLUSION

In this paper we introduced the notion of entropy in bitopological dynamical system where the

bitopological space is weakly pairwise compact. We introduced the notion of bitopologically

expansive map. Then, we found the bitopological entropy of a map which is not bitopologically

expansive. Later, we found the bitopological entropy of a map which is not bitopologically

transitive. Bitopological entropy has the potential to measure the complexity of a bitopologi-

cal dynamical system. Moreover, we introduced weighted bitopological Shannon entropy in a

bitopological space as an extension of Shannon entropy [13]. In future, weighted bitopological

Shannon entropy may become a foundation of bitopology based information theory and to make

this happen, we need a deep research in the area related to weighted bitopological Shannon en-

tropy. Finally, as an application of our theory, we calculated bitopological entropy of the mitosis

map in the bitopological space of postgastrulation part of human embryo development, which

was introduced by Acharjee et al. [25]. Also, we found the weighted bitopological Shannon

entropy of this space.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.



ON ENTROPY OF PAIRWISE CONTINUOUS MAP IN BITOPOLOGICAL DYNAMICAL SYSTEMS 17

REFERENCES

[1] S. Acharjee, K. Goswami, H.K. Sarmah, Transitive map in bitopological dynamical systems, (communi-

cated).

[2] J.C. Kelly, Bitopological Spaces, Proc. Lond. Math. Soc. 13(3) (1963), 71–89.

[3] W.J. Pervin, Connectedness in bitopological spaces, Indag. Math. 29(1967), 369–372.

[4] S. Acharjee, B.C. Tripathy, p-J-generator and p1-J-generator in bitopology, Bol. Soc. Paran. Math. 36(2)

(2018), 17–31.

[5] S. Acharjee, K. Papadopoulos, B.C. Tripathy, Note on p1-Lindelöf spaces which are not contra second count-
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